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Abstract: The present paper is devoted to the concept of the so called biological control of the chemostat,
recently proposed by A. Rappaport and J. Harmand (2008). This concept is based on the competitive
exclusion principle for a dynamic model describing competition between species with general (nonmonotone)
response functions and distinct removal rates. Here we present a generalization of this concept, aimed to
extend the applicability of the biological control. This is demonstrated numerically on particular examples.
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1 Introduction

The coexistence of species in competition on a sin-
gle resource is a subject of investigation by specia-
lists in different fields – molecular biology, microbial
ecology, biotechnology, as well as biomathematics,
see e. g. [20], [24], [25] and the references therein.
The interest in this topic is due to the observation
that if two or more species in some environment
compete for a single resource, only one species even-
tually survives – this is the species that possesses
the best affinity to the substrate. This observa-
tion has been conceptualized by Gause [10] and for-
malized by Hardin [13] as the Competitive Exclu-
sion Principle (CEP). CEP was experimentally con-
firmed in laboratory conditions (in a chemostat) by
Hansen and Hubbell [12]. Recently there is a large
number of papers devoted to modeling and investi-
gating competition problems in the chemostat. The
objective is to establish conditions for global stabil-
ity of the dynamics. Some recent results in this
topic are presented below.

A. Rapaport and J. Harmand proposed in [21] a
new way of controlling an unstable biosystem model
through adding new species in the chemostat with
particular characteristics to globally stabilize the
system towards the desired outcome. In section 2
we propose more general assumptions under which
the concept of the biological control remains valid.
Numerical examples demonstrating the advantages

of our result are reported in section 3.
The competition dynamics in a chemostat is de-

scribed by the following model

ṡ = (s0 − s)D −
n∑

i=1

µi(s)xi

ẋi = (µi(s)−Di)xi, i = 1, 2, . . . , n; (1)
s(0) ≥ 0, xi(0) > 0,

where s0 and s are the input and the substrate con-
centrations respectively, D is the dilution rate of
the chemostat, xi are the concentrations of the mi-
croorganisms with response (growth rate) functions
µi(s) and removal rates Di, i = 1, 2, . . . , n.

Let the following assumptions be fulfilled.
Assumption A1. For i = 1, 2, . . . , n, the func-

tions µi(s) are nonnegative with µi(0) = 0, and
Lipschitz continuous.

Assumption A2. There exist unique, positive
real numbers αi and βi with αi < βi (βi possibly
equal to +∞) such that

µi(s)
{

< Di, if s 6∈ [αi, βi]
> Di if s ∈ (αi, βi)

, i = 1, 2, . . . , n.

The numbers αi and βi are the solutions of
µi(s) = Di, called also break-even concentrations
[24]. If µi(s) is a monotone increasing function (like
the Monod law), then we set βi = +∞.
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The equilibrium solutions (s, x1, x2, . . . , xn) of
the model are of the form

E0 = (s0, 0, 0, . . . , 0)

Ei =
(

αi, 0, . . . , 0,
D(s0 − αi)

Di
, 0, . . . , 0

)

Fi =
(

βi, 0, . . . , 0,
D(s0 − βi)

Di
, 0, . . . , 0

)
,

i = 1, 2, . . . , n;

all components of Ei (Fi) are equal to zero except
for the first and the (i + 1)-st, which are s = αi

(s = βi) and xi =
D(s0 − αi)

Di

(
xi =

D(s0 − βi)
Di

)
.

The equilibrium Ei (Fi) exists for all i = 1, 2, . . . , n,
such that αi < s0 (βi < s0). If µi(s) is monotone
increasing then the equilibrium Fi does not exist.
Moreover, the equilibrium Fi is not stable if it ex-
ists (see [24]).

There are lot of papers devoted to stability ana-
lysis of the model (1). The main objective is to
give sufficient conditions for global asymptotic sta-
bility of the equilibrium points. A survey of results
is presented in [24], see also [3], [15], [17], [27], [28]
and the references therein. It is shown that under
certain conditions every solution converges to one
of the above equilibrium points. In particular, since
at most one population has a nonzero component
at equilibrium, no more than one population can
survive. If s0 < α1, then E0 is the global attractor.

