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Abstract: - Identification of DNA signatures has been empowered by the increasing availability of thousands of 
bacterial and viral genomes through the next-generation sequencing technologies. In exploration for the 
computational solution, the suffix tree has been proposed as a data structure well suited to analyzing genomic 
sequences because it enables the storage of long strings in a logical, indexed manner for fast retrieval. We 
propose a new algorithm for identification of DNA signatures, based on exploitation of the endogenous features 
of a genomic sequence. These features are revealed in a construction of suffix array. Furthermore, to greatly 
speed up the time-consuming process, the core algorithm is mapped and routed on to a Field-Programable Gate 
Array (FPGA) for parallel implementation. In this paper, we will focus primarily on the relationship of the data 
structure and the features associated. We will then describe the deployment of the hybrid computing system on 
a HyperTransport compliant architecture. Illustrations are always given to clarify the technical details, and 
experimental results are presented to verify the correctness of the algorithm. 
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1 Introduction 
The genomics research landscape has been reshaped 
since the advent of high-throughput next-generation 
sequencing (NGS) technology [1, 2] which 
surpasses the old Sanger sequencing paradigm. One 
immediate outcome of such sequencing technology 
is the generation of very large amounts of data. 
Researchers can now compare one genome with 
another, or even perform meta-analyses of whole 
sets of genomes, instead of limited regions.  

As a case study in this paper, the influenza virus 
genome consists of eight single-stranded RNA 
segments that code for eleven known proteins. The 
PB2, PB1, and PA segments encode the RNA 
polymerase, and HA, NP, NA, and M encode 
haemagglutinin, nucleoprotein, neuraminidase, and 
the matrix proteins, respectively. 

There are three types or genera of influenza 
viruses within this family- A, B and C. Only types A 
and B cause significant human disease. Type A 
viruses are the most important pathogens of the 
three types and there have been several human 
pandemics caused by influenza A viruses. Influenza 
A viruses can be further categorised into subtypes 
according to the antigenic properties of their 
haemagglutinin (HA) and neuraminidase (NA) 
surface glycoproteins. HA is a protein that causes 
red blood cells to agglutinate and NA is an enzyme 
that is crucial for the process that is required for 

proper budding and release of progeny virions from 
the host cell surface.  Presently, there are 16 known 
subtypes of HA and 9 known subtypes of NA. Three 
subtypes have been shown to cause pandemics 
during the last century: H1N1 caused “Spanish flu” 
in 1918, H2N2 caused “Asian flu” in 1957, and 
H3N2 caused “Hong Kong flu” in 1968. Although 
there have been many subtypes of influenza A 
reported so far, only some subtypes of influenza A 
virus have been associated with human infection. 
Some examples are H1N1, H1N2, H3N2, H5N1, 
H7N2, H7N3, H7N7 and H9N2.  

Seasonal influenza virus infections in humans 
cause yearly epidemics that result in millions of 
human infections worldwide and have significant 
health and economic burdens. In Singapore, there 
have been more than 1,600 hospital admissions from 
complications related to the Influenza A (H1N1) 
infection since July 2009, including 20 deaths and 
the annual all-cause death rate from seasonal 
influenza in Singapore was estimated at 
14.8/100,000 person-years.   

Avian influenza, commonly known as bird flu, is 
an infectious viral disease in birds that is caused by 
several types of influenza viruses. Most do not 
infect humans. Some, however, such as H5N1, have 
caused serious infections in humans. Avian 
Influenza A viruses are categorised into two groups 
based on their ability to cause disease in poultry: 
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high pathogenicity or low pathogenicity. Highly 
pathogenic avian influenza (HPAI) viruses result in 
high death in some poultry species while low 
pathogenicity avian influenza (LPAI) viruses also 
cause outbreaks in poultry but are not generally 
associated with severe clinical disease. Avian 
influenza A virus subtypes H5N1, H7N7, and H7N3 
have been associated with HPAI, and human 
infection with these viruses have ranged from mild 
(H7N3, H7N7) to severe and fatal disease (H7N7, 
H5N1). Human infection with LPAI viruses has 
been reported, including very mild symptoms (e.g., 
conjunctivitis) to influenza-like illness. Examples of 
LPAI viruses that have infected humans include 
H7N7, H9N2, and H7N2.  

