Asynchronous Systems Theory

Serban E. Vlad

Str. Zimbru, Nr. 3, Bl. PB 68, Ap. 11, 410430, Oradea, Romania
E-mail address: serban_e_vlad@yahoo.com
URL: http://www.geocities.com/serban_e_vlad
Dedicated to the memory of Grigore Moisil
1991 Mathematics Subject Classification. 93C62, 94C05, 94C10
Contents

Chapter 1. Introduction vii
 1. Historical origins of the theory of asynchronous systems vii
 2. Moisil legacy viii
 3. About the book xi

Part 1. Asynchronous systems theory 1

Chapter 2. Calculus in \mathbb{B}^n 3
 1. The binary Boole algebra \mathbb{B} 3
 2. $\mathbb{R} \rightarrow \mathbb{B}$ functions 4
 3. Monotonous functions 5
 4. Consistent sequences of real numbers. Differentiability 5
 5. Left limit and right limit 7
 6. Pulses 9
 7. Continuity 9
 8. Initial value and final value. Signals and co-signals 10
 10. Lemmas on differentiable functions 14
 11. Conventions about the graphs of the $\mathbb{R} \rightarrow \mathbb{B}$ functions 18
 12. $\mathbb{R} \rightarrow \mathbb{B}^n$ functions 18
 13. Cartesian products of functions and spaces of functions 20

Chapter 3. Pseudo-systems 21
 1. Choosing the right continuity of the signals 21
 2. The definition of the pseudo-systems 21
 3. Examples 22
 4. Initial states and final states 23
 5. Initial time and final time 25
 6. Initial state function and final state function 28

Chapter 4. Systems 29
 1. Definition of the systems 29
 2. Initial states and final states 30
 3. Initial time and final time 31
 4. Initial state function and set of initial states 32
 5. Subsystems 32
 6. Dual systems 33
 7. Inverse systems 36
 8. Cartesian product 37
 9. Parallel connection 40
10. Serial connection
11. The Complement, an open problem
12. Intersection
13. Union
14. Morphisms

Chapter 5. General properties of the systems
1. Constant initial state function. Initialization
2. Autonomy
3. Finite input space
4. Finite and deterministic systems
5. Ideal combinational systems
6. Self-duality
7. Symmetry
8. Time invariance
9. Non-anticipation, the first definition
10. Choosing 0 as initial time instant
11. Non-anticipation, the second definition
12. Other definitions of non-anticipation. Non-anticipation*
13. Injectivity, the first definition
14. Injectivity, the second definition
15. Huffman systems: open problem

Chapter 6. Accesses, transitions and transfers
1. Access
2. Access time
3. Consecutive accesses
4. Transition
5. Set of support intervals
6. Transfer
7. The transfers of the non-anticipatory systems
8. Synchronicity

Chapter 7. Surjectivity, controllability and accessibility
1. Surjectivity, remark
2. Surjectivity, the first definition
3. Possible and necessary surjectivity
4. Controllability and accessibility, points of view
5. Accessibility in the sense of having access
6. The access of the non-anticipatory systems from a final state
7. Accessibility in the sense of the consecutive accesses

Chapter 8. Stability
1. Absolute stability
2. Relative stability
3. Stability relative to a function. Combinational systems
4. The absolute stability of the non-anticipatory systems
5. Examples

Chapter 9. The fundamental mode
CONTENTS

1. Introduction 139
2. Fundamental and hazard-free transfers 140
3. Properties of the fundamental transfers. Example 142
4. The composition of the fundamental transfers 144
5. A special case of the composition of the fundamental transfers 147
6. The fundamental mode 148
7. A property of existence 151
8. Fundamental mode, special case 153
9. Accessibility vs fundamental mode 154
10. The fundamental mode relative to a function 157

Part 2. Delay theory 159

Chapter 10. Delays 161
1. Introduction. The delay circuit 161
2. An overview of delays: informal definitions 162
3. The universal delay 166
4. Delays 168
5. Examples of delays 170