The most general result (to our knowledge) in
the case of different removal rates Di 6= Dj , i 6= j
and D 6= Di is given by B. Li in [17]. Different
removal rates typically appear in chemostats with
output membranes that remove the biomass selec-
tively, depending on the size of the microorganisms.
The usual assumption is Di < D. When however
the mortality of a species is predominant, one may
consider Di > D.

Theorem 1 (cf. [17]). Assume that

α1 < α2 ≤ α3 ≤ · · · ≤ αn.

If α1 < s0 < β1 and

Ds0

min(D,D1, . . . , Dn)
− Ds0

max(D, D1, . . . , Dn)
<α2−α1

are fulfilled then all solutions of (1) satisfy
limt→+∞(s(t), x1(t), . . . , xn(t)) = E1. ¤

Biological control of the chemostat. Based
on CEP, the original concept of the so called bio-
logical control of the chemostat has been recently

developed by A. Rapaport and J. Harmand in [21].
More precisely, consider (1) for n = 1:

ṡ = (s0 − s)D − µ1(s)x1

ẋ1 = (µ1(s)−D1)x1 (2)
s(0) ≥ 0, x1(0) > 0.

Assume that the response function µ1(s) is not
monotone (such as the Haldane law). Let α1 and β1

be defined as in Assumption A2 with β1 < s0. Then
it is well known that the dynamics (2) possesses
two locally stable equilibrium points, the wash-out
steady state E0 = (s0, 0) and the positive steady

state E1 =
(

α1,
D(s0 − α1)

D1

)
(see e. g. [3], [24],

[28]): from some initial conditions the dilution rate
can lead to wash-out (extinction) of the biomass
and breaking-down of the process.

Different control strategies are known in the lit-
erature, cf. [1], [4]–[9], [16], [18], [19], [22], [23], [26],
aimed to globally stabilize a given system to a de-
sired state. The new approach in [21] is the so called
biological control; it is based on the idea of intro-
ducing additional species x2 in the chemostat to
globally asymptotically stabilize (2) to the equilib-
rium E1. Below we present the main result of [21]
(see also [14]).

Consider the model (1) with two populations

ṡ = (s0 − s)D − µ1(s)x1 − µ2(s)x2

ẋ1 = (µ1(s)−D1)x1 (3)
ẋ2 = (µ2(s)−D2)x2

s(0) ≥ 0, x1(0) > 0, x2(0) > 0

and nonmonotone response functions µ1(s) and
µ2(s). With d ∈ {D, D1, D2} define the sets

(αi(d), βi(d)) = {s ≥ 0 : µi(s) > d};
in particular, denote αi = αi(Di), βi = βi(Di),
i = 1, 2.

Assumption A3. The sets (αi, βi),
(αi(D), βi(D)), i = 1, 2, are intervals, where βi

and/or βi(D) is possibly equal to +∞.
Denote for convenience

Dmax = max{D, D1, D2},
Dmin = min{D,D1, D2},

smin
0 =

s0D

Dmax
, smax

0 =
s0D

Dmin
.

(4)

Let Di = max(D, Di), i = 1, 2.
Assumption A4. Let the following inequalities

be fulfilled: β1 ≤ smin
0 , α1(D1) < α2(D2) < β1(D1)

and s0 < β2(D2).
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Define the point

s̄ = min
{
s ∈ (

α2(D2), β1(D1)
)

:
µ1(s)−D1 = µ2(s)−D2

}
.

Assumption A5. Let the following inequality
be fulfilled:

µ1(s̄)−D1 = µ2(s̄)−D2 >
s0 − smin

0

smin
0 − s̄

·D.

Theorem 2 (cf. [21]). Let the assumptions A1
(with n = 2) to A5 be fulfilled. If

smax
0 − smin

0 < α2 − α1,

then any solution of (3) converges asymptotically

towards E∗ = (α1, x
∗
1, 0) with x∗1 =

D(s0 − α1)
D1

. ¤

In the next section 2 we propose a generalization
of Theorem 2.

2 Generalization of the Biological
Control Concept

Consider the model (3) including two populations
with concentrations x1 and x2, which compete for a
single substrate s. For better readability we rewrite
Assumption A1 for the case n = 2 as Assumption
B1:

Assumption B1. The functions µi(s), i = 1, 2,
are nonnegative with µi(0) = 0, and Lipschitz con-
tinuous.

Assumption B2. There exist unique positive
real numbers αi, βi, i = 1, 2, with

α1 < α2 < β1 < s0 < β2

(β2 possibly equal to +∞) such that

µi(s)
{

< Di, if s 6∈ [αi, βi]
> Di if s ∈ (αi, βi)

i = 1, 2.

