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Abstract: In this work we model a pandemic where individuals are first infected with the influenza virus and later
contract a secondary bacterial infection. The model uses a modified SIR approach with standard analytical and
qualitative analysis. Theoretical questions are investigated concerning the proportion of the population to initially
vaccinate for influenza, the proportion of the population to quarantine after being infected with influenza, and how
improved treatments of bacterial infections all would play into reducing the net number of deaths.
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1 Introduction

A lot of research on the spread of the influenza virus
had been done due to the widespread effects on the
number of deaths it has caused in the modern world.
This becomes especially evident during pandemic out-
breaks, the most notable being the 1918 H1N1 in-
fluenza pandemic (Spanish flu) which killed an esti-
mated 50-100 million people worldwide [1] and the
most recent being the 2009 H1N1 pandemic. Other
pandemic outbreaks of influenza include the 1957
H2N2 pandemic (Asian Flu) and the 1968 H3N2 pan-
demic (Hong Kong Flu) [2]. Since influenza pan-
demics and epidemics are a continuous threat, they
are important to understand.

Generally, diseases transmitted by viral agents,
such as influenza, confer immunity against reinfection
[3]. Influenza A is the most severe and, in general,
pandemics caused by this type of virus have large im-
pacts on the human population such as missed work,
hospital costs, and increased deaths. Annual influenza
epidemics usually appear in the fall or winter and af-
fect on average 10-20% of the global population each
year. Epidemics are usually the result of frequent mi-
nor antigenic variations of the virus [4].

In the past, the main focus of study has been
solely on the influenza virus. There have been numer-
ous papers modeling the spread of multiple strains of
the virus with partial immunity [5], [6], and [7]. There
have also been some studies breaking down the pop-

ulation into different age classifications [8], [9], [10],
and [11]. However, healthcare providers, medical ex-
perts, and published data from previous pandemics
suggest that most deaths are largely caused by respi-
ratory complications from a secondary bacterial infec-
tion, the most common being bacterial pneumonia [1],
[12], [13], [14], [15], [16], [17], [18], [19], and [4]. In
2009 Handel et al. [20] derived a mathematical model
for a bacterial infection following influenza. In their
model they account for 4 subclasses of those infected
with influenza and 4 subclasses for those infected with
bacteria. Their model addresses this scientific prob-
lem very thoroughly, but the authors caveat their find-
ings by stating that many of the parameters of interest
are unknown to much detail. Most recently Chien et
al. [21] proposed a model that takes both the influenza
virus and bacterial aspects into account as well. This
is an even more detailed model where they account for
asymptomatic and symptomatic cases. Chien’s model
also considers co-infection with influenza and bacte-
ria and allows an individual to first get infected with
bacteria and then get influenza or vice-versa. Again,
the complexity of this model limits its ability to be
analyzed qualitatively.

At the time of submission, these are the only two
mathematical models we are aware of that includes
both the influenza virus and bacterial portions of an
influenza pandemic. For this reason, we propose a
simpler model that considers an individual contract-
ing symptomatic influenza and then a possible sec-
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ondary bacterial infection. We do this because the-
oretically it seems plausible that this is the main sce-
nario that leads to an increased death rate. We also
do not consider co-infection since studies by Ampofo
et al. [22] and Grabowska et al. [14] suggest there
exists a lag time between the two diseases. Further
evidence in support of including this type of model is
provided by [13] and [19]. Thus, we keep our pro-
posed model simple enough to allow for qualitative
analysis, eliminate many of the unknown parameters,
yet still consider the dynamics between influenza and
bacterial infection. Being able to perform a qualita-
tive analysis has several benefits, which include being
able to determine the maximum number of individu-
als with symptomatic influenza during the epidemic (a
carry over from the basic SIR model [3]), being able
to determine if an influenza epidemic will occur with
only the parameter values for influenza and the initial
number of susceptible individuals, and it allows us to
determine the effects various parameter changes has
on an epidemic. Despite being a much simpler model
than Handel et al. [20] and Chien et al. [21] propose,
we still get similar results to their more complicated
models but with the advantage of some analytical for-
mulas about the influenza pandemic.

