
Identification of DNA Signatures via Suffix Tree Construction on a
Hybrid Computing System

Lin Feng, Angela Jean, Chong Poh Leng, Lai Danbo

School of Computer Engineering
Nanyang Technological University

Singapore 637989
e-mail: asflin@ntu.edu.sg

Abstract: - Identification of DNA signatures has been empowered by the increasing availability of thousands of
bacterial and viral genomes through the next-generation sequencing technologies. In exploration for the
computational solution, the suffix tree has been proposed as a data structure well suited to analyzing genomic
sequences because it enables the storage of long strings in a logical, indexed manner for fast retrieval. We
propose a new algorithm for identification of DNA signatures, based on exploitation of the endogenous features
of a genomic sequence. These features are revealed in a construction of suffix array. Furthermore, to greatly
speed up the time-consuming process, the core algorithm is mapped and routed on to a Field-Programable Gate
Array (FPGA) for parallel implementation. In this paper, we will focus primarily on the relationship of the data
structure and the features associated. We will then describe the deployment of the hybrid computing system on
a HyperTransport compliant architecture. Illustrations are always given to clarify the technical details, and
experimental results are presented to verify the correctness of the algorithm.

Key-Words: DNA signature; endogenous feature; suffix tree; Field-Programable Gate Array; hybrid computing

1 Introduction
The genomics research landscape has been reshaped
since the advent of high-throughput next-generation
sequencing (NGS) technology [1, 2] which
surpasses the old Sanger sequencing paradigm. One
immediate outcome of such sequencing technology
is the generation of very large amounts of data.
Researchers can now compare one genome with
another, or even perform meta-analyses of whole
sets of genomes, instead of limited regions.

As a case study in this paper, the influenza virus
genome consists of eight single-stranded RNA
segments that code for eleven known proteins. The
PB2, PB1, and PA segments encode the RNA
polymerase, and HA, NP, NA, and M encode
haemagglutinin, nucleoprotein, neuraminidase, and
the matrix proteins, respectively.

There are three types or genera of influenza
viruses within this family- A, B and C. Only types A
and B cause significant human disease. Type A
viruses are the most important pathogens of the
three types and there have been several human
pandemics caused by influenza A viruses. Influenza
A viruses can be further categorised into subtypes
according to the antigenic properties of their
haemagglutinin (HA) and neuraminidase (NA)
surface glycoproteins. HA is a protein that causes
red blood cells to agglutinate and NA is an enzyme
that is crucial for the process that is required for

proper budding and release of progeny virions from
the host cell surface. Presently, there are 16 known
subtypes of HA and 9 known subtypes of NA. Three
subtypes have been shown to cause pandemics
during the last century: H1N1 caused “Spanish flu”
in 1918, H2N2 caused “Asian flu” in 1957, and
H3N2 caused “Hong Kong flu” in 1968. Although
there have been many subtypes of influenza A
reported so far, only some subtypes of influenza A
virus have been associated with human infection.
Some examples are H1N1, H1N2, H3N2, H5N1,
H7N2, H7N3, H7N7 and H9N2.

Seasonal influenza virus infections in humans
cause yearly epidemics that result in millions of
human infections worldwide and have significant
health and economic burdens. In Singapore, there
have been more than 1,600 hospital admissions from
complications related to the Influenza A (H1N1)
infection since July 2009, including 20 deaths and
the annual all-cause death rate from seasonal
influenza in Singapore was estimated at
14.8/100,000 person-years.

Avian influenza, commonly known as bird flu, is
an infectious viral disease in birds that is caused by
several types of influenza viruses. Most do not
infect humans. Some, however, such as H5N1, have
caused serious infections in humans. Avian
Influenza A viruses are categorised into two groups
based on their ability to cause disease in poultry:

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE Lin Feng, Angela Jean, Chong Poh Leng, Lai Danbo

E-ISSN: 2224-2902 45 Issue 2, Volume 9, April 2012

high pathogenicity or low pathogenicity. Highly
pathogenic avian influenza (HPAI) viruses result in
high death in some poultry species while low
pathogenicity avian influenza (LPAI) viruses also
cause outbreaks in poultry but are not generally
associated with severe clinical disease. Avian
influenza A virus subtypes H5N1, H7N7, and H7N3
have been associated with HPAI, and human
infection with these viruses have ranged from mild
(H7N3, H7N7) to severe and fatal disease (H7N7,
H5N1). Human infection with LPAI viruses has
been reported, including very mild symptoms (e.g.,
conjunctivitis) to influenza-like illness. Examples of
LPAI viruses that have infected humans include
H7N7, H9N2, and H7N2.

Analysis of these massive and heterogeneous
data poses multiple computational challenges. These
include effective data mapping, annotation and
visualization; efficient data storage and retrieval,
and the integration and interpretation of data from
multiple technological platforms each using
different sequencing chemistries, and each with its
own unique output and error characteristics [18, 19,
20]. Algorithms that work well for smaller scale
problems are either insufficient or inappropriate for
current genomic analysis. Dynamic programming
techniques, such as Smith-Waterman [3] and
Needleman-Wunsch [4] algorithms work well to
align regions of interest between two genes, whereas
heuristics (trial-and-error) must be applied when
highly conserved regions between two entire
genomes are to be identified in a reasonable amount
of time and space [5]. Moreover, in genomic
sequences, the demarcations between functional
groups of nucleotides or amino acids are more
subtle, for example, the start codon determining the
beginning of an open reading frame is identical in
sequence to any internal methionine amino acid, and
the phenomenon of alternative splicing can generate
multiple transcripts from the same stretch of DNA
sequence. This further increases the difficulties in
aligning sequence pairs.

