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Abstract: In recent years, we have focused on the construction of ordinary differential

equations (ODEs) for certain basic operators’ expectation values whose totality suffice for

describing the system’s dynamics. This has been done for Quantum Dynamical Systems

and the systems whose motion is governed by Liouville Equation. However, the starting

point has been the construction of a linear set of ODEs for any given explicit ODE set even

they are nonlinear in the description (right hand side) functions. The key idea was to use

a complete basis set of unknown functions, each of which is functionally related at most

to the unknown solution set of original ODEs. After some intermediate steps we could

have been able to construct an infinite, first order, linear, homegeneous ODE set with a

constant infinite square matrix coefficient. This infinite set of ODEs can be, in principal,

analytically solved and the solution is unique as long as the initial conditions are given.

The infinity could be handled by using appropriate truncation approximants in practical

applications.

These equations define an evolution starting from a system state characterized by the

initial vector which is a power vector whose block elements are the Kronecker powers of

the system vector (which is composed of unknowns or the operators like momenta and

positions in quantum mechanics) initial values. If the initial vector is not a power vector

then there is a probabilistic nature in the initial vector because any vector can be expressed

by the expectation values of the system vector’s Kronecker powers with respect to a unique
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weight function (see the moment problem). In these cases the probability distribution also

evolves. Hence we have called the solution method to determine the motion defined by

these equations “Probabilistic Evolution Approach (PEA)”. Since the classical systems

obey the causality, the probabilistic weight function in the initial vector and therefore in

the solution for any time instance has to be exteremely sharp, zero-width-infinite-lenght,

that is Dirac delta function.

This approach for ODEs has been quite appropriate to solve the equations of motion

for classical dynamical systems. The quantum dynamical equivalent for the equations of

motion for a given classical system is exactly same as the classical PEA in the infinite

coefficient matrix if the mathmetical fluctuations are ignored. The only difference in the

initial value vector. It is not a power vector. It is the expectation values of the Kronecker

powers of the system vector under the probability density (the complex modulus square of

the wave function). This brings the fluctuations (the differences between the expectation

value of the system vector Kronecker power and the same power of the expectation value of

the system vector) on the stage. Beyond that the fluctuations are not only on independent

variables or their functions but operators bringing the noncommutative operator algeba to

the method. These are just for initial values and the fluctuations for the infinite coefficient

may change the face of the issue since quantum mechanics is governed by fluctuations as

the considered system particle dimensions tends to diminish.

In this talk we use the one dimensional quantum systems for rather easy explanations

even though the multidimensionality does not bring any noticeable complication except

the increase in the number of routine manipulations. A rather general one dimensional

quantum system can be defined via the following Hamilton operator.

Ĥ ≡
1

2µ
p̂ 2 + V (q̂ ) (1)

where µ stands for the mass parameter while the definitions of the momentum (p̂ ) and the

position operator (q̂ ) are given below

p̂f(x) ≡ −h̄f ′(x), q̂f(x) ≡ xf(x) (2)

where h̄ stands for the reduced Planck constant and x is called “position variable” which

can take values from the real number set or its certain subdomain. The function f(x) is
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assumed to be lying in the space where the wave function resides. It should be at least four

times differentiable even though its analyticity preferable since otherwise the convergence

issues may arise. The potential function is also preferably analytic even though second

order differentiability suffices.

The starting formula to construct the fluctuation free approximation can be given as

follows by skipping the derivation details in this extended abstract

{
Ĥ,

{
Ĥ, f (q̂ )

}}
=−

1

µ
V ′ (q̂ ) f ′ (q̂ )−

2

µ
V (q̂ ) f ′′ (q̂ ) +

h̄2

4µ2
f (4) (q̂ )

+
1

µ

[
Ĥf ′′ (q̂ ) + f ′′ (q̂ ) Ĥ

]
(3)

where the left hand side is autonomous as long as the Hamilton operator and the function

f have no explicit time dependence. For this case we can write (3) as follows

d2 〈f (q̂ )〉 (t)

dt2
=−

1

µ
〈V ′ (q̂ ) f ′ (q̂ )〉 (t)−

2

µ
〈V (q̂ ) f ′′ (q̂ )〉 (t) +

h̄2

4µ2

〈
f (4) (q̂ )

〉
(t)

2

µ
Hexp 〈f

′′ (q̂ )〉 (t) +
1

µ

〈[
Ĥff

′′ (q̂ ) + f ′′ (q̂ ) Ĥf

]〉
(t) (4)

where Ĥf ≡ Ĥ −HexpÎ (where Î symbolizes the unit operator) defines the fluctuation in

the Hamiltonian whose autonomous expectation value is denoted by the constant Hexp.

We call the cases where fluctuation containing terms are ignored, “Fluctuation free

equation”. By taking one of the elements of a basis set it is possible to construct sufficient

number of equations to investigate the expectation value evolutions for the quantum system

under consideration. The talk will focus on certain details of this issues.
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