Analysis of these massive and heterogeneous 
data poses multiple computational challenges. These 
include effective data mapping, annotation and 
visualization; efficient data storage and retrieval, 
and the integration and interpretation of data from 
multiple technological platforms each using 
different sequencing chemistries, and each with its 
own unique output and error characteristics [18, 19, 
20]. Algorithms that work well for smaller scale 
problems are either insufficient or inappropriate for 
current genomic analysis. Dynamic programming 
techniques, such as Smith-Waterman [3] and 
Needleman-Wunsch [4] algorithms work well to 
align regions of interest between two genes, whereas 
heuristics (trial-and-error) must be applied when 
highly conserved regions between two entire 
genomes are to be identified in a reasonable amount 
of time and space [5]. Moreover, in genomic 
sequences, the demarcations between functional 
groups of nucleotides or amino acids are more 
subtle, for example, the start codon determining the 
beginning of an open reading frame is identical in 
sequence to any internal methionine amino acid, and 
the phenomenon of alternative splicing can generate 
multiple transcripts from the same stretch of DNA 
sequence. This further increases the difficulties in 
aligning sequence pairs.  

In exploration for the solution, the suffix tree has 
been proposed as a data structure well suited to 
analyzing genomic sequences because it enables the 
storage of long strings in a logical, indexed manner 
for fast retrieval. The concept of suffix tree was first 
introduced as a position tree by Weiner [6] in 1973, 
and the construction of suffix tree for sequence 
representation was further improved by McCreight 
[7] in 1976 and Ukkonen [8] in 1995.  The suffix 
tree can be used to provide exact matches 
efficiently, which many heuristics depend on. In a 
nutshell, suffix tree and generalized suffix tree (the 
multiple string variant of suffix tree) can be used to 

solve a number of computational biology related 
problems in optimal space and time. The challenge 
is the computational efficiency in construction of 
the suffix tree. 

We propose a new algorithm for identification of 
DNA signatures, based on exploitation of the 
endogenous features of a genomic sequence. These 
features are revealed in a construction of suffix 
array (an implementation of the generalized suffix 
tree). Furthermore, the core algorithm is mapped 
and routed on to a Field-Programable Gate Array 
(FPGA) for efficient implementation. We will focus 
primarily on the relationship of the data structure 
and the endogenous features. Illustrations will be 
given to elucidate the representation of the features. 
We will also describe the deployment of the hybrid 
computing system on a HyperTransport compliant 
architecture, and the computational experiments on 
identification of DNA signatures for influenza A 
virus. 
 
2 Endogenous Feature Recognition 
In this section, we study key endogenous features of 
a genomic sequence which have significant meaning 
in DNA signatures, including repeats, lift-diversity 
and those features biased towards the ends of the 
gene. We discuss how these features are revealed in 
a generalized suffix tree. 
 
2.1 Construction of a Suffix Tree of 

Endogenous Feature 
Sequences that are unique to a given species or 
strain are especially useful to distinguish the target 
organism from either related or un-related species. 
Such unique sequences are termed DNA signatures 
or genomic markers, and are important in areas such 
as the identification of genes responsible for drug 
resistance, accurate detection of pathogens 
especially those which are used as weapons of 
bioterrorism or warfare, and epidemiological 
analysis such as the identification of bacterial strains 
that cause food poisoning. 

A naïve method of obtaining DNA signatures 
from a selected genomic sequence is to utilize a 
sliding window of length n. Starting from the first 
position of the target sequence and ending at the nth 
position, the window is moved down from the 5’ 
end of the target sequence towards the 3’ end, until 
the start of the window reaches the (m-n+1)-th 
position, where m is the length of the target 
sequence. At each position (m-n+1), the feature in 
the window is subjected to a filtering analysis. 

The reliability of a signature is dependent of its 
sensitivity and specificity to its genomic sequence, 
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and this usually involves a time-consuming and 
exhaustive searching in the entire genome. This 
problem can be streamlined by using an effective 
data structure to improve algorithmic efficiency. To 
facilitate all these time-consuming operations, we 
device a Suffix Tree of Endogenous Feature, or EF-
Tree, to aid in the signature identification process.  

An EF-Tree is a data structure derived from a 
generalized suffix tree (GST) [9] for representation 
of the features. The tree is created from a set of 
substrings, S, that represents the set of all features 
from a genomic sequence such as a gene. Given a 
sequence of length m, and a feature size of length n, 
a set of (m-n+1) features may be obtained. 
Construction of the EF-Tree is initiated with the first 
feature in the set S, as outlined by the following 
procedure: 
 