In exploration for the solution, the suffix tree has
been proposed as a data structure well suited to
analyzing genomic sequences because it enables the
storage of long strings in a logical, indexed manner
for fast retrieval. The concept of suffix tree was first
introduced as a position tree by Weiner [6] in 1973,
and the construction of suffix tree for sequence
representation was further improved by McCreight
[7] in 1976 and Ukkonen [8] in 1995. The suffix
tree can be used to provide exact matches
efficiently, which many heuristics depend on. In a
nutshell, suffix tree and generalized suffix tree (the
multiple string variant of suffix tree) can be used to

solve a number of computational biology related
problems in optimal space and time. The challenge
is the computational efficiency in construction of
the suffix tree.

We propose a new algorithm for identification of
DNA signatures, based on exploitation of the
endogenous features of a genomic sequence. These
features are revealed in a construction of suffix
array (an implementation of the generalized suffix
tree). Furthermore, the core algorithm is mapped
and routed on to a Field-Programable Gate Array
(FPGA) for efficient implementation. We will focus
primarily on the relationship of the data structure
and the endogenous features. Illustrations will be
given to elucidate the representation of the features.
We will also describe the deployment of the hybrid
computing system on a HyperTransport compliant
architecture, and the computational experiments on
identification of DNA signatures for influenza A
virus.

2 Endogenous Feature Recognition
In this section, we study key endogenous features of
a genomic sequence which have significant meaning
in DNA signatures, including repeats, lift-diversity
and those features biased towards the ends of the
gene. We discuss how these features are revealed in
a generalized suffix tree.

2.1 Construction of a Suffix Tree of

Endogenous Feature
Sequences that are unique to a given species or
strain are especially useful to distinguish the target
organism from either related or un-related species.
Such unique sequences are termed DNA signatures
or genomic markers, and are important in areas such
as the identification of genes responsible for drug
resistance, accurate detection of pathogens
especially those which are used as weapons of
bioterrorism or warfare, and epidemiological
analysis such as the identification of bacterial strains
that cause food poisoning.

A naïve method of obtaining DNA signatures
from a selected genomic sequence is to utilize a
sliding window of length n. Starting from the first
position of the target sequence and ending at the nth
position, the window is moved down from the 5’
end of the target sequence towards the 3’ end, until
the start of the window reaches the (m-n+1)-th
position, where m is the length of the target
sequence. At each position (m-n+1), the feature in
the window is subjected to a filtering analysis.

The reliability of a signature is dependent of its
sensitivity and specificity to its genomic sequence,

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE Lin Feng, Angela Jean, Chong Poh Leng, Lai Danbo

E-ISSN: 2224-2902 46 Issue 2, Volume 9, April 2012

and this usually involves a time-consuming and
exhaustive searching in the entire genome. This
problem can be streamlined by using an effective
data structure to improve algorithmic efficiency. To
facilitate all these time-consuming operations, we
device a Suffix Tree of Endogenous Feature, or EF-
Tree, to aid in the signature identification process.

An EF-Tree is a data structure derived from a
generalized suffix tree (GST) [9] for representation
of the features. The tree is created from a set of
substrings, S, that represents the set of all features
from a genomic sequence such as a gene. Given a
sequence of length m, and a feature size of length n,
a set of (m-n+1) features may be obtained.
Construction of the EF-Tree is initiated with the first
feature in the set S, as outlined by the following
procedure:

Proc create_eftree(S) {
1. Initialization: T1, an implicit tree, has one edge

labeled S[1];
2. for (i = 1 to m-1) {
3. build Ti+1;
4. for (j = 1 to i+1) {
5. if (S[j..i] ends at a leaf of Ti+1) {
6. Add character S[i+1] to the end of label on

the edge to the leaf; }
7. elseif (no path from the end of S[j..i] location

continues with S[i+1])
8. Split a new leaf edge for character S[i+1];
9. elseif (S[j..i] ends in the middle of an edge) {
10. Create an internal node;
11. Compute properties of substring from

previous node to new node;}
12. else // S[j..i+1] is already in the tree
13. Continue;}}
14. Expand the final implicit tree to create a full EF-

Tree;}

In procedure create_eftree, line 11 of the code may
be implemented for calculation of various
properties, such as the melting temperature of the
substring from the previous node to the current
node. If the previous node is the root node, then this
is the melting temperature of the prefix of the suffix
that is currently being added to the initial EF-Tree.
Once the suffix tree of the first feature from the set
S is constructed, subsequent features in the set can
be added to the tree to create a full EF-Tree. The
computed sequence values such as melting
temperatures stored in the nodes can be easily
retrieved for features that share a common substring.
An illustration is presented in Figure 1. In the
example, a basic assumption in the calculation of
melting temperature, for a feature that is segmented

by one or more internal nodes, is that the formula
for the calculation is additive. The formulation will
not be discussed here as various methods of
calculation are available, including the Wallace
method [10], the Nearest Neighbour method and its
variants [11] as well as the GC% method [12]; each
having their own set of criteria and constraints.
However, this assumption may not always be true
and may sometimes require manipulations of
existing formulas to fit the requirements of the ES-
Tree. This assumption is also imposed onto other
properties that are stored in the nodes.