By modifying the classic SIR (Susceptible, In-
fected, Recovered) model from epidemiology to in-
clude a secondary bacterial infection, we have devel-
oped a model which can be used to estimate the num-
ber of people who will become infected first with in-
fluenza and then a bacterial infection. With knowl-
edge on how the disease will spread, the impact can
be greatly lessened and ideally more deaths can be
prevented. The model can be used to investigate how
various levels of vaccinations in the population can
be used to deter the spread of influenza, thus less-
ening the number of candidates in the pool to get a
secondary bacterial infection in addition to influenza,
and thereby reducing the number of deaths due to a
secondary bacterial infection. The model can also be
used to investigate how various levels of quarantine
may also help prevent the spread of influenza and thus
limit the pool for secondary bacterial complications
and potential deaths.

2 Mathematical Model

For our proposed model, we split the population into
five classes: S, I1, T , I2, and R. The class that has
never been infected with the circulating strain of in-
fluenza is S and contains the individuals susceptible
to influenza. Once an individual becomes infected
with influenza, they leave S and enter I1, the class
infected with the influenza virus. After recovering

from influenza, the individual moves from I1 to T ,
the class recently recovered from influenza and tem-
porarily susceptible to secondary bacterial pneumo-
nia. These individuals can either move straight to R,
the totally recovered class, after a certain amount of
time has lapsed, in which their immune system has
had time to restore to full strength, or they can con-
tract the secondary bacterial pneumonia and move to
I2, the class infected with a secondary bacterial infec-
tion. Individuals in I2 either die and are removed from
the model, or recover from the bacterial infection and
move to R. Once in R, individuals are considered
fully recovered; they are unable to become re-infected
with the circulating influenza strain and are therefore
in no danger of the secondary bacterial infection. A
brief description of each class can be found in Table
1 and the movement through the population classes
described above is shown in Figure 1.

Figure 1: Schematic Diagram

Population Classes Description
S Susceptible to influenza
I1 Infected with influenza

T
Recovered from influenza,
temporarily susceptible
to bacterial infection

I2
Infected with
secondary pneumonia

R Completely recovered

Table 1: Population Classes

Individuals in I1 are “infected” with influenza, by
which we mean they have symptomatic influenza. It
is important to note that, in a population, there will
also be individuals with asymptomatic influenza, who
will carry and transmit the influenza virus but show no
symptoms. Both symptomatic and asymptomatic in-
dividuals are able to spread the influenza virus but, ac-
cording to Chien [21], the increased risk of secondary
bacterial pneumonia in individuals with asymptomatic
influenza is negligible. Since we are concerned with
the portion of the population that has an increased risk
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to bacterial pneumonia, we are only concerned with
individuals with symptomatic influenza. Therefore,
these individuals are the only ones we consider in pop-
ulation class I1.

As mentioned above, Grabowska et al. and Am-
pofo et al. have shown that there is a lag time between
influenza and secondary bacterial pneumonia. There-
fore, the population class T is necessary as it allows us
to incorporate the lag time into the model. We inter-
pret this time as the period in which individuals are no
longer infected with influenza but their immune sys-
tem is still compromised, leaving them susceptible to
the deadly secondary bacterial pneumonia.

2.1 Governing Equations

The parameters of the model, along with a description
of each, can be found in the following table:

Parameters Description Units

β1
Transmission rate 1/time
of influenza (time in months)

γ1
Recovery rate 1/time
of influenza (time in months)

σ

Rate at which
an individual loses 1/time
susceptibility to (time in months)
secondary infection

β2
Transmission rate 1/time
of bacterial infection (time in months)

γ2
Recovery rate of 1/time
bacterial infection (time in months)

d2

Excess death rate
1/timedue to
(time in months)bacterial infection

Table 2: Parameter Descriptions

The model we propose for the spread of influenza
and a secondary bacterial infection consists of the fol-
lowing system of differential equations:

dS

dt
= −β1I1S (1)

dI1
dt

= β1I1S − γ1I1 (2)

dT

dt
= γ1I1 − (σ + β2I2)T (3)

dI2
dt

= β2I2T − (γ2 + d2)I2 (4)

dR

dt
= γ2I2 + σT (5)

Similar to the basic SIR model, the above model
is based on the following assumptions:

1. An average infective in I1 makes contact suffi-
cient to transmit infection with β1N others per
unit time, where N represents the total popu-
lation size. Similarly, an average infective in
I2 makes contact sufficient to transmit infection
with β2N others per unit time.

