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Abstract: - On-line monitoring of batch processes using multi-way independent component analysis has 

attracted much attention in both academia and industry. This paper focuses on two knotty issues concerning 

selecting dominant independent components without a standard criterion and determining the control limits of 

monitoring statistics in the presence of non-Gaussian distribution. To optimize the number of key independent 

components, we introduce a novel concept of system deviation which is able to evaluate the reconstructed 

observations with different independent components. Additionally, the monitored statistics are transformed to 

Gaussian distribution data by means of Box-Cox transformation, which helps readily determine the control 

limits. Finally, the proposed method is applied to on-line monitoring of a fed-batch penicillin fermentation 

simulator, giving rise to satisfied results. 
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1 Introduction 
Batch operations are quite popular for low-volume 

and high valued-added products manufacturing, 

targeting high reproducibility and quality subject to 

possible low cost. Practically, most batch processes 

present batch-to-batch variations due to composition 

disturbances, equipment defects and process 

deviations (Lee et al., 2005) [1], together with high 

nonlinearity and uncertainty as well as insufficient 

measurement, which are responsible for the great 

challenge to process control and monitoring. 

During the last decade, multivariate statistical 

process control (MSPC) has been applied to 

monitoring, fault detection and diagnosis of batch 

processes. Nomikos & MacGregor (1995a, b) [2,3] 

employed multi-way principal component analysis 

(MPCA) and multi-way partial least squares (MPLS) 

to monitor batch processes. Subsequently, numerous 

studies were carried out on extensions of MPCA and 

MPLS, such as nonlinear MPCA (Dong & McAvoy, 

1996; Lee et al., 2004) [4,5], dynamic MPCA (Chen 

& Liu, 2002) [6], multi-scale MPCA (Bakshi, 1998; 

Wang & Romagnoli, 2005) [7,8], hierarchical 

MPCA (Ränner et al., 1998) [9] and multi-block 

MPCA or MPLS (Lee & Vanrolleghem, 2003; 

MacGregor et al., 1994; Kourti et al., 1995) 
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[10,11,12]. However, the approaches 

aforementioned are confined with an assumption 

that considered process variables should be 

consistent with Gaussian distribution, which rarely 

holds in practical processes. To solve this problem, 

independent component analysis (ICA) becomes 

increasingly attractive for multivariate non-Gaussian 

process monitoring. ICA is considered as a useful 

extension of PCA which could deal with statistically 

independent data sources. Yoo et al. (2004a, b) 

[13,14] introduced multi-way independent 

component analysis (MICA) to batch process 

monitoring. After that, several extensions of MICA 

were circulated in the literature, such as multi-way 

kernel independent component analysis (MKICA) 

employed to monitor nonlinear processes (Tian et al., 

2009, Wang & Shi, 2010) [15,16], dynamic MICA 

concerning process dynamics (Albazzaz & Wang, 

2006, Stefatos & Hamza, 2010) [17,18], and MICA 

methods incorporated external information (Kano et 

al., 2004) [19]. In addition, several other variants of 

MICA were discussed by Xia & Howell (2005) [20], 

Ge & Song (2008) [21] and Zhang & Zhang (2009) 

[22].  

Two problems emerged from the conventional 

ICA approaches have been intractable. First, in 

order to improve the robust performance and reduce 

analysis complexity of MICA, a small number of 

key independent components (ICs) should be 

cautiously selected from all the independent 

components extracted from original observed 

variables (Lee et al., 2004b) [23].Even though 

researchers proposed various approaches to 

establish a standard criterion, such as L  norm of 

each individual component (Back & Weigend, 1997) 

[24], Euclidean norm of each row of the de-mixing 

matrix (Cardoso & Soulomica, 1993) [25], and 

others (Cheung & Xu, 2001, Lee et al., 2004b) 

[26,23], they could calculate percentage of various 

norms of de-mixing vectors or ICs themselves only. 