Chapter 11. Bounded delays 175
1. The first definition of the bounded delays 175
2. The equality between the initial values of the input and of the state 178
3. Order 178
4. Duality 179
5. Serial connection 180
6. Intersection 182
7. Union 183
8. Determinism 184
9. Time invariance 185
10. Non-anticipation 186
11. Fixed delays and inertial delays 187
12. Other definitions of the bounded delays 188

Chapter 12. Absolutely inertial delays 191
1. The first definition of the absolutely inertial delays 191
2. Order 194
3. Duality 194
4. Serial connection 195
5. Intersection 195
6. Union 197
7. Time invariance 198
8. Examples of absolutely inertial delays 198
9. Other definitions of absolute inertia 200
10. Zeno delays 202

Chapter 13. Relatively inertial delays 205
1. Relative inertia 205
2. What other authors say 206
3. The relationship between relative inertia and absolute inertia 207
4. Relatively inertial delays
5. Order
6. Duality
7. Serial connection. The paradox of inertia
8. Intersection
9. Union
10. Non-anticipation
11. Time invariance
12. Zeno delays
13. The study of a deterministic delay
14. The study of a deterministic delay, variant

Part 3. Applications

Chapter 14. The equations of the ideal latches
1. Ideal latches, the general equation
2. C element
3. Asymmetric C elements
4. C-OR element
5. RS latch
6. Clocked RS latch
7. D latch
8. Edge triggered RS flip-flop
9. D flip-flop
10. JK flip-flop
11. T flip-flop

Chapter 15. Some applications of the flip-flops
1. A two bit shift register with serial input and parallel output
2. A two bit counter in cascade
3. The Mealy model of the synchronous circuits
4. The Moore model of the synchronous circuits

Chapter 16. Applications at delay theory
1. The delay circuit
2. Circuit with feedback using a delay circuit
3. The logical gate NOT
4. Circuit with feedback using a logical gate NOT
5. A delay line for the falling transitions only
6. Circuit with transient oscillations
7. Example of C gate

Bibliography

Appendix A. Intersections with temporal logic
Appendix B. Index
Appendix C. List of notations
APPENDIX B

Index

A
absolute inertia property, Definition 115, page 193
absolutely constantly stable pseudo-system, Definition 27, page 24
- inertial delay, Definition 116, page 193
- inertial delay induced by a system, Definition 117, page 194
- race-free stable pseudo-system, Definition 26, page 24
- stable pseudo-system, Definition 25, page 24
access time of the states to a value, Definition 71, page 103
accessibility of a system, Definition 84, page 126
asynchronous pseudo-system, Definition 20, page 22
- system, Definition 37, page 29
autonomous system, Definition 51, page 61

B
binary Boole (or Boolean) algebra, Definition 1, page 3
Boolean function, Definition 3, page 4
bounded delay, Definition 111, page 176 and Definition 114, page 189
- delay, informal Definition 100, page 164
- initial time of a pseudo-system, Definition 29, page 25
- final time of a pseudo-system, Definition 32, page 25
boundedness property, Definition 110, page 176 and Definition 113, page 189
bounds of the transport delays, Definition 110, page 176 and Definition 113, page 189

C
Cartesian product of functions, Definition 17, page 20
- product of sets of subsets of spaces of functions, Definition 19, page 20
- product of spaces of functions, Definition 18, page 20
- product of two systems, Definition 42, page 37
characteristic function of a set, Notation 3, page 4
consistent sequence with a function, Definition 9, page 5
complement of a system, , Definition 45, page 45
consistency condition of the bounded delays, Definition 109, page 176
constant final state Definition 27, page 24
- initial state, Definition 24, page 24
cosignal, Definition 15, page 12

D
delay (condition), Definition 107, page 168
deterministic system, Definition 53, page 64
differentiable function, Definition 10, page 5
dual function of a Boolean function, Definition 4, page 4
- system of a system, Definition 40, page 34