 $

 A

 T

 C

 G

 C

 G

 C

 G

 T

1, 2
1, 2: Represents the suffix starting from

the 2nd position of the feature that
commences from position 1 of the gene

Root node

Add: TGCGCGA$ (39, 6) to TGCGCGCTA$ (1, 2)

 $

 A

 T

 C

 G

 C

 G

 C

 G

 T

1, 2

 $

 A

 T

 C

 G

 C

 G

 C

 G

 T

1, 2

Com
m

on
 su

bs
tri

ng
 b

et
wee

n

(3
9,

 6
) a

nd
 (1

, 2
)

New node added;
melting temperature of
TGCGCG calculated

and stored in this node

 $

 A

 T

 C

 G

 C

 G

 C

 G

 T

 $ A39, 6

1, 2

39, 6: Represents the suffix starting from
the 6th position of the feature that

commences from position 39 of the gene

1 2

3 4

Figure 1: EF-Tree Construction

Besides storing important information at each node,
the EF-Tree also facilitates the search for features
with repeating substrings in combination with
features that are 5’ or 3’ biased. As such, the EF-
Tree presents a solution that aids in the selection of
candidate probes that meet a combination of criteria.

There are many inherent properties in an EF-Tree
that can be harnessed in identifying DNA
signatures, such as the recognition of repeating
substrings, common or longest common substrings
and exact string matching, among others. Coupling
these applications with the properties of an EF-Tree,
various genomic applications can be conjured. In the
followings, we present some applications that can
either be used individually or in combination to
satisfy various criteria that can be set.

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE Lin Feng, Angela Jean, Chong Poh Leng, Lai Danbo

E-ISSN: 2224-2902 47 Issue 2, Volume 9, April 2012

2.2 Exploitation of Features with Repeats
In an EF-Tree, a repeat is indicated by the presence
of an internal node which dictates that the sequence
(path) from the root to the node is shared by the
leaves resulting from the internal node. Instead of
considering only the maximal repeats, all possible
repeats may be considered from the EF-Tree. This is
because other factors may be considered in, for
example, the probe selection process. Inherently,
repeats are either maximal repeats or suffixes of the
maximal repeats and are hence biased towards the 3’
end of the feature.

Figure 2: An EF-Tree with GC repeats

As illustrated in Figure 2, a maximal repeat is
identified at node X because it is lift-diverse while a
non-maximal repeat is identified at node Y because
it is not lift-diverse. Lift-diversity is used to
determine if the substring represented by an internal
node is a maximal repeat [9]. While it may be
desirable to utilize the sequence represented by node
X – so as to ensure that the repeat bound is specific,
it may not always be appropriate because of factors
like melting temperature and GC content. Hydrogen
bonding between GC is known to have higher
enthalpy because there are 3 hydrogen bonds as
opposed to AT, which has only 2. As such, given
the extra energy required to break the bonds, the
sequence represented by node X may be selected
against because it may not meet the criteria set for
the melting temperature.

On the other hand, if we are to consider all
repeats instead of just the maximal ones, then the
sequence represented by node Y, which is not a
maximal repeat but a substring of node X, may be
considered for selection as a candidate signature. By
not limiting the search of repeats to only maximal
ones, suitable features may be selected as candidate
signatures.

In addition, because the repeats in an EF-Tree
represents not only a single feature, but a set of
features, an advantage of using an EF-Tree is the
ability to identify repeats across different features

vis-à-vis an internal repeat within a single feature
which is represented by a tree for a single feature or
a signature. Features that contain the repeat
represented by the node are indicated at the leaves
of the subtree of that node.

2.3 Acquisition of Variable Length Features
The generation of features depends on the length of
the sliding window, which will determine the length
of the features as well as the number of features
available for selection. Ultimately this is also
dependent of the size of the candidate signatures
that is desired. While it may seem reasonable to take
the length of the probes as the length of the sliding
window, additional considerations may be required
in the use of an EF-Tree.

If the selection of repeats or maximal repeats is
used as a feature selection strategy, then the use of
just the repeating sequence as a feature, or the use of
the entire feature represented by the repeating
sequences, will determine the length of the sliding
window. If the former is used, then a longer window
length may facilitate the selection of longer repeats,
if such repeats exist. An illustration is shown in
Figure 3 where a represents a repeat or a common
substring between (1, 3), (1, 4), (1, 5) and (1, 7),
while a concatenation of a and b represents that of
(1, 3), (1, 5) and (1, 7) and a concatenation of a, b,
and c represents that (1, 5) and (1, 7). If a longer
window length is used, then longer repeats may be
obtained, if they exist. Moreover, longer probes may
sometimes be desired because it is considered to
provide a higher level of sensitivity [13]. However,
the use of any of the 3 possible repeats may be
further constrained by the melting temperature or
GC content.