Proc create_eftree(S) { 
1. Initialization: T1, an implicit tree, has one edge 

labeled S[1]; 
2. for (i = 1 to m-1) {  
3.   build Ti+1; 
4.   for (j = 1 to i+1) { 
5.     if (S[j..i] ends at a leaf of Ti+1) { 
6.   Add character S[i+1] to the end of label on 

the edge to the leaf; } 
7. elseif (no path from the end of S[j..i] location 

continues with S[i+1])  
8. Split a new leaf edge for character S[i+1]; 
9.     elseif (S[j..i] ends in the middle of an edge) { 
10. Create an internal node; 
11. Compute properties of substring from 

previous node to new node;} 
12.     else // S[j..i+1] is already in the tree 
13. Continue;}} 
14. Expand the final implicit tree to create a full EF-

Tree;} 
 
In procedure create_eftree, line 11 of the code may 
be implemented for calculation of various 
properties, such as the melting temperature of the 
substring from the previous node to the current 
node. If the previous node is the root node, then this 
is the melting temperature of the prefix of the suffix 
that is currently being added to the initial EF-Tree. 
Once the suffix tree of the first feature from the set 
S is constructed, subsequent features in the set can 
be added to the tree to create a full EF-Tree. The 
computed sequence values such as melting 
temperatures stored in the nodes can be easily 
retrieved for features that share a common substring. 
An illustration is presented in Figure 1. In the 
example, a basic assumption in the calculation of 
melting temperature, for a feature that is segmented 

by one or more internal nodes, is that the formula 
for the calculation is additive. The formulation will 
not be discussed here as various methods of 
calculation are available, including the Wallace 
method [10], the Nearest Neighbour method and its 
variants [11] as well as the GC% method [12]; each 
having their own set of criteria and constraints. 
However, this assumption may not always be true 
and may sometimes require manipulations of 
existing formulas to fit the requirements of the ES-
Tree. This assumption is also imposed onto other 
properties that are stored in the nodes. 
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Figure 1: EF-Tree Construction 

 
Besides storing important information at each node, 
the EF-Tree also facilitates the search for features 
with repeating substrings in combination with 
features that are 5’ or 3’ biased. As such, the EF-
Tree presents a solution that aids in the selection of 
candidate probes that meet a combination of criteria. 

There are many inherent properties in an EF-Tree 
that can be harnessed in identifying DNA 
signatures, such as the recognition of repeating 
substrings, common or longest common substrings 
and exact string matching, among others. Coupling 
these applications with the properties of an EF-Tree, 
various genomic applications can be conjured. In the 
followings, we present some applications that can 
either be used individually or in combination to 
satisfy various criteria that can be set. 
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2.2 Exploitation of Features with Repeats 
In an EF-Tree, a repeat is indicated by the presence 
of an internal node which dictates that the sequence 
(path) from the root to the node is shared by the 
leaves resulting from the internal node. Instead of 
considering only the maximal repeats, all possible 
repeats may be considered from the EF-Tree. This is 
because other factors may be considered in, for 
example, the probe selection process. Inherently, 
repeats are either maximal repeats or suffixes of the 
maximal repeats and are hence biased towards the 3’ 
end of the feature. 
 

 
 

Figure 2: An EF-Tree with GC repeats 
 
As illustrated in Figure 2, a maximal repeat is 
identified at node X because it is lift-diverse while a 
non-maximal repeat is identified at node Y because 
it is not lift-diverse. Lift-diversity is used to 
determine if the substring represented by an internal 
node is a maximal repeat [9]. While it may be 
desirable to utilize the sequence represented by node 
X – so as to ensure that the repeat bound is specific, 
it may not always be appropriate because of factors 
like melting temperature and GC content. Hydrogen 
bonding between GC is known to have higher 
enthalpy because there are 3 hydrogen bonds as 
opposed to AT, which has only 2. As such, given 
the extra energy required to break the bonds, the 
sequence represented by node X may be selected 
against because it may not meet the criteria set for 
the melting temperature. 

On the other hand, if we are to consider all 
repeats instead of just the maximal ones, then the 
sequence represented by node Y, which is not a 
maximal repeat but a substring of node X, may be 
considered for selection as a candidate signature. By 
not limiting the search of repeats to only maximal 
ones, suitable features may be selected as candidate 
signatures. 

In addition, because the repeats in an EF-Tree 
represents not only a single feature, but a set of 
features, an advantage of using an EF-Tree is the 
ability to identify repeats across different features 

vis-à-vis an internal repeat within a single feature 
which is represented by a tree for a single feature or 
a signature. Features that contain the repeat 
represented by the node are indicated at the leaves 
of the subtree of that node. 
 
2.3 Acquisition of Variable Length Features 
The generation of features depends on the length of 
the sliding window, which will determine the length 
of the features as well as the number of features 
available for selection. Ultimately this is also 
dependent of the size of the candidate signatures 
that is desired. While it may seem reasonable to take 
the length of the probes as the length of the sliding 
window, additional considerations may be required 
in the use of an EF-Tree. 