2. A fraction γ1 (γ2) of infectives leave I1 (I2) per
unit time.

3. There is no entry into or departure from the pop-
ulation, except through the increased death rate
from the secondary bacterial infection at a rate
of d2.

4. The natural birth and death rates are neglected
in the model due to the fact that these time scales
are typically much larger than it takes for the epi-
demic to sweep through a community.

Since N is the total population at time t, it can be
represented as

N = S + I1 + T + I2 +R (6)

2.2 Qualitative Analysis

Although we are unable to solve this system analyti-
cally, we can learn a great deal about the behavior of
solutions by taking a qualitative approach.

By setting each of the equations 1 - 5 equal to zero
and solving for S, I1, T , I2, and R simultaneously, a
single equilibrium point, where S = SE , I1 = 0,
T = 0, I2 = 0, andR = RE , is found (SE andRE are
the number of susceptible and recovered individuals at
equilibrium, respectively).

Knowing the limit of the population classes over
time, one can perform a qualitative analysis of the sys-
tem. Notice that

(i)
dS

dt
< 0 for all t as it approaches the value SE .

This implies that S is decreasing to SE for all t.

(ii)
dI1
dt

> 0 if and only if S >
γ1
β1

.

Therefore, I1 increases as long as S >
γ1
β1

. Let

us consider three cases.

Case 1: Suppose SE >
γ1
β1

. However, then I1
would increase indefinitely since S decreases to
SE , and is thus greater than SE for all t. This
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cannot happen since limt→∞ I1 = 0. Hence,
SE <

γ1
β1

.

Case 2:
γ1
β1

> S0 > SE .

Then, by (i), S <
γ1
β1

for all t as S approaches

SE . This implies that
dI1
dt

< 0 for all t. Hence,
I1 is decreasing for all t as it approaches its equi-
librium point of zero and thus an epidemic does
not occur.

Case 3: S0 >
γ1
β1

> SE . For S >
γ1
β1

,
dI1
dt

> 0

so we know I1 is increasing. However, since S
is decreasing for all t as it approaches SE , there
exists t∗ such that S <

γ1
β1

for every t > t∗.

This implies that I1 decreases for t > t∗. Hence,
I1 increases to some maximum at S =

γ1
β1

and

then decrease to zero. In this case, an epidemic
occurs.

The quantity
β1
γ1
S(0) is a threshold quantity,

known as the basic reproductive number. Sim-
ilar to [3], we will denote this as R1. The basic
reproductive number of a disease determines if
there is an epidemic or not. If R1 < 1 the infec-
tion dies out so there is no epidemic. If R1 > 1
there is an epidemic.

(iii)
dT

dt
> 0 if and only if I1 >

(σ + β2I2)T

γ1
.

However, since ii) case 3 shows that I1 decreases
to 0, we know that T will eventually decay to it’s
equilibrium point of 0.

(iv)
dI2
dt

> 0 if and only if T >
γ2 + d2
β2

.

However, by the previous item, we know that at
some time, T will decrease to 0, so I2 will even-
tually decrease to it’s equilibrium point of 0 as
well.

(v)
dR

dt
> 0 for all t.

This clearly shows that R is increasing for all t.

This tells us that, given the initial conditions and
parameters of the system, we are able to determine
whether or not there will be an influenza epidemic.

Since the first 2 equations of our system can be
decoupled and solved, we can follow methods out-
lined by [3] to get

I1 = −S +
γ1
β1

lnS + c0 (7)

where
c0 = I10 + S0 −

γ1
β1

lnS0. (8)

Letting

V (S, I1) = I1 + S − γ1
β1

lnS (9)

we see that the orbit is a curve given implicitly by
c0 = V (S, I1).

The maximum number of individuals infected
with influenza at any given time occurs when the
derivative of I1 is zero; that is, when S =

γ1
β1

. Since

c0 = V (S, I1) for any t, it must be true that

V (S0, I0) = V

(
γ1
β1
, I1max

)
(10)

so by 9 we get

I10 + S0 −
γ1
β1

lnS0 = I1max +
γ1
β1

− γ1
β1

ln
γ1
β1

(11)

Thus,

I1max = I10 +S0−
γ1
β1

lnS0−
γ1
β1

+
γ1
β1

ln
γ1
β1
. (12)

Therefore, we are able to find the maximum number
of individuals infected with influenza during an epi-
demic by using equation (12). Note that if there does
not exist an epidemic, then this equation does not hold
since S will always be less than

γ1
β1

. In this case, the

maximum number of infected individuals will simply
be I10 .