 G C G C G C T A $

 T A $

 T A $

 C G C G C T A $

1, 3

1, 7

1, 5

1, 4

a

b

c

Figure 3: Segmentation of features

On the other hand, a sequence may not have repeats,
and thus the use of such a strategy should be
predetermined by some form of domain knowledge
with respect to the genome. In this case, the entire

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE Lin Feng, Angela Jean, Chong Poh Leng, Lai Danbo

E-ISSN: 2224-2902 48 Issue 2, Volume 9, April 2012

feature represented by the repeats may be used, and
it may not be necessary to increase the length of the
sliding window by more than what is dictated by the
desired probe length. Therefore, the availability of
such an application is not a means to an end, but
rather to facilitate the overall probe selection
strategy.

2.4 Elicitation of Biased Features
Selection of features that are biased towards either
end of the gene may sometimes be desired if there is
domain knowledge that indicates the uniqueness of
target sequences at one end. This could be done by
selecting leaves that represent features with a lower
feature or suffix start position number – for features
biased to the 5’ end, or a higher number, for features
biased to the 3’ end. An example is shown in Figure
4: two leaves in the format (a, b), where a represents
the start position of the feature within the target
sequence, while b represents the start position of the
suffix within the feature. From these leaves, it is
possible to streamline, or prune, trees such that only
suffixes representing a higher value of a – for 5’
biased features, or a lower value of a – for 3’ biased
features, remains. The cut-off value may be
determined arbitrarily or by using a value that cuts
the number of features by half. This effectively
reduces the problem domain by leaving out features,
or suffixes of features.

 $

 A

 T

 C

 G

 $ A39, 6

1, 2

1: Represents the feature starting
from position 1 of the gene

2: Represents the starting position
of the suffix from the feature

39, 6: Represents the suffix starting from the 6th position of the feature
that commences from position 39 of the gene

Figure 4: Leaves of an EF-Tree

Sometimes, a single leaf may represent more than
one feature, as shown in Figure 5. These leaves
represent suffixes of the same length, and hence the
same start position from different features. In Figure
5, a leaf is shown to represent suffixes from a
feature that starts from position 1 of the target
sequence as well as one that starts from position 45,
hence representing a common substring – or a repeat
sequence, between the two suffixes and their
respective features. Given a hypothetical signature
of length 100, and a sliding window of 50, the last
feature starts from position 51 of the signature, (1,
2) is thus 5’ biased and (45, 2) is 3’ biased. In
pruning the EF-Tree, the decision to remove this

leaf will depend on the signature selection strategy.
The advantage of using an EF-Tree is the ability to
provide contextual information, relative to the entire
set of features that are available for signature
selection in a single tree.

 $

 A

 T

 C

 G

 $ A39, 6

1, 2

39, 6: Represents the suffix starting from
the 6th position of the feature that

commences from position 39 of the gene

45, 2

45, 6

45, 6: Represents the suffix starting from
the 6th position of the feature that

commences from position 45 of the gene

1, 2: Represents the suffix starting from
the 2nd position of the feature that

commences from position 1 of the gene

45, 2: Represents the suffix starting from
the 2nd position of the feature that

commences from position 45 of the gene

Figure 5: Leaves representing more than one feature

3 Hybrid Computing with FPGA

3.1 Analysis on Space and Time Complexity
The node of an EF-Tree is represented together with
the incoming edge label information. Each node
contains two integers representing the start and end
position of the corresponding substring. As the end
point can be deduced from the start position of the
internal node (child) or is simply n (for a leaf node),
it is sufficient to store the start position of the
substring.

Each node has pointers to all its internal nodes
and they can be represented as an array, as a linked
list or as a hash table. If the size of the alphabet ∑ is
small, then an array of size |∑| can be used to
represent the child node pointers. The child node
whose incoming label starts with the ith character in
a ranked alphabet is represented by the ith entry in
the array. Consider the tree space for inputs where n
is less than the largest 4-byte integer, that is, log n <
32. For a string of length n, the tree has 1 root, n
leaves, at most n-1 internal nodes, and at most 2n-2
edges.

For each leaf node, we may store a pointer to its
parent, and store the starting index of the suffix
represented by the leaf, for 2n words of storage.
Storage for each internal node may consist of 4
pointers, one each for parent, leftmost child, right
sibling and suffix link, respectively. This will
require approximately 4n words of storage. Each
edge label consists of a pair of integers, for a total of
at most 4n words of storage. Putting this all
together, the implementation of EF-Tree takes 10n
words or 40n bytes of storage.

Theoretically, the EF-Tree can be constructed in
linear time and requires linear storage; that is, for a
string S of length n, the tree can be built with the

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE Lin Feng, Angela Jean, Chong Poh Leng, Lai Danbo

E-ISSN: 2224-2902 49 Issue 2, Volume 9, April 2012

time complexity of O(n), if the letters come from an
alphabet of integers in a polynomial range. For
larger alphabets, the running time is dominated by
first sorting the letters to bring them into a range of
size O(n), and this is with the time complexity of
O(n log n).

3.2 Enhanced Suffix Array
In practice, an EF-Tree can be implemented as a
suffix array [14, 15] which consists of the indices of
the first characters of each suffixes in the sequence
analyzed. Each suffix can be completely specified
by the index of its first character in lexicographical
order in the text. For example, given a sequence
string:

T [0, 6] = A
1

T
2

C
3

G
4

C
5

G
6

G
7

The suffix array in lexicographical order is as

follows:

A
1

T
2

C
3

G
4

C
5

G
6

G
7

C

3

G
4

C
5

G
6

G
7

C

5

G
6

G
7

G

4

G

4

C
5

G
6

G
7

G

6

G
7

T
2

C
3

G
4

C
5

G
6

G
7

The suffix array, SA = (1,3,5,7,4,6,2)

The naïve suffix array is the lexicographically
ordered leaf list of the EF-Tree. However, the array
misses significant information due to the absence of
internal nodes. An enhanced suffix array can be
introduced to compensate the missed information.