If the selection of repeats or maximal repeats is 
used as a feature selection strategy, then the use of 
just the repeating sequence as a feature, or the use of 
the entire feature represented by the repeating 
sequences, will determine the length of the sliding 
window. If the former is used, then a longer window 
length may facilitate the selection of longer repeats, 
if such repeats exist. An illustration is shown in 
Figure 3 where a represents a repeat or a common 
substring between (1, 3), (1, 4), (1, 5) and (1, 7), 
while a concatenation of a and b represents that of 
(1, 3), (1, 5) and (1, 7) and a concatenation of a, b, 
and c represents that (1, 5) and (1, 7). If a longer 
window length is used, then longer repeats may be 
obtained, if they exist. Moreover, longer probes may 
sometimes be desired because it is considered to 
provide a higher level of sensitivity [13]. However, 
the use of any of the 3 possible repeats may be 
further constrained by the melting temperature or 
GC content. 
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Figure 3: Segmentation of features 
 
On the other hand, a sequence may not have repeats, 
and thus the use of such a strategy should be 
predetermined by some form of domain knowledge 
with respect to the genome. In this case, the entire 
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feature represented by the repeats may be used, and 
it may not be necessary to increase the length of the 
sliding window by more than what is dictated by the 
desired probe length. Therefore, the availability of 
such an application is not a means to an end, but 
rather to facilitate the overall probe selection 
strategy. 
 
2.4 Elicitation of Biased Features 
Selection of features that are biased towards either 
end of the gene may sometimes be desired if there is 
domain knowledge that indicates the uniqueness of 
target sequences at one end. This could be done by 
selecting leaves that represent features with a lower 
feature or suffix start position number – for features 
biased to the 5’ end, or a higher number, for features 
biased to the 3’ end. An example is shown in Figure 
4: two leaves in the format (a, b), where a represents 
the start position of the feature within the target 
sequence, while b represents the start position of the 
suffix within the feature. From these leaves, it is 
possible to streamline, or prune, trees such that only 
suffixes representing a higher value of a – for 5’ 
biased features, or a lower value of a – for 3’ biased 
features, remains. The cut-off value may be 
determined arbitrarily or by using a value that cuts 
the number of features by half. This effectively 
reduces the problem domain by leaving out features, 
or suffixes of features.  
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from position 1 of the gene
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Figure 4: Leaves of an EF-Tree 
 
Sometimes, a single leaf may represent more than 
one feature, as shown in Figure 5. These leaves 
represent suffixes of the same length, and hence the 
same start position from different features. In Figure 
5, a leaf is shown to represent suffixes from a 
feature that starts from position 1 of the target 
sequence as well as one that starts from position 45, 
hence representing a common substring – or a repeat 
sequence, between the two suffixes and their 
respective features. Given a hypothetical signature 
of length 100, and a sliding window of 50, the last 
feature starts from position 51 of the signature, (1, 
2) is thus 5’ biased and (45, 2) is 3’ biased. In 
pruning the EF-Tree, the decision to remove this 

leaf will depend on the signature selection strategy. 
The advantage of using an EF-Tree is the ability to 
provide contextual information, relative to the entire 
set of features that are available for signature 
selection in a single tree. 
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Figure 5: Leaves representing more than one feature 
 
3 Hybrid Computing with FPGA 
 
3.1 Analysis on Space and Time Complexity 
The node of an EF-Tree is represented together with 
the incoming edge label information. Each node 
contains two integers representing the start and end 
position of the corresponding substring. As the end 
point can be deduced from the start position of the 
internal node (child) or is simply n (for a leaf node), 
it is sufficient to store the start position of the 
substring. 

Each node has pointers to all its internal nodes 
and they can be represented as an array, as a linked 
list or as a hash table. If the size of the alphabet ∑ is 
small, then an array of size |∑| can be used to 
represent the child node pointers. The child node 
whose incoming label starts with the ith character in 
a ranked alphabet is represented by the ith entry in 
the array. Consider the tree space for inputs where n 
is less than the largest 4-byte integer, that is, log n < 
32. For a string of length n, the tree has 1 root, n 
leaves, at most n-1 internal nodes, and at most 2n-2 
edges.  

For each leaf node, we may store a pointer to its 
parent, and store the starting index of the suffix 
represented by the leaf, for 2n words of storage. 
Storage for each internal node may consist of 4 
pointers, one each for parent, leftmost child, right 
sibling and suffix link, respectively. This will 
require approximately 4n words of storage. Each 
edge label consists of a pair of integers, for a total of 
at most 4n words of storage. Putting this all 
together, the implementation of EF-Tree takes 10n 
words or 40n bytes of storage. 