We will now determine what the effect of varying
S0 will be on I1max when we hold I10 and

γ1
β1

con-

stant. Since we are holding I10 and
γ1
β1

constant, let

C = I10 −
γ1
β1

+
γ1
β1

ln
γ1
β1

. Then

I1max = S0 −
γ1
β1

lnS0 + C. (13)

Substituting the values for β1, γ1, and I10 found in
Tables 3 and 4 listing parameters from the 1918 In-
fluenza Pandemic, this equation becomes

I1max = S0 − 0.847 lnS0 − 0.984 (14)

The graph of this equation is found in Figure 2.
This graph shows that as we decrease the number of
susceptible individuals to S0 = γ1/β1 the maximum
number of individuals infected with influenza also de-
creases. At S0 = γ1/β1, a pandemic is no longer
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Figure 2: Maximum proportion of the population con-
tracting the influenza virus for varying levels the ini-
tial population with β1 = 7.38, γ1 = 6.25, σ = 2.14,
β2 = 20, γ2 = 1.67, d2 = 3, I10 = .0034, T0 = 0,
I20 = .0033 and R0 = 0.

a threat to the population. Using these same param-
eter values we see that at γ1/β1 = .847 we have
I1max = .0036. This says that if we can vaccinate
enough of the population so that S0 = .847, we can
prevent an influenza outbreak and the most people that
would get the influenza virus would be .36% of the
population. If we figure a vaccine to have a 70% effec-
tive rate [23], this suggests we need to vaccinate ap-
proximately 22% of the population to start with 15.3%
of the population in the recovered population so that
S0 = .847 as desired.

Although by qualitative analysis we are still un-
able to gain insight into the behavior of I2, other than
end behavior, we are able to determine if there will
be an influenza epidemic and the maximum number
of individuals infected with influenza. Thus, given
only S(0), I1(0), β1, and γ1 during the beginning
of a flu outbreak, we will be able to predict an epi-
demic and the severity of the epidemic. If an epidemic
is predicted, further data should be obtained and nu-
merical simulations will then help us determine how
many individuals in a particular region may become
infected with a secondary bacterial infection. To run
this type of analysis, we need to choose parameter val-
ues. These values will vary for each pandemic.

3 Results and Discussion

In order to choose parameter values, we need to un-
derstand how these parameters will affect the system.

Specifically, we are concerned with the number of
deaths caused by the pandemic in order to determine
policies that will save the most lives. First, notice that
a higher death rate will cause I2 to decrease to zero
faster than it would otherwise and therefore the sec-
ondary bacterial pneumonia will die out. In reality,
there will be healthy people also able to spread the
bacteria that causes the secondary pneumonia; how-
ever, we can get a good idea of the number of re-
sulting deaths without introducing this possibility into
the model. Therefore, d2 must be low enough so it
does not drive I2 to zero so fast that it wipes out the
secondary bacterial pneumonia component of the pan-
demic. The death rate alone does not determine how
many deaths there will be so we will keep d2 constant
and vary the other parameters to determine their affect
on the number of deaths.

Consider N0 to be the initial total population.
Since I1, T , and I2 all tend to zero over time, the
total population at equilibrium is SE + RE . Thus,
N0 − (SE +RE) is the total number of deaths due to
the pandemic. To increase the number of deaths due
to the pandemic, SE or RE must be decreased and al-
ternatively to decrease the number of deaths, SE or
RE must be increased.

One can see from the governing equations 1 - 5
that the parameter values that affect SE are β1 and
γ1. In order to decrease SE , β1 must be increased or
γ1 must be decreased. When β1 is increased, individ-
uals in S are going to get influenza faster than they
would have otherwise. When γ1 is decreased, indi-
viduals stay in I1 longer, which increases the number
of people they come into contact with while infective
and therefore increasing the number of people they ul-
timately infect. When more people are infected with
influenza, more people are exposed to secondary bac-
terial pneumonia and therefore more people will be
killed in the pandemic. By a similar argument, in or-
der to increase SE , β1 must be decreased or γ1 must
be increased.