Table 1: Representation of enhanced suffix array
i suf lcptab suffix

0 1 0 ATCGCGG
1 3 0 CGCGG
2 5 2 CGG
3 7 0 G
4 4 1 GCGG
5 6 1 GG
6 2 0 TCGCGG

We add two data structures, an LCP (longest
common prefix) table and the LCP interval table,
into the array. In the LCP table, lcptab[i] stores the
length of longest common prefix of the suffixes,
suf[i] and suf[i-1]. The LCP interval table,

lcpinterval[i,j] stores the length of longest common
prefix of the suffixes suf[i] and suf[j]. Computation
for feature identification in the following FPGA
implemented algorithm can be reduced because
lcptab[i,j] equals the length of the path label of the
lowest common ancestor of the two leaves
representing suf[i] and suf[j].

Thus, for the above string, ATCGCGG, we have
the representation as in Table 1.

3.3 Mapping and Routing on FPGA
Hybrid computing is the strategy of deploying
multiple types of processing elements within a
single workflow, and allowing each to perform the
tasks to which it is best suited. Complementing
general-purpose microprocessors with specialized
processing elements, we deployed an architecture
with reconfigurable computing fabrics, on-chip
parallel processing elements designed for compute-
intensive applications with private, and software-
controlled local memories [16].

For effective running of the DNA signature
identification routines, we eventually map the codes
for the suffix array implementation on a RCHTX
Virtex-4 FPGA card. The computing system is the
Tyan/D 1207/V/2GBL/PCIE server compliant with
the HyperTransport (HTX) interface standard. The
HTX socket provides high-bandwidth
communication between the Xilinx Virtex-4 FPGA
co-processor and AMD's Opteron processors. Such
a hybrid computing system (see Figure 6) provides
power-efficient acceleration technology that
increases system performance, scalability and
flexibility [17].

User FPGA

Kernel FPGA

HyperTransport

AMD
Opteron

Processor

RCHTX
Card

RAM

RAM

RAM

RAM

AMD
Opteron

Processor

AMD
Opteron

Processor

AMD
Opteron

Processor

Figure 6: HTX-compliant Hybrid System

In the system, application interface and sequence
data access functions are implemented on the AMD
Opteron processors, while the core suffix array

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE Lin Feng, Angela Jean, Chong Poh Leng, Lai Danbo

E-ISSN: 2224-2902 50 Issue 2, Volume 9, April 2012

construction algorithm is mapped on the User FPGA
of the RCHTX card. The working data is transferred
between the host CPU and FPGA via the
HyperTransport interconnect.

Codes are developed with Handel-C, compiled
into the low-level Hardware Description Language
(HDL), and finally routed as images of FPGA for
parallelism. The core algorithm is described as
follows:

1. Convert the DNA string into DNA binary

sequences in their respective binary array:
seqA[n], seqC[n], seqG[n], seqT[n], where n is
the length of the DNA sequence.

2. Specify initial data of variables and arrays,
where n is the length of the DNA sequence:
a. Initialize 5 binary bins: binE[n], binA[n],

binC[n], binG[n], binT[n] to be equal to seqs.
bins record the ith character for each suffix,
where the ith value is the number of next
iteration. binX[j] = 1 in (i-1)th iteration
indicates that the ith character of the jth suffix
in lexicographical till now is X, where E
refers to empty.

b. Initialize group variables: st[n] = 1, end[n] =
n, plus[n] = 0.

c. Initialize iteration number to be 0.
d. Initialize suffix array, suffix[i] = i+1, for i is

from 0 to n-1.
3. For i = 0 to n-1, calculate the number of

positions of each character in the current group
where the suffix will be allocated.

sumX[i] = ∑
=

end

startx
xbinX][, where X is the

character (E,A,C,G,T), start and end are the start
and end position of the group where the suffix
will be allocated.

4. For i = 0 to n-1, calculate the position of suffix
in the cluster of current group where the suffix
will be calculated; reset the finish variable to be
binary 1.

hex[i] = ∑
=

i

startx
xbinX][, where X is the character

such that binX[i] == 1.
5. Calculate the order of the suffix based on ith

character in lexicographical order. For the
character that binX[i] == 1

pos[i] = hex[i] + plus[i] + ∑
<

=

XY

EY
isumY][

where hex[i] indicates the position in the current
cluster, plus[i] is the position before current

group, the third addend is the sum of smaller
characters in the current group.

6. Re-arrange the order of the suffix and the 5
bins:
suffix[pos[i]-1] = suffix[i], binX[pos[i]-1] =
binX[i]

7. Calculate the clustering grouping for the ith
character of the suffix. For i = 0 to n-1, if
binX[i] == 1,

st[i] = st[i] + ∑
<

=

XY

EY
isumY][

end[i] = st[i] + ∑
<=

=

XY

EY
isumY][- 1

plus[i] = plus[i] + ∑
<

=

XY

EY
isumY][

8. Set the 5 bins to the next character in each of the
suffix
For i = 0 to n-1

if (suffix[i] + iteration > n-1)
binE[i] = 1, binX[i] = 0;

if (suffix[i] + iteration < n)
binE[i] = 0, binX[i] = seqX[suffix[i] +
iteration]; where X is A,C,G,T ;

if (hex[i] > 1)
set finish = 0;

iteration ++
9. Repeat steps 3,4,5,6,7,8 if iteration < n and

finish is 0.