Theoretically, the EF-Tree can be constructed in 
linear time and requires linear storage; that is, for a 
string S of length n, the tree can be built with the 
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time complexity of O(n), if the letters come from an 
alphabet of integers in a polynomial range. For 
larger alphabets, the running time is dominated by 
first sorting the letters to bring them into a range of 
size O(n), and this is with the time complexity of 
O(n log n).  
 
3.2 Enhanced Suffix Array 
In practice, an EF-Tree can be implemented as a 
suffix array [14, 15] which consists of the indices of 
the first characters of each suffixes in the sequence 
analyzed. Each suffix can be completely specified 
by the index of its first character in lexicographical 
order in the text. For example, given a sequence 
string: 

T [0, 6] = A
1

T
2

C
3

G
4

C
5

G
6

G
7

 
 
The suffix array in lexicographical order is as 

follows: 
 

A
1

T
2

C
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G
4

C
5

G
6

G
7

 
C

3

G
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G
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G
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G
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G
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T
2

C
3

G
4

C
5

G
6

G
7

 
 

The suffix array, SA = (1,3,5,7,4,6,2) 
 
The naïve suffix array is the lexicographically 
ordered leaf list of the EF-Tree. However, the array 
misses significant information due to the absence of 
internal nodes. An enhanced suffix array can be 
introduced to compensate the missed information.  
 

Table 1: Representation of enhanced suffix array 
i suf lcptab suffix 

0 1 0 ATCGCGG 
1 3 0 CGCGG 
2 5 2 CGG 
3 7 0 G 
4 4 1 GCGG 
5 6 1 GG 
6 2 0 TCGCGG 

 
We add two data structures, an LCP (longest 
common prefix) table and the LCP interval table, 
into the array. In the LCP table, lcptab[i] stores the 
length of longest common prefix of the suffixes, 
suf[i] and suf[i-1]. The LCP interval table, 

lcpinterval[i,j] stores the length of longest common 
prefix of the suffixes suf[i] and suf[j]. Computation 
for feature identification in the following FPGA 
implemented algorithm can be reduced because 
lcptab[i,j] equals the length of the path label of the 
lowest common ancestor of the two leaves 
representing suf[i] and suf[j].  

Thus, for the above string, ATCGCGG, we have 
the representation as in Table 1. 
 
3.3 Mapping and Routing on FPGA 
Hybrid computing is the strategy of deploying 
multiple types of processing elements within a 
single workflow, and allowing each to perform the 
tasks to which it is best suited. Complementing 
general-purpose microprocessors with specialized 
processing elements, we deployed an architecture 
with reconfigurable computing fabrics, on-chip 
parallel processing elements designed for compute-
intensive applications with private, and software-
controlled local memories [16]. 

For effective running of the DNA signature 
identification routines, we eventually map the codes 
for the suffix array implementation on a RCHTX 
Virtex-4 FPGA card. The computing system is the 
Tyan/D 1207/V/2GBL/PCIE server compliant with 
the HyperTransport (HTX) interface standard. The 
HTX socket provides high-bandwidth 
communication between the Xilinx Virtex-4 FPGA 
co-processor and AMD's Opteron processors. Such 
a hybrid computing system (see Figure 6) provides 
power-efficient acceleration technology that 
increases system performance, scalability and 
flexibility [17].  
 

User FPGA

Kernel FPGA

HyperTransport

AMD 
Opteron

Processor

RCHTX
Card

RAM

RAM

RAM

RAM

AMD 
Opteron

Processor

AMD 
Opteron

Processor

AMD 
Opteron

Processor

 
Figure 6: HTX-compliant Hybrid System 

 
In the system, application interface and sequence 
data access functions are implemented on the AMD 
Opteron processors, while the core suffix array 
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construction algorithm is mapped on the User FPGA 
of the RCHTX card. The working data is transferred 
between the host CPU and FPGA via the 
HyperTransport interconnect.  

Codes are developed with Handel-C, compiled 
into the low-level Hardware Description Language 
(HDL), and finally routed as images of FPGA for 
parallelism. The core algorithm is described as 
follows: 
 
1. Convert the DNA string into DNA binary 

sequences in their respective binary array: 
seqA[n], seqC[n], seqG[n], seqT[n], where n is 
the length of the DNA sequence. 