Consequently, unilateral results happened due to 

taking less measurements and ICs in all rounds. The 

second problem lies in the fact that the control limits 

of ICA statistics cannot be determined directly from 

a particular approximate distribution because that 

the ICs rarely follow a normal distribution. Despite 

that the kernel density estimation (KDE) was 

recognized as a popular method to deal with this 

issue, it still suffers very time-consuming and highly 

sensitive to the smoothing parameter (Yoo et al., 

2004a) [13]. 

Inspired by these observations, some 

improvements associated with MICA are performed 

in this paper. Initially, a novel concept of system 

deviation quantifying the differences between the 

original measurements and those of reconstructed 

with ICs according to leaving-one method is 

introduced, optimizing the number of dominant 

independent components. After that, the ICA 

statistics data are transformed to approximate 

Gaussian distribution by means of Box-Cox 

transformations (Box & Cox, 1964) [27], 

contributing to easy calculations of the control 

limits.  

The remainder of this paper is organized as 

follows. Section 2 outlines fundamentals of ICA and 

MICA. In section 3, the improved MICA approach 

is introduced, together with its application 

framework for fault detection and diagnosis of batch 

processes. In section 4, an experiment consisting in 

penicillin fermentation monitoring is carried out to 

demonstrate the applicability of the proposed 

approach. Section 5 gives conclusions. 

 

 

2 Fundamentals 
 

 

2.1 Basic ICA model 
Independent component analysis is a statistical and 

computational technique to reveal unknown factors 

that underlie sets of random variables or 

measurements using only the assumption that the 

hidden factors are mutually independent (Comon, 

1994, Hyvarinen & Oja, 2000) [28,29]. Suppose that 

a set of observations of random variables are 

generated as a linear mixture of ICs and expressed 

by vector-matrix notation: 

ASX                                   (1) 

where 
qnRX   denotes the observed data matrix, 

nnRA   denotes the unknown mix matrix, 
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qnRS   is the unknown ICs matrix, n is the 

variable index and q is the number of sample. The 

ICA model describes how the observed mixture 

signals are generated by a process that uses the 

mixing matrix A  to linearly mix the latent source 

signals S . Alternatively, it could be specified to 

find a linear transformation given by a de-mixing 

matrix W , so that the random variables iy  

( ni ,,2,1  ) are as independent as possible. 



 SWXY                         (2) 

where S


 is the estimation of the ICs and W  is the 

inverse of A . 

To eliminate all the cross-correlation between 

random variables, whitening becomes a useful 

initial step of ICA (Lee, 1998) [30], which can be 

executed as follows: Observing )(kx at sample k, its 

covariance is ( ( ) ( ))T

xR E x k x k . The eigen-

decomposition of xR  is given by 
T

xR U U  . The 

whitening transformation is expressed as 

               ( ) ( ) ( ) ( )z k Qx k QAs k Bs k           (3) 

where, 
1

2 TQ U


  , B  is an orthogonal matrix, 

)(ks  is characterized by 

( ) ( )Ts k B Qx k


 .                     (4) 

 Thus, we can obtain the equation 

TW B Q .                                (5) 

The FastICA algorithm based on maximum 

likelihood estimation could be utilized to calculate 

ICA models and represented as follows: 

①. Centering and whitening the sampled data; 

②. Choice an initial (e.g. random) matrix B; 

③. Compute BXy   

)}({ iii ygyE      for ni ,,1 . 

)})('{(
1

ii
i ygE




   for ni ,,1 . 

④. Update the matrix B by 

ByygEdiagdiagBB T

ii }])({)()[(    

⑤. De-correlate and normalized by 

BBCBB T 2
1

)(


               

⑥. If not converged, go back to step ③. 

Here, the nonlinear function g  is the tanh  

function. The matrices )( idiag   and )( idiag   are 

used to optimized the convergence speed of the 

algorithm. After every step, the matrix B  must be 

projected on the set of sphere matrices; this is 

accomplished by step ⑤. After calculating B , we 

can respectively obtain )(ks


 and de-mixing W . For 

more details see For more details see (Hyvärinen, 

1999) [31]. 