Following the example in Section 3.2, we show the
FPGA mapping and routing of the data structures
and processes as follows:

1. DNA[n]: ATCGCGG

2. 1-bit arrays: seqA[n], seqC[n], seqG[n], seqT[n],
where seqX[i] = 1 means the ith position of the
DNA sequence is character X, as in Table 2.

Table 2: 1-bit array seqX in FPGA implementation

bin\suffix 1 2 3 4 5 6 7
seqE 0 0 0 0 0 0 0
seqA 1 0 0 0 0 0 0
seqC 0 0 1 0 1 0 0
seqG 0 0 0 1 0 1 1
seqT 0 1 0 0 0 0 0

3. 1-bit arrays: binA[n], binC[n], binG[n], binT[n],
to record the ith character for each suffix, where the
ith value is the number of next iteration. After first
iteration, the second character for each suffix is

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE Lin Feng, Angela Jean, Chong Poh Leng, Lai Danbo

E-ISSN: 2224-2902 51 Issue 2, Volume 9, April 2012

TGGCGEC, thus the values filled are shown in the
Table 3.

Table 3: 1-bit array binX in FPGA implementation

bin\suffix 1 3 5 4 6 7 2
binE 0 0 0 0 0 1 0
binA 0 0 0 0 0 0 0
binC 0 0 0 1 0 0 1
binG 0 1 1 0 1 0 0
binT 1 0 0 0 0 0 0

4. st[n] , end[n], plus[n]

Clustering groups for the ith character of the suffix,
that is, in iteration i, they contain clustering group
information of the ith number. For example, after
sorted in iteration 1, the first character of each suffix
is: A,C,C,G,G,G,T, thus

st = (1,2,2,4,4,4,7)
end = (1,3,3,6,6,6,7)
plus = (0,1,1,3,3,3,6)

5. sum[E] sum[A] sum[C] sum[G] sum[T]. They
determine the number of positions of each character
in the current group where the suffix will be
allocated. For example, for iteration 2, the second
character of each suffix is: T,G,G,C,G,E,C, thus the
values filled are shown in Table 4.

Table 4: Array sumX in FPGA implementation
sum\suffix 1 3 5 7 4 6 2
sumE 0 0 0 1 1 1 0
sumA 0 0 0 0 0 0 0
sumC 0 0 0 1 1 1 1
sumG 0 2 2 1 1 1 0
sumT 1 0 0 0 0 0 0

6. suffix[n] - Suffix array after iteration i.

7. hex[n] - The position of suffix in the group of the
cluster to be allocated. For example, in the first
iteration, the first character for each suffix is:
A,T,C,G,C,G,G, thus, hex = (1,1,1,1,2,3,4). In the
second iteration, the second character for each suffix
is: T,G,G,C,G,E,C, thus, hex = (1,1,2,1,1,1,1). In the
third iteration: the second character for each suffix
is: C,C,G,E,G,E,G, thus hex = (1,1,1,1,1,1,1).

4 Identification of DNA Signatures for

Influenza A Virus
In the experiment, we aim to find a set of DNA
signatures for influenza A virus that could be used
in disease diagnostic applications. Influenza A virus

genome sequences are used as test sequences in the
development of our pipeline because they exist in a
multitude of closely related sequence variants for
which many complete genomic sequences of each
subtype are available in the public databases. The
size of the influenza A virus genome is relatively
small, approximately 8kb, enabling quick yet
rigorous proof of principle testing.

From the 1st cycle of the workflow of finding
common substrings between the first 2 virus
subtypes, H1N1 and H3N2, there were 2429 LSCs.
These LSCs were concatenated into a “reference
sequence” with a spacer sequence (“PPPPP”) in
between each LSC. Results of common substring
determination at increasing pipeline iterations are
shown in Table 5.

Table 5: Common substring determination
Iteration Inputs No. of

unfiltered
common
substrings

No. of clusters obtained
by DNACLUST (= no. of
unfiltered longest
common substrings per
cluster identified)

No. of longest
common substring
per cluster (LSC)
of size 20bp and
above identified

1 H1N1
and
H3N2

8963 2429 104

2 H1N2 7582 2221 84
3 H9N2 5616 2280 23
4 H5N1 4528 2005 20
5 H7N7 3883 1724 15
6 H7N2 3476 1526 12
7 H7N3 3086 1346 13

After the final 7th iteration of the pipeline, a total of
13 LSCs varying in size from 20 – 50bp were
identified. These 13 LSCs therefore represent 13
DNA regions containing sequences ≥ 20bp that are
common to all of the 8 original input influenza
genome sequences. In other words, these represent
the DNA signatures that can be used in the design of
specific probes for use in biological applications.