2. Specify initial data of variables and arrays, 
where n is the length of the DNA sequence:  
a. Initialize 5 binary bins: binE[n], binA[n], 

binC[n], binG[n], binT[n] to be equal to seqs. 
bins record the ith character for each suffix, 
where the ith value is the number of next 
iteration. binX[j] = 1 in (i-1)th iteration 
indicates that the ith character of the jth suffix 
in lexicographical till now is X, where E 
refers to empty. 

b. Initialize group variables: st[n] = 1, end[n] = 
n, plus[n] = 0. 

c. Initialize iteration number to be 0. 
d. Initialize suffix array, suffix[i] = i+1, for i is 

from 0 to n-1. 
3. For i = 0 to n-1, calculate the number of 

positions of each character in the current group 
where the suffix will be allocated.  

sumX[i] = ∑
=

end

startx
xbinX ][ , where X is the 

character (E,A,C,G,T), start and end are the start 
and end position of the group where the suffix 
will be allocated. 

4. For i = 0 to n-1, calculate the position of suffix 
in the cluster of current group where the suffix 
will be calculated; reset the finish variable to be 
binary 1. 

hex[i] = ∑
=

i

startx
xbinX ][ , where X is the character 

such that binX[i] == 1.  
5. Calculate the order of the suffix based on ith 

character in lexicographical order. For the 
character that binX[i] == 1 

pos[i] = hex[i] + plus[i] + ∑
<

=

XY

EY
isumY ][  

where hex[i] indicates the position in the current 
cluster, plus[i] is the position before current 

group, the third addend is the sum of smaller 
characters in the current group. 

6. Re-arrange the order of the suffix and the 5 
bins: 
suffix[pos[i]-1] = suffix[i], binX[pos[i]-1] = 
binX[i] 

7. Calculate the clustering grouping for the ith 
character of the suffix. For i = 0 to n-1, if 
binX[i] == 1, 

st[i] = st[i] + ∑
<

=

XY

EY
isumY ][  

end[i] = st[i] + ∑
<=

=

XY

EY
isumY ][  - 1 

plus[i] = plus[i] + ∑
<

=

XY

EY
isumY ][   

8. Set the 5 bins to the next character in each of the 
suffix 
For i = 0 to n-1 

if (suffix[i] + iteration > n-1) 
binE[i] = 1, binX[i] = 0; 

if (suffix[i] + iteration < n) 
binE[i] = 0, binX[i] = seqX[suffix[i] + 
iteration]; where X is A,C,G,T ; 

if (hex[i] > 1) 
set finish = 0; 

iteration ++ 
9. Repeat steps 3,4,5,6,7,8 if iteration < n and 

finish is 0. 
 
Following the example in Section 3.2, we show the 
FPGA mapping and routing of the data structures 
and processes as follows: 
 
1. DNA[n]: ATCGCGG 
 
2. 1-bit arrays: seqA[n], seqC[n], seqG[n], seqT[n], 
where seqX[i] = 1 means the ith position of the 
DNA sequence is character X, as in Table 2. 

 
Table 2: 1-bit array seqX in FPGA implementation 

bin\suffix 1 2 3 4 5 6 7 
seqE 0 0 0 0 0 0 0 
seqA 1 0 0 0 0 0 0 
seqC 0 0 1 0 1 0 0 
seqG 0 0 0 1 0 1 1 
seqT 0 1 0 0 0 0 0 

 
3. 1-bit arrays: binA[n], binC[n], binG[n], binT[n], 
to record the ith character for each suffix, where the 
ith value is the number of next iteration. After first 
iteration, the second character for each suffix is 
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TGGCGEC, thus the values filled are shown in the 
Table 3. 
 
Table 3: 1-bit array binX in FPGA implementation 

bin\suffix 1 3 5 4 6 7 2 
binE 0 0 0 0 0 1 0 
binA 0 0 0 0 0 0 0 
binC 0 0 0 1 0 0 1 
binG 0 1 1 0 1 0 0 
binT 1 0 0 0 0 0 0 

 
4. st[n] , end[n], plus[n] 
 
Clustering groups for the ith character of the suffix, 
that is, in iteration i, they contain clustering group 
information of the ith number. For example, after 
sorted in iteration 1, the first character of each suffix 
is: A,C,C,G,G,G,T, thus 
 
st = (1,2,2,4,4,4,7) 
end = (1,3,3,6,6,6,7) 
plus = (0,1,1,3,3,3,6) 
 
5. sum[E]  sum[A]  sum[C]  sum[G]  sum[T]. They 
determine the number of positions of each character 
in the current group where the suffix will be 
allocated. For example, for iteration 2, the second 
character of each suffix is: T,G,G,C,G,E,C, thus the 
values filled are shown in Table 4. 
 