F
final state function of a pseudo-system, Definition 35, page 28
- value of a function, Definition 14, page 10
final states, Definition 25, page 24
finite system, Definition 53, page 64
fixed final time of a pseudo-system, Definition 33, page 26
- initial time of a pseudo-system, Definition 30, page 25
fixed delay, Definition 112, page 187
- delay, informal Definition 101, page 164
fundamental (operating) mode of a system, Definition 93, page 148
- (operating) mode of a system relative to a Boolean function, Definition 96, page 157

H
hazard-free transfer, Definition 91, page 142
Huffman systems, page 96

I
ideal combinational system, Definition 54, page 67
- delay, informal Definition 102, page 165 and Definition 112, page 187
- latch, Definition 122, page 224
inertial delay (number), informal Definition 98, page 163
- delay (model), informal Definitions 103, 104, 105, page 165 and Definition 112, page 187
initial fundamental transfer, Definition 88, page 142
- state function of a pseudo-system, Definition 34, page 28
- states, Definition 22, page 24
- value of a function, Definition 14, page 10
injective system, Definition 67, page 91 and Definition 68, page 92
intersection of two systems, Definition 46, page 46
inverse of a system, Definition 41, page 36
isomorphic systems, Definition 49, page 58

L
left continuous function, Definition 13, page 9
- derivative, Definition 16, page 12
- limit, Definition 11, page 7
- semi-derivative, Definition 16, page 12

M
monotonous function, Definition 7, page 5
morphism of systems, Definition 48, page 56

N
necessarily surjective system, Definition 83, page 122
non-anticipatory system, Definition 63 page 79, Definition 64 page 85, Definition 65, page 88
- system relative to a Boolean function, Definition 95, page 157
non-anticipatory* system, Definition 66, page 90
non-initial fundamental transfer, Definition 89, page 142

P
parallel connection of two systems, Definition 43, page 40
possible surjective system, Definition 82, page 121
prefix of a function, Definition 94, page 153
pulse, Definition 12, page 9
pure delay, informal Definition 102, page 165 and Definition 112, page 187

R
race-free final states, Definition 26, page 24
- initial states, Definition 23, page 24
relative inertia property, Definition 119, page 205
relatively constantly stable system, Definition 86, page 134
- inertial delay, Definition 120, page 207
- inertial delay induced by a delay, Definition 121, page 208
- race-free stable system, Definition 86, page 134
- stable system, Definition 86, page 134
union of the transitions, Definition 74, page 109
- of two systems, Definition 47, page 52
right continuous function, Definition 13, page 9
- derivative, Definition 16, page 12
- limit, Definition 11, page 7
- semi-derivative, Definition 16, page 12

S
self-dual Boolean function, Definition 55, page 70
- space of functions, Definition 56, page 70
- system, Definition 57, page 70
serial connection of two systems, Definition 44, page 41
set invariant to permutations, Definition 59, page 73
- invariant to translations, Definition 61, page 75
- of accessible values of a system, Definition 69, page 101
- of final states of a pseudo-system, Definition 35, page 28
- of initial states of a pseudo-system, Definition 34, page 28
- of the couples of consecutive accessible values of a system, Definition 72, page 106
signal, Definition 15, page 12
strongly synchronous system, Definition 79, page 116
subdelay, Definition 108, page 168
subsystem, Definition 39, page 32
support set of a function, Definition 5, page 4
- set of a system, Definition 36, page 29
surjective system, Definition 81, page 119
symmetrical Boolean function, Definition 58, page 73
- system, Definition 60, page 73
synchronous transfer, Definition 77, page 111
system constantly stable relative to a function, Definition 87, page 135
- induced by a pseudo-system, Definition 38, page 30
- race-free stable relative to a function, Definition 87, page 135
- stable relative to a function, Definition 87, page 135
T
time invariant system, Definition 62, page 76
transfer, Definition 76, page 110
transport delay, informal Definition 97, page 163
trivial fundamental transfer, Definition 90, page 142
U
unbounded delay, informal Definition 99, page 163
- final time of a pseudo-system, Definition 31, page 25
- initial time of a pseudo-system, Definition 28, page 25
universal delay, Definition 106, page 166
Z
Zeno system, Definition 118, page 202
W
weakly synchronous system, Definition 79, page 116
APPENDIX C