Similarly, the parameter values that have a di-
rect effect on RE are σ, β2, and γ2. We note that
d2 also has a direct affect on RE , however, as dis-
cussed previously, we will be holding d2 constant. In
order to decrease RE , σ must be decreased, β2 must
be increased, or γ2 must be decreased. When σ is
decreased, individuals stay in the population class T
longer. This means they are susceptible to secondary
bacterial pneumonia longer which increases their pos-
sibility of becoming infected. Therefore more people
will enter I2 and ultimately die; thus, decreasing RE .
Increasing β2 and decreasing γ2 has the same result as
increasing β1 and decreasing γ1. Thus, both of these
changes cause an increase in total deaths during the
pandemic which decreases RE . Similarly, in order to
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increaseRE , σ must be increased, β2 decreased, or γ2
increased.

We are now able to use this information to deter-
mine the parameter values during a specific pandemic.
Once the pandemic begins, we will assume that the
parameter values will remain constant throughout the
pandemic. This is a valid assumption for the most
part, with the exception of interventions such as vac-
cinating more individuals before they get sick (alter-
ing S0) and treatment after getting sick (altering γ1 or
γ2). This will allow us to determine the parameter val-
ues of the disease and then we can make adjustments
to reflect interventions. From this, we will be able to
determine the best course of action to minimize the
effect of the pandemic.

3.1 Numerical Simulation

In order to run a numerical simulation of the system,
we must first decide on the parameter values. Thus,
we must first decide on what pandemic we would
like to model. The 1918 H1N1 influenza pandemic
has been vastly studied, and represents a pandemic
for which vaccines to prevent influenza virus infec-
tion and antibiotics to limit secondary bacterial com-
plications were not largely available [24]. Therefore,
we model this pandemic to ensure the accuracy of the
model and fix known parameters.

3.1.1 1918 H1N1 Influenza Pandemic

The parameter values and initial conditions for the
1918 H1N1 influenza pandemic can be found in Ta-
ble 3 and Table 4, respectively. For the initial condi-
tions, we use the proportion of the population instead
of the actual number of individuals in each class. Es-
sentially, this is scaling our classes by the total pop-
ulation. Hence, 99.33% of the population is initially
susceptible at the beginning of the pandemic.

Using these values, SE = 0.6964 and RE =
0.2985. Since only individuals who become infected
with influenza leave S, the total proportion of the pop-
ulation becoming infected with influenza is 1 − SE .
Thus, according to the model 30.36% of the popula-
tion becomes infected with influenza. This is close to
the estimated 28% of Americans having symptomatic
influenza during the 1918 influenza pandemic [21].
Furthermore, as described in the previous section, we
are able to determine the percentage of deaths dur-
ing the pandemic to be 0.50%. The true percentage
of deaths was 0.65% of the United States population;
therefore, the model predicts over 75% of the deaths
caused by secondary bacterial pneumonia during the
1918 influenza pandemic. We note that we could have
increased β2 until we obtained the desired 0.65%, but

Parameter Value Assumptions/References
β1 7.38 Calculated from the model

γ1 1/0.16
Infective period of influenza
is 4.8 days [21], or 0.16 months

σ 1/.467
Susceptibility to secondary
bacterial pneumonia lasts 14 days
[14], 0.467 months

β2 20 Calculated from the model

γ2 1/0.6
Infective period of pneumonia
is 18 days [25], or 0.6 months

d2 1/0.33
Assume it takes an average
of 10 days, or 0.33 months with
secondary bacterial pneumonia to die

Table 3: 1918 H1N1 Influenza Pandemic Parameter
Values

Initial Values
S0 = 0.9933
I10 = 0.0034
T0 = 0
I20 = 0.0033
R0 = 0

Table 4: 1918 H1N1 Influenza Pandemic Initial Con-
ditions

to do so would require a great increase to this value.
The other option would be to lower either σ or γ2;
however, these values are fairly well known. Although
not all of the deaths are predicted, the model is still
able to give us a good idea of how many influenza
vaccinations are needed in order to decrease the death
toll to a significantly lower amount. Figure 3 shows
the graphs of the different classes with these calcu-
lated parameters for the 1918 influenza pandemic.