Table 4: Array sumX in FPGA implementation 
sum\suffix 1 3 5 7 4 6 2 
sumE 0 0 0 1 1 1 0 
sumA 0 0 0 0 0 0 0 
sumC 0 0 0 1 1 1 1 
sumG 0 2 2 1 1 1 0 
sumT 1 0 0 0 0 0 0 

 
6. suffix[n] - Suffix array after iteration i. 
 
7. hex[n] - The position of suffix in the group of the 
cluster to be allocated. For example, in the first 
iteration, the first character for each suffix is: 
A,T,C,G,C,G,G, thus, hex = (1,1,1,1,2,3,4). In the 
second iteration, the second character for each suffix 
is: T,G,G,C,G,E,C, thus, hex = (1,1,2,1,1,1,1). In the 
third iteration: the second character for each suffix 
is: C,C,G,E,G,E,G, thus hex = (1,1,1,1,1,1,1). 
 
4 Identification of DNA Signatures for 

Influenza A Virus 
In the experiment, we aim to find a set of DNA 
signatures for influenza A virus that could be used 
in disease diagnostic applications. Influenza A virus 

genome sequences are used as test sequences in the 
development of our pipeline because they exist in a 
multitude of closely related sequence variants for 
which many complete genomic sequences of each 
subtype are available in the public databases. The 
size of the influenza A virus genome is relatively 
small, approximately 8kb, enabling quick yet 
rigorous proof of principle testing.  

From the 1st cycle of the workflow of finding 
common substrings between the first 2 virus 
subtypes, H1N1 and H3N2, there were 2429 LSCs. 
These LSCs were concatenated into a “reference 
sequence” with a spacer sequence (“PPPPP”) in 
between each LSC. Results of common substring 
determination at increasing pipeline iterations are 
shown in Table 5. 
 

Table 5: Common substring determination 
Iteration Inputs No.  of 

unfiltered 
common 
substrings 

No. of clusters obtained 
by DNACLUST (= no. of 
unfiltered longest 
common substrings per 
cluster identified) 

No. of longest 
common substring 
per cluster (LSC) 
of size 20bp and 
above identified 

1 H1N1 
and 
H3N2 

8963 2429 104 

2 H1N2 7582 2221 84 
3 H9N2 5616 2280 23 
4 H5N1 4528 2005 20 
5 H7N7 3883 1724 15 
6 H7N2 3476 1526 12 
7 H7N3 3086 1346 13 

 
After the final 7th iteration of the pipeline, a total of 
13 LSCs varying in size from 20 – 50bp were 
identified. These 13 LSCs therefore represent 13 
DNA regions containing sequences ≥ 20bp that are 
common to all of the 8 original input influenza 
genome sequences. In other words, these represent 
the DNA signatures that can be used in the design of 
specific probes for use in biological applications. 

To check the specificity of the DNA signatures 
identified by our pipeline, i.e. to verify if probes 
designed using these DNA signatures are unique to 
Influenza A virus only, and if this specificity 
extends to only particular subtypes, we performed 
BLAST analysis against GenBank ‘nr’ database 
using the NCBI BLAST web server 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi).  We used 
the program BLASTN with settings Word size =15. 
We first performed BLAST analysis on each of the 
13 DNA signatures against the original 8 sequences 
to verify that they are the common substrings of the 
8 sequences. The results showed that the 13 DNA 
signatures were correct for the tested 8 Influenza 
virus A subtypes.  
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Next we checked if the DNA signatures were 
specific to Influenza A virus by performing BLAST 
analysis using each of the 13 candidate probes as 
query sequences. The results showed that the 
substrings were highly specific to only Influenza A 
virus, and not to the B or C genera. Each probe 
aligned to a unique region in the virus genome, with 
a BLAST maximum identity of 100% across each 
entire query length. No query aligned to more than 1 
region in the genome, confirming high sequence 
specificity and hence suitability for use as probes. 

The longest DNA signature, signature 1 (50bp), 
aligned fully to a region in segment 7. There were 
four other DNA signatures (signatures 3, 4, 9 and 
12) that also aligned to various regions of segment 
7.  There were two DNA signatures (signatures 2 
and 13) which aligned to various regions in segment 
1, four DNA signatures (signatures 7, 8, 10 and 11) 
which aligned to different regions in segment 3, one 
DNA signature (signature 5) which aligned to a 
region in segment 5, and one DNA signature 
(signature 6) which aligned to a region in segment 2. 
Interestingly, no candidate probes were identified in 
this experiment that mapped to segments 4, 6 or 8.  