List of notations

B, Definition 1, page 3
\bigcap a_j, \bigcup a_j, Definition 2, page 3
\chi, Notation 1, page 3
\text{supp } x, Definition 4, page 4
\phi_i, \Theta_i, Definition 11, page 7
\lim_{t \to \infty} x(t), x(t), x(t), x(t), x(t), Definition 14, page 10
S^*, S^*, S, S_0, Notation 7, page 11
Seq, Seq^n, Notation 8, page 12
Dk\alpha x, D\alpha x, D^{\ast} x, D^{\ast} x, D^{\ast} x, Definition 16, page 12
Dh, Definition 19, page 19
S^*(n), S(n), page 19
S^*(n), S^*(n), S(n), S(n), page 19
\phi_0, \Theta_0, Definition 34, page 28
\phi_f, \Theta_f, Definition 35, page 28
U_f, Definition 36, page 29
[f], Notation 30, page 30
f_{\mu}, Example 20, page 32
\pi, Notation 14, page 33
U^*, Notation 15, page 33
f^*, Definition 40, page 34
f^{-1}, Definition 41, page 36
f \times f^*, Definition 42, page 37
(f, f^*)_0, Definition 43, page 40
h \circ f, Definition 44, page 41
C^* f, Definition 45, page 45
f \cap g, Definition 46, page 46
f \cup g, Definition 47, page 52
\int_{-\infty}^f, Example 30, page 64
$\partial_1 F$, Example 31, page 65
F_d, Notation 17, page 67
$S([1, ..., n])$, Notation 19, page 73
λ_S, Notation 20, page 73
u_R, Notation 21, page 73
$S_m^{(m)}$, Notation 22, page 83
H_{aff}, page 96
$\Omega, \Theta_0', \Theta_f', R, \Omega_0, \Theta_0$, Θ_f, R_0, Ω_0, Definition 69, page 101
E_q, Definition 70, page 102
$T_{\mu_0, \ldots}$, Definition 71, page 103
$\Omega \otimes \Omega, \Theta_0', \ldots$, $\Omega \otimes \Omega'$, Definition 72, page 106
$\gamma' \lor \gamma''$, Definition 74, page 109
$T_{\mu', \mu''}$, Definition 75, page 109
$\mu' \sim_{\mu} \mu''$, $\mu'' \equiv_{\mu} \mu''$, Definition 76, page 110
$\Theta_0' \otimes \Theta_0', \Theta_f' \otimes \Theta_f', \Theta_f' \otimes R, \Theta_f' \otimes \Omega_0$, Definition 85, page 128
$\lim f$, page 132
f^μ, page 132
$S_{F, c}$, Notation 23, page 135
$\mu \overset{u_{(-\infty, t)}}{\rightarrow} \mu'$, Definition 88, page 142
$\mu \overset{u_{(t, \infty)}}{\rightarrow} \mu'$, Definition 89, page 142
$\mu \equiv_\mu$, Definition 90, page 142
$\mu \overset{u_{(-\infty, t)}}{\rightarrow} \mu'$, $(\mu \overset{u_{(t, \infty)}}{\rightarrow} \mu')$, $(\mu \overset{u_{(t_0, t_1)}}{\rightarrow} \mu') \lor (\mu \overset{u_{(t_0, t_1)}}{\rightarrow} \mu')$, Definition 92, page 147
u_{t_1}, Definition 94, page 153
$S_{F, c}(\lambda)$, Notation 24, page 166
f_{U_0}, Definition 106, page 166
I_4, Example 95, page 170
CC_{BD}, Definition 109, page 176
f_{BD}, $f_{BD'}$, Definition 110, page 176
$f_{BD'}$, Definition 113, page 189
f_{AE}, Definition 115, page 193
μ_{AE}', μ_{AE}, Definition 119, page 205
f_{IL}, Definition 122, page 224