 

 

2.2 MICA for Batch Data 
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Fig. 1 Unfolding of batch data 
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As an extension of ICA, multi-way ICA is usually 

suggested to deal with batch data. Fig.1 shows the 

basic idea behind MICA. The normal operating 

conditions (NOC) data from a historical database of 

batch runs are generally arranged into a three-way 

array X ( KJI  )  where I is the number of 

batches, J is the number of variables and the K is the 

number of sampling times in a given batch. A novel 

method of unfolding original data matrix proposed 

by Lee et al. (Lee et al., 2004a) [32] combines the 

advantages of batch-wise unfolding and variable-

wise unfolding. Therein, the batch data 

X ( KJI  ) is unfolded batch-wise for 

eliminating the batch trajectory and scaling the 

variables at each time, and then, the unfolded matrix 

X ( KJI  ) is rearranged into the form of a 

variable-wise matrix X ( JIK  ) for extracting the 

major dynamic relations along both time and batch 

horizons. As long as the batch data is unfolded, the 

statistical process monitoring with basic ICA could 

be carried out. 

 

 

3 Improved MICA Approach 
 

 

3.1 Selection of ICs 
As a new criterion, the system deviation is 

suggested to evaluate the reconstruction of ICA 

model by means of measured variables and 

estimated independent components based on 

leaving-one method. Assume that )(, ks mni 



 denotes 

the ICs vector at sample k in which the i-th 

independent component is omitted, i.e. the i-th row 

of the ICs vector equals to zero, and m and n are the 

number of samples and the ICs, respectively. In 

addition, )(kxi



 indicates the reconstructed 

measurements, defined by: 

nni Akx 



)( )(, ks mni 



                     (6) 

where nnA   is the mix matrix, which equals to the 

inverse of W . Thus, the system deviation (SD) is 

expressed as follows 

 )()()( kekekSD i

T

i   

))()(())()(( kxkxkxkx i
T

i



       (7) 

Similarly, m system deviations are seriatim 

calculated when a different independent component 

is omitted in order. Obviously, a system deviation 

represents the reconstruction of the omitted IC in the 

k-th sample, which implies that the larger the system 

deviation the greater the effect of the IC. 

Alternatively, the average system deviation at 

different samples could be regarded as a steady 

measurement indicator. From a computational 

perspective, the system deviation is recognized as a 

global criterion, which, combining with a graphical 

technique, can provide an intuitive and reliable basis 

for the division of the ICs. The selected ICs become 

dominant ones which represent the paramount 

process variation, while the remains form the 

excluded part. Meantime, the de-mixing matrix W  

is divided into the dominant section, abbreviated 

dW  which includes the selected rows corresponding 

the dominant ICs, and the excluded section, eW  

which consists of the remaining rows. Accordingly, 

the orthogonal matrix B  is cut into dB  and eB  

portions by column.  

 

 

3.2 Estimation of statistics 

In general, the statistical distance, 
2T ( D ), 

represents the deviation within the model of the 

monitored process relative to the center point, while 

the squared prediction error, SPE , indicates the 

deviation from the model. As previously mentioned, 

these two types of statistics are accordingly 

separated as 
2

dT , 
2

eT  and dSPE , eSPE ,  

respectively. To facilitate the analysis, we exclude 

eSPE  statistic which contains relatively less 

information, and thereby rename dSPE  as SPE . 
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Thus, 
2

dT  and 
2

eT  statistics at sample k are 

expressed by 

)()()(2 kskskT d
T

dd



                            (8) 

)()()(2 kskskT e
T

ee



                             (9) 

where )()( kxWks newdd 


 and )()( kxWks newee 


, 

respectively. Similarly, the statistic SPE  at sample 

k is characterized by 

 )()()( kEkEkSPE T
 

))()()())()((( kxkxkxkx newnew

T
newnew



   (10) 

where )()()( 11 kxWBQksBQkx newdddd







  

according to Eqs. (4) and (5). 

Before performing on-line monitoring, the 

control limits of 
2

dT , 
2

eT  and SPE  statistics should 

be specified, which demands the hypothesis that the 

normal operation data comply to certain distribution. 