To determine and display the positions of the 
regions on Influenza A virus which the DNA 
signatures mapped to, we used an arbitrary 
“reference sequence” as one of the test genome 
sequences, H1N1 (accession numbers NC_002016.1 
to NC_002023.1 ). The start and end positions of 
each probe aligned to this reference sequence show 
the alignment of each probe. 

The E-values from our BLAST results ranged 
from 0.92 to 1.00e-18. In general, the lower the E-
value, or the closer it is to zero, the more 
"significant" the match is. However, despite the 
20bp probe having a high E-value (E = 0.92) due 
primarily to E-value calculations being influenced 
by query length, the actual BLAST alignments 
clearly show that it is still highly specific, mapping 
only to Influenza A virus sequence like its longer 
counterparts. 

We further examined the subtype specificity of 
the DNA signatures, by counting the number of 
times each signature aligns to a different virus 
subtype. We performed BLAST analysis and select 
the maximum number of aligned sequences as 
“1000”. Results show that the subtype specificity 
distribution pattern by the DNA signatures is similar 
to the Genbank database subtype-specific 
distribution, except for H9N2 and H5N1. Both 
subtypes are under-represented in the distribution, 
only 1.5% and 4.5% of the BLAST-matches by the 
DNA signatures are specific to H9N2 and H5N1, 
respectively. 

5 Discussion and Conclusion 
With the free availability of thousands of complete 
genome sequence assemblies such as the GOLD 
database at http://www.genomesonline.org/cgi-
bin/GOLD/bin/gold.cgi, we are conducting more 
experiments on identification of DNA signatures in 
genomic sequences.  

We would like to use our high-performance 
whole genome algorithm to identify signature 
sequences in bacterial and viral genome sequences, 
and to use these unique sequences as a basis for 
diagnostic assays to detect and genotype microbes 
in both environmental and clinical samples. For 
examples, Bacillus anthracis, Bacillus cereus and 
Bacillus thuringiensis are genetically so close that it 
has been proposed to consider them as a single 
species. However, these bacteria are very different 
on a phenotypic level. B. cereus is a food 
contaminant, B. thuringiensis is a useful bacterium 
used as a pesticide, while B.anthracis is a virulent 
pathogen for mammals, and has been used as a 
bioterror and biological warfare agent. In another 
example, Brucella melitensis and B. suis have 
adapted to different hosts (cattle and swine, 
respectively) and yet the genomes of the two 
Brucella species differ by only 74 open reading 
frames out of 3378 open reading frames. 

In a more comprehensive experiment, the success 
of the proposed approach critically depends on the 
features used to identify signatures that can, in turn, 
accurately differentiate between target genomes and 
sample background. With the DNA sequence 
information, in addition to identifying signatures, 
the products of the genes of interest can also be 
readily produced and studied; furthermore, mutants 
can be prepared for genetic and functional analysis. 

The pipeline currently works well for genome 
sizes (input strings) of a few thousand basepairs. 
However, we have found that for sequences 1Mb 
and longer, we encounter memory limitations 
because suffix trees are extremely memory intensive 
by nature. The implication of this is that the pipeline 
is currently well suited to identifying DNA 
signatures in virus sequences, but for bacteria, fungi 
or even more complex organisms, a workaround 
will have to be developed to make the process more 
memory efficient.  

Apart from the exact string matching problem, 
there can be other sequence-based problems such as 
approximate matching, database searching and so 
on. For instance, the design of probes for promoter 
regions is an example of approximate matching. As 
promoter region are often consensus inferred from a 
set of upstream sequences, exact matches are 
seldom observed.  A suffix tree is a versatile data 
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structure that can be used to solve a variety of 
sequence-based problems, including exact / 
approximate matching, database querying, genome 
alignment and so on.  The existing suffix-tree based 
pipeline may be further developed into a more 
versatile format in future, perhaps incorporating 
approximate matching. 

In conclusion, DNA sequences that are unique to 
a given species or strain, or to a defined group of 
related organisms, can be used to distinguish the 
target from unrelated species. Identification of such 
DNA signatures is especially important for detecting 
organisms that may be pathogenic to humans. In this 
project, we have used a compressed suffix-tree 
based algorithm in the pipeline to identify multiple 
DNA signatures common to a set of input 
sequences. Using the genome sequences of 8 
Influenza virus A subtypes known to infect humans, 
our pipeline was able to correctly identify 13 DNA 
signatures from 20 – 50bp in size, that should be 
useful as biosignatures or candidate probes. We 
examined the specificity of these candidate probes 
and confirmed that they are highly specific to only 
Influenza A virus, but are not host-specific.  
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