This is also visualized through phase planes,
which map the trajectory of two of the population
classes. Figure 4 shows two of the phase planes for
this system. In graph A), we map R with respect to
S. The trajectory starts at the initial points, S0 and
R0, and moves up and to the left as time increases.
This is because as time increases, S decreases and R
increases, until we reach SE and RE . The phase por-
trait also shows that SE is just under .7 and RE is just
under .3, as we noted earlier. In graph B), we created a
similar map of I1 with respect to S. Here we again see
that as time increases, S decreases. We also see that
as time increases, I1 increases until it reaches about
.85 and then decreases until it reaches its equilibrium
point of 0. Hence, from Figures 3 and 4 we are able
to conclude the same information about the pandemic
while visualizing what is happening with the various
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A

B

Figure 3: 1918 Influenza Pandemic population per-
centages of the (A) Susceptible and Recovered classes
and (B) Influenza, Temporarily Recovered, and Sec-
ondary Bacteria classes in months for β1 = 7.38,
γ1 = 6.25, σ = 2.14, β2 = 20, γ2 = 1.67, d2 = 3,
S0 = .9933, I10 = .0034, T0 = 0, I20 = .0033 and
R0 = 0.

classes against one another.

A

B

Figure 4: Phase Planes of the 1918 H1N1 Influenza
Pandemic for β1 = 7.38, γ1 = 6.25, σ = 2.14, β2 =
20, γ2 = 1.67, d2 = 3, S0 = .9933, I10 = .0034,
T0 = 0, I20 = .0033 and R0 = 0.

3.2 Vaccination Strategies

Now we consider 10% of the population being vacci-
nated for influenza before the pandemic begins. Re-
cent randomized controlled trials of inactivated in-
fluenza vaccine among adults under 65 years of age
have estimated 50%-70% vaccine efficacy during sea-
sons in which the vaccines’ influenza A components
were well matched to circulating influenza A viruses
[26]. Thus, if we consider a vaccine that is 70% ef-
fective against the circulating strain of influenza [23],
then vaccinating 10% of the population is the equiva-
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lent of taking 7% of the population from S and plac-
ing them in R. However, for simplicity, we will as-
sume that the influenza vaccination is 100% effective.
Thus, to represent vaccinating 10% of the population,
we will take 10% of the population in S and place
them into R. Making this change to our initial con-
ditions and keeping the remaining initial conditions
the same as when we ran the model previously, we
now get the following result: SE = 0.75950 and
RE = 0.23605, which is shown in Figure 5. Since
10% of the population who left S got vaccinated and
was therefore not infected with influenza, the propor-
tion of people becoming infected during the pandemic
is 1− (SE+0.1), which amounts to 14% of the popu-
lation. We also see that only 0.45% of the population
is killed in the pandemic. Thus, by vaccinating 10%
of the population the number of deaths is lowered by
31%. Although vaccination was not an option during
the 1918 influenza pandemic, we can see that if a simi-
lar pandemic broke out today we would be able to sig-
nificantly lower the number of deaths by vaccinating
a proportion of the population against influenza. We
note that in Figure 3, S0 = .993 and I1max = .015.
Also, in Figure 3, S0 = .893 and I1max = .005. This
is exactly what we see in Figure 2 for these values of
S0, verifying our equation for I1max .

Assuming an effective rate of 100% and by mov-
ing the vaccinated population to the recovered class,
R, we see in Figure 6 the effects of vaccination on the
percentage of the population that dies from the sec-
ondary bacterial infection. As stated previously, when
using parameters from Tables 3 and 4 we saw that with
a vaccination that is 75% effective, when one vacci-
nates 22% of the population, a pandemic is prevented.
For this reason we only show the portion of the graph
that has up to 30% of the population being vaccinated.
However, the graph seems to be linear so a direct pro-
portion would seem appropriate when considering the
relationship of vaccinations to deaths.

3.3 Quarantine Strategies

One can investigate the benefits from quarantining
people that have contracted the influenza virus and the
effects this would have on the proportions of deaths.
Educating people on the importance of basic precau-
tionary measures such as staying home when one po-
tentially has the virus (quarantine) and the importance
of basic hygiene practices such as washing hands,
covering when coughing, and etc. could all have the
effects of lowering β1. One can see from Figure 7 that
reducing β1 by a factor of two will have virtually no
effect on reducing the proportions of deaths. This type
of information would prove beneficial to policy mak-
ers as they determine what strategies to involve and

A

B

Figure 5: 1918 Population classes in months for the
Influenza Pandemic parameters with 10% of the Pop-
ulation Vaccinated and β1 = 7.38, γ1 = 6.25, σ =
2.14, β2 = 20, γ2 = 1.67, d2 = 3, S0 = .8933,
I10 = .0034, T0 = 0, I20 = .0033 and R0 = 0.1

Figure 6: 1918 Influenza parameter values showing
the proportions of Vaccinations vs. deaths for β1 =
7.38, γ1 = 6.25, σ = 2.14, β2 = 20, γ2 = 1.67,
d2 = 3, I10 = .0034, T0 = 0, I20 = .0033.
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where to invest money.