Define the function

H(s) = (s0 − s)D −min{µ1(s), µ2(s)} · (smin
0 − s).

(5)

Assumption B3. There exists points s1, s2

with s1 < s2 and [s1, s2] ⊂ (α2, β1] such that
H(s) < 0 for all s ∈ (s1, s2).

In the proof of our main result we shall use the
following Lemmata.

Barbălat’s Lemma (cf. [11]). If f : (0,∞) →
R is Riemann integrable and uniformly continuous,
then lim

t→∞ f(t) = 0. ¤

Lemma 1 (cf. [27]). Let the Assumptions B1
and B2 be satisfied. Then s(t) < s0 for all suffi-
ciently large t > 0. ¤

Lemma 2 (cf. [28]). Let the Assumption B1 be
satisfied. Then for any ε > 0, the solutions s(t),
x1(t), x2(t) of (3) satisfy smin

0 − ε < s(t) + x1(t) +
x2(t) < smax

0 + ε for all sufficiently large t > 0. ¤

The next Theorem 3 presents the main result of
the paper.

Theorem 3. Let Assumptions B1, B2 and B3
be fulfilled. Then any solution of (3) converges
asymptotically towards E∗ = (α1, x

∗
1, 0) , with x∗1 =

D(s0 − α1)
D1

.

Proof. Let (s(·), x1(·), x2(·)) be a trajec-
tory of the system (3) starting from the point
(s(0), x1(0), x2(0)) ≥ 0. Then Lemma 1 and
Lemma 2 imply that there exists a sufficiently large
time T1 > 0, so that for each t ≥ T1 the inequalities
s(t) < s0 and smin

0 −s(t)−∑2
i=1 xi(t) < ε hold true.

Assume that s(t) ≥ α2 for all t ≥ T1. The
derivative ẋ2(t) of x2(t) is uniformly continuous
(because µ2(·) and x2(·) are bounded and Lips-
chitz continuous) and Riemann integrable. Clearly,
ẋ2(·) ≥ 0 whenever s ∈ [α2, s0), and so x2(t) ≥
x2(T1) > 0 for t ≥ T1. Applying Barbălat’s
Lemma, we obtain limt→∞ µ2(s(t)) = D2. Ac-
cording to Assumption B2, α2 is the unique point
from the interval [α2, s0) such that µ2(s) = D2;
therefore limt→∞ s(t) = α2. This means that for
each positive integer n there exists Tn > 0 such
that s(t) ∈ [α2, α2 + 1/n] for each t ≥ Tn. Since
µ1(α2) − D1 = η > 0 there exists a positive in-
teger n such that µ1(s) − D1 ≥ η/2 for each
s ∈ [α2, α2 + 1/n]. Therefore, for each t ≥ Tn we
have

d

dt
x1(t) ≥ η

2
x1(t),

and hence

x1(t) ≥ x1(Tn) exp
(η

2
t
)
→ +∞ as t → +∞.

But this is impossible because x1(·) is bounded.
Hence, there exists time T2 > T1 such that s(T2) <
α2.

Consider the function H(s) from (5). Let us
fix a sufficiently small ε > 0 and choose a point
ŝ ∈ (s1, s2), such that

(s0 − ŝ)D < (smin
0 − ŝ− ε)min{µ1(ŝ), µ2(ŝ)}. (6)
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Assume that there exists t̂ ≥ T2 with s(t̂) = ŝ; set
x̂1 = x1(t̂) and x̂2 = x2(t̂). Then using Lemma 2
and (6) we obtain

ṡ(t̂) = D(s0 − s(t̂))− µ1(s(t̂))x1(t̂)− µ2(s(t̂))x2(t̂)
= D(smin

0 − ŝ− x̂1 − x̂2) + D(s0 − smin
0 )

− (µ1(ŝ)−D)x̂1 − (µ2(ŝ)−D)x̂2

< Dε+D(s0 − smin
0 )−(x̂1 + x̂2)

×
(

x̂1

x̂1+x̂2
(µ1(ŝ)−D)+

x̂2

x̂1+x̂2
(µ2(ŝ)−D)

)

≤ Dε + D(s0 − smin
0 )

− (x̂1 + x̂2)min{(µ1(ŝ)−D), (µ2(ŝ)−D)}
< (s0−ŝ)D−(smin

0 −ŝ−ε) min{µ1(ŝ), µ2(ŝ)}< 0.