To check the specificity of the DNA signatures
identified by our pipeline, i.e. to verify if probes
designed using these DNA signatures are unique to
Influenza A virus only, and if this specificity
extends to only particular subtypes, we performed
BLAST analysis against GenBank ‘nr’ database
using the NCBI BLAST web server
(http://blast.ncbi.nlm.nih.gov/Blast.cgi). We used
the program BLASTN with settings Word size =15.
We first performed BLAST analysis on each of the
13 DNA signatures against the original 8 sequences
to verify that they are the common substrings of the
8 sequences. The results showed that the 13 DNA
signatures were correct for the tested 8 Influenza
virus A subtypes.

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE Lin Feng, Angela Jean, Chong Poh Leng, Lai Danbo

E-ISSN: 2224-2902 52 Issue 2, Volume 9, April 2012

Next we checked if the DNA signatures were
specific to Influenza A virus by performing BLAST
analysis using each of the 13 candidate probes as
query sequences. The results showed that the
substrings were highly specific to only Influenza A
virus, and not to the B or C genera. Each probe
aligned to a unique region in the virus genome, with
a BLAST maximum identity of 100% across each
entire query length. No query aligned to more than 1
region in the genome, confirming high sequence
specificity and hence suitability for use as probes.

The longest DNA signature, signature 1 (50bp),
aligned fully to a region in segment 7. There were
four other DNA signatures (signatures 3, 4, 9 and
12) that also aligned to various regions of segment
7. There were two DNA signatures (signatures 2
and 13) which aligned to various regions in segment
1, four DNA signatures (signatures 7, 8, 10 and 11)
which aligned to different regions in segment 3, one
DNA signature (signature 5) which aligned to a
region in segment 5, and one DNA signature
(signature 6) which aligned to a region in segment 2.
Interestingly, no candidate probes were identified in
this experiment that mapped to segments 4, 6 or 8.

To determine and display the positions of the
regions on Influenza A virus which the DNA
signatures mapped to, we used an arbitrary
“reference sequence” as one of the test genome
sequences, H1N1 (accession numbers NC_002016.1
to NC_002023.1). The start and end positions of
each probe aligned to this reference sequence show
the alignment of each probe.

The E-values from our BLAST results ranged
from 0.92 to 1.00e-18. In general, the lower the E-
value, or the closer it is to zero, the more
"significant" the match is. However, despite the
20bp probe having a high E-value (E = 0.92) due
primarily to E-value calculations being influenced
by query length, the actual BLAST alignments
clearly show that it is still highly specific, mapping
only to Influenza A virus sequence like its longer
counterparts.

We further examined the subtype specificity of
the DNA signatures, by counting the number of
times each signature aligns to a different virus
subtype. We performed BLAST analysis and select
the maximum number of aligned sequences as
“1000”. Results show that the subtype specificity
distribution pattern by the DNA signatures is similar
to the Genbank database subtype-specific
distribution, except for H9N2 and H5N1. Both
subtypes are under-represented in the distribution,
only 1.5% and 4.5% of the BLAST-matches by the
DNA signatures are specific to H9N2 and H5N1,
respectively.

5 Discussion and Conclusion
With the free availability of thousands of complete
genome sequence assemblies such as the GOLD
database at http://www.genomesonline.org/cgi-
bin/GOLD/bin/gold.cgi, we are conducting more
experiments on identification of DNA signatures in
genomic sequences.

We would like to use our high-performance
whole genome algorithm to identify signature
sequences in bacterial and viral genome sequences,
and to use these unique sequences as a basis for
diagnostic assays to detect and genotype microbes
in both environmental and clinical samples. For
examples, Bacillus anthracis, Bacillus cereus and
Bacillus thuringiensis are genetically so close that it
has been proposed to consider them as a single
species. However, these bacteria are very different
on a phenotypic level. B. cereus is a food
contaminant, B. thuringiensis is a useful bacterium
used as a pesticide, while B.anthracis is a virulent
pathogen for mammals, and has been used as a
bioterror and biological warfare agent. In another
example, Brucella melitensis and B. suis have
adapted to different hosts (cattle and swine,
respectively) and yet the genomes of the two
Brucella species differ by only 74 open reading
frames out of 3378 open reading frames.

In a more comprehensive experiment, the success
of the proposed approach critically depends on the
features used to identify signatures that can, in turn,
accurately differentiate between target genomes and
sample background. With the DNA sequence
information, in addition to identifying signatures,
the products of the genes of interest can also be
readily produced and studied; furthermore, mutants
can be prepared for genetic and functional analysis.

The pipeline currently works well for genome
sizes (input strings) of a few thousand basepairs.
However, we have found that for sequences 1Mb
and longer, we encounter memory limitations
because suffix trees are extremely memory intensive
by nature. The implication of this is that the pipeline
is currently well suited to identifying DNA
signatures in virus sequences, but for bacteria, fungi
or even more complex organisms, a workaround
will have to be developed to make the process more
memory efficient.

Apart from the exact string matching problem,
there can be other sequence-based problems such as
approximate matching, database searching and so
on. For instance, the design of probes for promoter
regions is an example of approximate matching. As
promoter region are often consensus inferred from a
set of upstream sequences, exact matches are
seldom observed. A suffix tree is a versatile data

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE Lin Feng, Angela Jean, Chong Poh Leng, Lai Danbo

E-ISSN: 2224-2902 53 Issue 2, Volume 9, April 2012

http://www.genomesonline.org/cgi-bin/GOLD/bin/gold.cgi�
http://www.genomesonline.org/cgi-bin/GOLD/bin/gold.cgi�

structure that can be used to solve a variety of
sequence-based problems, including exact /
approximate matching, database querying, genome
alignment and so on. The existing suffix-tree based
pipeline may be further developed into a more
versatile format in future, perhaps incorporating
approximate matching.