Figure 7: 1918 Influenza parameter values showing
β1 vs. deaths for γ1 = 6.25, σ = 2.14, β2 = 20,
γ2 = 1.66, d2 = 3, S0 = .9933, I10 = .0034, T0 = 0,
I20 = .0033,R0 = 0.

3.4 Treatment of Bacterial Infection Strate-
gies

Another investigation for reducing the proportions of
deaths would be if our treatment of the secondary bac-
terial infection could be improved. We see in Figure 8
that it would require the parameter γ2 to be doubled in
order to reduce the proportions of deaths by approx-
imately 10%. Feasibly, it may not be possible to in-
crease the efficiency of our treatments by a factor of
two at this time, but it does show large benefits from
doing so and policy makers can now make decisions
as to where to focus efforts and money. Currently, this
is a very active area of research in the medical com-
munity as to the prevention and causes related to the
secondary bacterial infection.

Figure 8: 1918 Influenza parameter values showing
γ2 vs. deaths for β1 = 7.38, γ1 = 6.25, σ = 2.14,
β2 = 20, d2 = 3, S0 = .9933, I10 = .0034, T0 = 0,
I20 = .0033,R0 = 0.

4 Conclusion

By modifying the basic SIR model, we have gained
useful insight on the effect of a secondary bacterial
infection during an influenza pandemic. When we
assume there is no entry into or departure from the
population, except through death from the secondary
bacterial infection, the system only has one equilib-
rium point with only SE and RE nonzero. Although a
much more complicated model can be developed for
influenza and secondary bacterial infection, as done
by Chien et al. [21], this does not allow the qualita-
tive analysis to be performed. Performing this qualita-
tive analysis leads to a better understanding of the dis-
eases and how they interact and also allows us to see
how the parameter values affect the system which will
in turn lead to more effective policies regarding in-
fluenza pandemics and therefore save more lives. By
running the numerical simulation of the 1918 H1N1
influenza pandemic, the model accurately predicts the
number of influenza cases and predicts 75% of the
deaths during the 1918 influenza pandemic. In or-
der to approximate the deaths more closely, parameter
values would need to be changed quite substantially
on the value of β2. We were also able to determine
the optimal percentage of vaccinations to prevent a
pandemic using parameters from the 1918 influenza
outbreak. Parameters β1 and γ2 were also investigated
to show their influence upon the proportions of deaths
to allow policy makers to make informed decisions as
to where best to channel their efforts and funds.

Recent laboratory-based studies have demon-
strated the contribution of the influenza virus viru-
lence factor PB1-F2 toward increased susceptibility to
secondary bacterial infections [27]. The math model
that we propose in this manuscript could be used to
bridge laboratory findings with clinical outcomes as
we further define the contributions of PB1-F2 and
other viral genes toward these deaths [28]. If we can
determine the genetic signatures of viruses with in-
creased potential to cause secondary bacterial infec-
tions, then our math model can be applied to deter-
mine the impact of these specific viruses on the human
population. One can also include the sex (male or fe-
male), adult vs children, and elderly as important vari-
ables affecting the parameters of the model in these
further studies. This modified SIR model can possi-
bly allow decision makers to make a better informed
decision on the impact of future pandemics and to
determine the appropriate interventions for limiting
these deadly complications. Calculations performed
within this model assume a relatively healthy popu-
lation at the time of influenza virus infection, and do
not specifically consider populations that are known
to be highly susceptible to primary influenza virus ill-
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ness due to altered immune function. These at-risk
populations include children, elderly individuals ( 65
years of age and older), pregnant females, immuno-
compromised hosts [29] and [30] , individuals with
heart disease [31], or diabetes [32]. Within these spe-
cific populations, we would predict that vaccination
against influenza virus would have additional benefits
toward the prevention of secondary bacterial pneumo-
nia, but full appreciation within this model would re-
quire statistics associated with the indicated medical
condition.
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