The last inequality implies that s(t) ≤ ŝ for all
t ≥ T2.

Further we shall show that limt→∞ x2(t) = 0.
Since ẋ2(t) is uniformly continuous and Riemann
integrable, Barbălat’s Lemma implies

lim
t→∞[x2(t)(µ2(s(t))−D2)] = 0,

which is fulfilled if limt→∞ x2(t) = 0 or
limt→∞(µ2(s(t))−D2) = 0. According to Assump-
tion B2, the equality µ2(s) − D2 = 0 is satisfied
when s = α2; this means limt→∞ s(t) = α2. Then
for any positive integer m there exists time Tm such
that s(t) ∈ (α2 − 1/m,α2 + 1/m) for each t ≥ Tm.
But we have µ1(α2) − D1 = η1 > 0, thus there
exists m > 0 such that µ1(s) − D1 ≥ η1/2 for
all s ∈ (α2 − 1/m,α2 + 1/m). This means that
for all t ≥ Tm, ẋ1(t) ≥ (η1/2)x1(t) and there-
fore limt→∞ x1(t) = +∞, a contradiction with the
boundedness of x1(t). Therefore

lim
t→∞x2(t) = 0.

Then the trajectory (s(·), x1(·), x2(·)) of (3) star-
ting from the point (s(0), x1(0), x2(0)) approaches
the set

L∞ = {(s, x1, x2) : s ≥ 0, x1 ≥ 0, x2 = 0}.

The dynamics of (3) on the set L∞ is described by
the system

ṡ = (s0 − s)D − µ1(s)x1, s(0) ≥ 0,

ẋ1 = (µ1(s)−D1)xi, x1(0) > 0, (7)
ẋ2 = 0, x2(0) = 0.

Following [15], we define the function

V (s, x1, x2) =
∫ s

α1

Q(ξ) dξ +
∫ x1

x∗1

ζ − x∗1
ζ

dζ,

where

Q(s) :=
(µ1(s)−D1)(s0 − α1)

D1(s0 − s)
=

(µ1(s)−D1)x∗1
D(s0 − s)

.

The Lie derivative of V with respect to the trajec-
tories of the system (7) is

V̇ (s, x1, x2) = Q(s)[D(s0 − s)− µ1(s)x1]

+
x1 − x∗1

x1
(µ1(s)−D1)x1

= [Q(s)D(s0 − s)− (µ1(s)−D1)x∗1]

+ (µ1(s)−D1)x1

[
1− Q(s)µ1(s)

µ1(s)−D1

]
.

The first term is zero according to the choice of
Q(s). Since

Q(s)µ1(s)
µ1(s)−D1

=
µ1(s)(s0 − α1)

D1(s0 − s)

{ ≤ 1, if 0 < s ≤ α1

> 1, if α1 < s < β1,

we obtain that the second term is nonpositive and
is equal to zero when µ1(s) = D1 or x1 = 0. There-
fore, V̇ (s, x1, x2) ≤ 0 for all s ∈ (0, ŝ]. According
to the LaSalle invariance principle, the trajectory
(s(t), x1(t), x2(t)), t ≥ T2, approaches the largest
invariant set L∗∞ contained in the set

L̂∞ = {(s, x1, x2) : V̇ (s, x1, x2) = 0,

s ∈ [0, ŝ], x1 ≥ 0, x2 = 0}
= {(s, x1, x2) : (µ1(s)−D1)x1 = 0,

x2 = 0, s ∈ [0, ŝ], x1 ≥ 0}.
If x1 = 0, then (because x2 = 0) we have ṡ(t) ≥
D(s0 − ŝ) > 0, and so lim

t→∞ s(t) = +∞, which is
impossible. Hence x1 > 0 and µ1(s) = D1. Fur-
ther, since s(t) ≤ ŝ < s2 ≤ β1 for sufficiently large
t > 0, it follows that µ1(s) − D1 cannot vanish at
s = β1. This implies L∗∞ = {(α1, x

∗
1, 0)} = {E∗}.