However, it is acknowledged that ICs rarely follow 

Gaussian distribution. For adaptation, Box-Cox 

transformation (Box & Cox, 1964) [27] is suggested 

here. As a widespread tool in transforming non-

Gaussian data, Box-Cox transformation is typically 

characterized by 







 



y

y

yz

ln

1
)(






 

0

0









if

if
             (11) 

where y is the original variable, z  is the 

transformation, and   is a tuning parameter. To 

ensure positive original data, we substitute y  with 

0yy  , where 0y  is a threshold with yy 0 . An 

appropriate value of   that maximizes the 

normality of the transformed variable should be 

identified, for which some estimation methods are 

available, such as likelihood-based and Bayesian 

approaches (Carroll & Ruppert, 1988, Atkinson & 

Riani, 2000) [33,34]. Taking advantage of the 

simplicity in terms of principles and computations, 

the maximum likelihood estimation is employed 

here, in which the likelihood function with respect 

to arithmetic mean   and standard deviation   is 

expressed as 











N

i

i

N

i

z

NN
yeL

i

1

1

1

2

)(

2/
)(

)2(

1
),(

2 




  

(12) 

where N  is the total number of samples, iy  and iz  

are original data and corresponding transformation 

at sample k, respectively. Instead, we use 





N

i

iz
N 1

1
  and 




N

i

iz
N 1

2)(
1

  in Eq. 

(12), making the likelihood function depend only on 

  so that the estimation problem could be readily 

resolved by a maximization approach. Once the 

optimal estimation of the transformation parameter 

is obtained and the two types of statistics are 

transformed to normal or approximately normal 

distribution data, then the traditional technique, such 

as  3 (99%), can be used for determining 

the control limits of the transformed data. 

Subsequently, the control limits of the original data 

are computed according to the inverse of 

transformation function. 

 

 

3.3 Applications in process monitoring 

While a new batch is running, the 
2

dT , 
2

eT  and 

SPE  statistics can be calculated and any violations 

of their control limits could be utilized to indicate 

deviations beyond the normal operating conditions 

of the process. Additionally, contribution plots are 

traditionally suggested to identify the assignable 

causes, revealing the process variables that most 

influence the model or the residuals (Westerhuis et 

al., 2000) [35]. The contributions of )(kx for the 

statistics are given by 
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)(

)(

)(
)(

1

1

ks

ksBQ

ksBQ
kx d

dd

dd
d









 ,           (13) 

)(

)(

)(
)(

1

1

ks

ksBQ

ksBQ
kx e

ee

ee
e









 ,             (14) 

)()()( 1 kBWxQkxkxSPE

 .              (15) 

In concluding, two main phases are involved in 

the framework of the improved MICA for batch 

process monitoring, as presented in Fig.2. In the 

first phase, off-line MICA modeling including the 

unfolding NOC data, dividing data and determining 

control limits of the statistics is performed. While 

the second phase is concerned with on-line 

monitoring procedure composed of detecting the 

fault and identifying the causes. 

Start

Unfolding of NOC data

 Performing ICA

System deviation for selection of ICs

      Calculation of     ,      and
2

dT 2

eT SPE

On-line data from a new batch

   Calculation of new     ,      and2

dT 2

eT SPE

Any statistics out 

of control limits

Whether or not 

the end of batch Contribution plot for 

identifying fault causes

Adopting countermeasuresEnd

Yes

No

Yes

No

 

Fig. 2 Schematic of improved MICA monitoring 

 

 

4 Implementation 
The efficiency of the proposed method will be 

demonstrated through an application of a simulation 

example: fed-batch penicillin fermentation. 

 

 

4.1 Fed-batch fermentation 
The modularized simulator for penicillin production, 

PenSim v2.0, which is based upon a series of 

detailed mechanistic models, is used as a test-bed 

for carrying out the study (Birol et al., 2002a) [36], 

as described in Fig.3. Penicillin fermentation is the 

synthesis of secondary metabolites operated in the 

mechanically agitated bioreactor with appropriate 

levels of nutrients at suitable conditions such as 

aeration rate, concentrations of dissolved gases, pH 

and temperature etc. Slight changes in operating 

conditions during critical periods may significantly 

impact on growth and differentiation of 

microorganisms, as well as final product quality and 

throughput. In order to maintain the circumstances 

required by penicillin fermentation, acid or base 

additions are allowed to control pH at a certain 

value, while cooling or heating water are used to 

make the cultivation temperature stay constant. 