In conclusion, DNA sequences that are unique to
a given species or strain, or to a defined group of
related organisms, can be used to distinguish the
target from unrelated species. Identification of such
DNA signatures is especially important for detecting
organisms that may be pathogenic to humans. In this
project, we have used a compressed suffix-tree
based algorithm in the pipeline to identify multiple
DNA signatures common to a set of input
sequences. Using the genome sequences of 8
Influenza virus A subtypes known to infect humans,
our pipeline was able to correctly identify 13 DNA
signatures from 20 – 50bp in size, that should be
useful as biosignatures or candidate probes. We
examined the specificity of these candidate probes
and confirmed that they are highly specific to only
Influenza A virus, but are not host-specific.

Acknowlodgment:
This work is partially supported by a grant
(M4080106.020) by Nanyang Technological
University and another (M4080634.B40) by NTU
Institute for Media Innovation.

References:
[1] Metzker, M.L., Sequencing technologies - the

next generation. Nat Rev Genet, 2010. Vol. 11,
No.1, pp31-46

[2] Teufel, A., et al., Current bioinformatics tools
in genomic biomedical research (Review). Int J
Mol Med, 2006, Vol. 17, No. 6, pp967-973

[3] Smith, T.F. and Waterman, M.S., Identification
of common molecular subsequences. J Mol
Biol, 1981, Vol. 147, No. 1, pp195-197

[4] Needleman, S.B. and C.D. Wunsch, A general
method applicable to the search for similarities
in the amino acid sequence of two proteins. J
Mol Biol, 1970, Vol. 48, No. 3, pp443-453

[5] Ko, P. and Aluru, S., Suffix Trees Application
in Computational Biology, in Handbook of
Computational Molecular Biology, S. Aluru,
Editor. 2006, CRC Press: Boca Raton, FL,
USA. pp166-193

[6] Weiner, P., Linear pattern matching algorithms,
in Proceedings of the 14th Annual Symposium
on Switching and Automata Theory (swat
1973), IEEE Computer Society, 1973

[7] McCreight, E.M., A Space-Economical Suffix
Tree Construction Algorithm. Journal of the
ACM, 1976, Vol. 23, pp262-272

[8] Ukkonen, E., On-line Construction of Suffix
Trees. Algorithmica, 1995, Vol. 14, pp249-260

[9] Gusfield, D., Algorithms on Strings, Trees and
Sequences, Cambridge University Press, New
York, 1997

[10] Wallace, R.B., et al., Hybridization of synthetic
oligodeoxyribonucleotides to phi chi 174 DNA:
the effect of single base pair mismatch, Nucleic
Acids Research, 1979. Vol. 6, No. 11, pp3543

[11] SantaLucia, J.J., et al., Improved Nearest-
Neighbour Parameters for Predicting DNA
Duplex Stability, Biochemistry, 1996, Vol. 35,
pp3555-3562

[12] Flikka, K., et al., XHM: A System for
Detection of Potential Cross Hybridizations in
DNA Microarray, BMC Bioinformatics, 2004,
Vol. 27, No. 5, pp117

[13] Simmler, H. and Singpiel, H., Real-Time
Primer Design for DNA Chips, 2nd IEEE
International Workshop on High Performance
Computational Biology, Nice, France, 2003

[14] Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.,
Replacing suffix trees with enhanced suffix
arrays, Journal of Discrete Algorithms, 2004,
Vol. 2, No. 1, pp53-86

[15] Giegerich, R., Kurtz, S., Stoye, J., Efficient
implementation of lazy suffix trees, Software-
Practice and Experience, 2003, Vol. 33, No. 11,
pp1035-1049

[16] Stepanova, M., Lin, F. and Lin, L.C.V., In
silico modelling of hormone response elements,
BMC Bioinformatics, 2006, Vol. 7, No. 4

[17] Stepanova, M., Lin, F. and Lin, L.C.V, A
Hopfield Neural Classifier and Its FPGA
Implementation for Identification of
Symmetrically Structured DNA Motifs, The
Journal of VLSI Signal Processing, 2007, Vol.
48, No. 3, pp239-254

[18] Ng, K. L., Huang, C. H. and Tsai. M. C,
Vertebrate microRNA genes and CpG-islands,
WSEAS Trans on Biology and Biomedicine,
Vol. 7, Issue 3, July 2010, pp73-81

[19] Yamada, Y. and Satou, K., Prediction of
Genomic Methylation Status on CpG Islands
Using DNA Sequence Features, WSEAS Trans
on Biology and Biomedicine, Vol. 5, Issue 7,
2008, pp153-162

[20] Qi, Y., Lin, F. and Wong, K. K., High
Performance Computing in Protein Secondary
Structure Prediction, WSEAS Trans on Circuits
and Systems, Vol. 2, No. 3, 2003, pp619-624

WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE Lin Feng, Angela Jean, Chong Poh Leng, Lai Danbo

E-ISSN: 2224-2902 54 Issue 2, Volume 9, April 2012