Using a refinement of the LaSalle invariance prin-
ciple (see Theorem 6 in [2]) we obtain that the tra-
jectory (s(t), x1(t), x2(t)), t ≥ T2, tends to the set
L∗∞, which completes the proof. ¤

3 Numerical Examples

We demonstrate the result from Theorem 3 on
three numerical examples including nonmonotone
response functions of the form

µ1(s) =
m1s

a1 + s + γ1s2
,

µ2(s) =
m2s

a2 + s + γ2s2
.

(8)
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It is worth to mention that the numerical ex-
amples are not based on experimental results; they
are presented here for illustration of the theoretical
studies.

Example 1. Consider the following coefficient
values in the expressions of µ1(s) and µ2(s):

m1 = 0.9, a1 = 0.05, γ1 = 1.5,

m2 = 1, a2 = 0.05, γ2 = 0.001;

let

s0 = 1, D = 0.5, D1 = 0.41, D2 = 0.55.

Simple computations deliver

α1 = 0.0443, α2 = 0.0611,

β1 = 0.752, β2 = 818; s0 < β2,

hence Assumption B2 is satisfied. The response
functions µ1(s) and µ2(s) are visualized on Figure
1. Figure 2 visualizes the graph of the function
H(s) = (s0 − s)D − min{µ1(s), µ2(s)}(smin

0 − s);
obviously, there exist the points s1 = 0.111 and
s2 = 0.257, such that H(s) < 0 for all s ∈ (s1, s2)
and (s1, s2) ⊂ (α2, β1) = (0.0611, 0.752) (the solid
boxes on the horizontal axis mark the points α2

and β1); therefore Assumption B3 is also satis-
fied. According to Theorem 3, the equilibrium point
E∗ = (α1, x

∗
1, 0) = (0.0443, 1.165, 0) is globally

asymptotically stable.

Figure 1. Example 1: The graphs of µ1(s) and µ2(s)

To demonstrate the concept of the biological
control, we first consider the model (3) starting
from a point with x2(0) = 0; obviously, x2(t) = 0
for all t ≥ 0. As mentioned above, the model
(2) possesses two locally stable equilibrium points,
the wash-out steady state E0 and E1. Consider
the following initial point (s(0), x1(0), x2(0)) =
(0.5, 0.1, 0).

Figure 2. Example 1: The graph of H(s); the
solid boxes on the horizontal axis correspond to the
points α2 and β1

Figure 3 presents the solutions x1(t) and s(t) of
(3) for this initial point; in this case x1(t) tends to
zero, and s(t) approaches s0, marked by the hori-
zontal dash line on the second plot.

Figure 3. Example 1: The solution x1(t) and s(t)
with x2(0) = 0
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In the same example we take now a small pos-
itive value for x2(0), i. e. (s(0), x1(0), x2(0)) =
(0.5, 0.1, 0.01). The solutions x1(t), x2(t) and s(t)
are presented in the next Figure 4. We see that
x1(t) tends to the positive equilibrium component
x∗1 = 1.165, s(t) approaches α1, and x2(t) tends to
zero.

To compare our result with that one of Theorem
2, we note that in this example we have

Dmax = D2, smax
0 = 1.219, smin

0 = 0.909.

Since smax
0 − smin

0 − (α2 − α1) ≈ 0.294 > 0, the
assumption in Theorem 2 is not fulfilled.

Moreover, Assumption A5 is also not satisfied
due to the following values:

s̄ = 0.0358,

µ1(s̄)− D̄1 − s0 − smin
0

smin
0 − s̄

D = −0.185 < 0.

Assumption A4 is also not fulfilled because

α1(D̄1) = 0.0723, α2(D̄2) = 0.0611,

β1(D̄1) = 0.461, β2(D̄2) = 819;

obviously, β1 < smin
0 , but α1(D̄1) > α2(D̄2).

Example 2. Consider the following coefficient
values for the response functions (8):

m1 = 0.5, a1 = 0.05, γ1 = 0.8,

m2 = 1, a2 = 0.6, γ2 = 0.5;

let s0 = 1, D = 0.32, D1 = 0.3, D2 = 0.26. Here,
Dmax = D; we have further

α1 = 0.0833, α2 = 0.219,

β1 = 0.75, β2 = 5.473; s0 < β2;

hence Assumption B2 is satisfied. The response
functions are visualized on Figure 5. Figure 6 shows
the graph of the function H(s) from (5); there exist
the points s1 = 0.304 and s2 = 0.599, such that
H(s) < 0 for all s ∈ (s1, s2) and (s1, s2) ⊂ (α2, β1)
(the latter two points are denoted by solid boxes);
therefore Assumption B3 is also satisfied. Accord-
ing to Theorem 3, the equilibrium point E∗ is glo-
bally asymptotically stable.