(Bajpai & Reuss, 1980; Birol et al., 2002b) [37,38]. 
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Fig. 3 Flow sheet of fed-batch fermentation process 

 

 

4.2 Experiment and analysis 

Table 1 presents 10 monitoring variables associated 

with the process. For the purpose of developing an 

off-line MICA model, the simulator operated 
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repeatedly under normal operating conditions with 

the duration of each batch specified as 400 h. 

Therein, a NOC dataset of 60 batches was collected 

under the sampling interval of 0.5 h. 

 
Table 1 Fermentation process variables used for monitoring 

 

 
No.     Variables 

 

1   Aeration rate (l/h) 

2   Agitator power (W) 

3   Glucose feed temperature (K) 

4   Dissolved oxygen concentration (% saturation) 

5   Culture volume (l) 

6   Carbon dioxide concentration (mmol/l) 

7   pH 

8   Temperature (K) 

9   Generated heat (kcal) 

10  Cooling water flow rate (l/h) 
 

 

Initially, the dataset was unfolded into two-way 

matrix to formulate conventional ICA. The 

percentage of system deviation of each IC omitted 

in reconstructing the measurements was calculated, 

as shown in Fig.4. With relatively small system 

deviations, IC 1, 3 and 8 were regarded as the 

residual part. While the remainders turned out to be 

the dominant part able to characterizes the trait of 

the penicillin fermentation process. 
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Fig. 4 Percentage of system deviation for each IC 

 

Accordingly,
2

dT ,
2

eT and SPE statistics were 

computed and transformed into normal distribution 

data by means of Box-Cox transformations, in 

which, the corresponding transformation parameters 

were specified as -1.4751, -1.0819 and -1.9755, 

respectively. Fig.5 shows the comparisons between 

the original statistics and their transformations in 

terms of normality check. The transformations 

of
2

dT and SPE statistics are more strictly subject to 

Gaussian distribution than
2

eT that could meet the 

requirements of practical statistical process control. 

Therefore, control limits of the two types of 

statistics were determined separately. 
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Fig. 5 Comparison on normality check of three statistics and 

their transformations 

 

To exemplify the on-line monitoring, we 

disturbed the agitator power with a -0.1 slope 

change introduced at time 300 h and terminated at 

time 320 h over a new operating batch. Fig.6 shows 

the profiles of the improved MICA monitoring, in 

which the upper control limits were presented with 

red dashed lines (99%). It reveals that all of 
2

dT , 
2

eT  

and SPE  statistics exceeded the control limits 

during sampling time 601 to 640. Then, 

contributions of 10 monitoring variables for 
2

dT , 
2

eT  

and SPE  statistics were respectively calculated 

according to Eqs.(13)-(15) at sample 601, and the 
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contribution charts are depicted in Fig.7. The second 

variable, agitator power, conducted much higher 

values than those of other variables which implied 

the actual fault source consistent with the reality. 
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Fig. 6 MICA based on-line monitoring charts 
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Fig. 7 Variables contributing to statistics at sample 601 

 

 

5 Conclusion 
To effectively monitoring batch or semi-batch 

processes, an improved MICA approach is 

introduced in this paper. The contribution is twofold. 

First, the system deviation is proposed to evaluate 

the reconstructed observations with different ICs, 

which could provide a new global criterion of 

selecting dominant components and simplifying 

analysis. Second, Box-Cox transformation is 

employed to deal with monitoring statistics and 

determining control limits, demanding a little 

number of sampling data as well as enjoying 

simplicity. As a result, a monitoring scheme behind 

this novel idea is presented, along with a monitoring 

experiment consisting in a fed-batch penicillin 

benchmark problem, which demonstrates the 

effectiveness and potential of the contribution.  
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