Figure 4. Example 1: The solutions x1(t), x2(t)
and s(t) with (s(0), x1(0), x2(0)) > 0. The horizon-
tal dash-lines pass through x∗1 (in the first plot) and
α1 (in the third plot)
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Figure 5. Example 2: The graphs of µ1(s) and µ2(s)

Figure 6. Example 2: The graph of H(s); the
solid boxes on the horizontal axis correspond to the
points α2 and β1

Figure 7 presents the solutions x1(t), x2(t)
and s(t) of the model with initial point
(s(0), x1(0), x2(0)) = (0.1, 0.005, 0.0001). The hor-
izontal dash line in the first plot passes through the
equilibrium point x∗1 = 0.978, in the third plot –
through the point α1 = 0.0833.

In this example we have smax
0 = 1.231, smin

0 = 1,
and smax

0 − smin
0 − (α2−α1) ≈ 0.0948 > 0, thus the

assumption in Theorem 2 is not fulfilled. Assump-
tion A4 is however satisfied; we have: β1 < smin

0 ;
α1(D̄1) = 0.104, α2(D̄2) = 0.304, β1(D̄1) = 0.599,
β2(D̄2) = 3.95. Assumption A5 is also satisfied,
because

s̄ = 0.359,

µ1(s̄)− D̄1 − s0 − smin
0

smin
0 − s̄

D = 0.03056 > 0.

Figure 7. Example 2: The solutions x1(t), x2(t)
and s(t)
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Example 3. Consider the following coefficient
values in the expressions of the response functions
µ1(s) and µ2(s) from (8)

m1 = 1, a1 = 1, γ1 = 0.18,

m2 = 0.53, a2 = 0.2, γ2 = 0.026,

and let s0 = 11, D = 0.33, D1 = 0.35, D2 = 0.4.
Simple computations produce the values α1 = 0.57,
α2 = 0.65, β1 = 9.75, β2 = 11.85; obviously,
s0 < β2 holds, thus Assumption B2 is satisfied.

The response functions are visualized in Figure
8. The graph of the function H(s) from (5) is shown
in Figure 9, together with the points s1 = 0.755 and
s2 = 4.13 (marked by solid circles on the horizontal
axis) meaning that Assumption B3 is also satisfied.
According to Theorem 3, the equilibrium point E∗

is globally asymptotically stable.

Figure 8. Example 3: The graphs of µ1(s) and µ2(s)

Figure 9. Example 3: The graph of H(s); the
solid boxes on the horizontal axis correspond to the
points α2 and β1

Figure 10 presents the solutions x1(t), x2(t)
and s(t) of the model with different initial points
(s(0), x1(0), x2(0)) > 0. The horizontal dash line
on the first plot passes through x∗1 = 9.83, on the
third plot – through α1 = 0.57.

Figure 10. Example 3: The solutions x1(t), x2(t)
and s(t)
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In this example we have smax
0 = 11, smin

0 =
9.075. Since smax

0 − smin
0 − (α2 − α1) ≈ 1.846 > 0,

the assumption in Theorem 2 is not fulfilled. As-
sumption A5 is also not satisfied, because

s̄ = 0.0411,

µ1(s̄)− D̄1 − s0 − smin
0

smin
0 − s̄

D = −0.382 < 0.

To check Assumption A4 we note that α1 = α1(D̄1),
α2 = α2(D̄2), β1 = β1(D̄1), β2 = β2(D̄2); the in-
equality β1 < smin

0 is however not fulfilled because
β1 − smin

0 = 0.672 > 0.

4 Conclusion

The present paper extends the applicability of
the model-based biological control of the chemostat
model (3), recently developed by A. Rapaport and
J. Harmand in [21] (and formulated here in The-
orem 2). More precisely, we require the following
ordering α1 < α2 < β1 < s0 < β2 of the break-
even concentrations, which seems to be more nat-
ural than the inequalities in Assumption A4. The
restrictive assumption smax

0 − smin
0 < α2 − α1 from

Li’s Theorem 1 is also avoided in our new Theorem
3. Illustrative numerical examples show the appli-
cability of our main result.
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