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effects. 
 
Several fundamental monographs and books have been written on the various aspects of the 
variable structure control and time-delay systems, and their world wide applications in various 
industrial and manufacturing systems since 1960’s. Recent advances and some new results on 
the stability analysis and robust sliding mode control of multivariable uncertain dynamical 
systems with and without time-delay are systematically presented in this book, which adjoins 
the mentioned series. The materials of this book are original, which are obtained by the author 
in the past decade in Istanbul Technical University. The book is not only a collection of the 
authors’ original papers, but also the latest results on variable structure theory and time-delay 
systems obtained by other authors and colleagues are systematically used in general framework 
of control theory. The author actively collaborated with our world WSEAS Academy and is the 
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preface of this book, it can be seen that the author has made significant contributions to the 
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 3) Industrial confirmations and applications of sliding mode controllers with chattering 
                  in process control actuated by membrane control valves for the first time. 
 
In general, the book presents the recent advances in the modern position of the variable 
structure control and time-delay systems. The book has been written in a clear and plain 
language. 
 
The presentation of the signal copy of this book as a keynote lecture was successfully held at 
11th WSEAS International Conference on AUTOMATIC CONTROL, MODELLING and 
SIMULATION (ACMOS '09) http://www.worldses.org/programs/istanbul-joint-program-
2009.doc  in Istanbul and appreciated by the international audience:  
 
I think that the scientific-technological level of the book is high. This book will be useful for 
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Preface 
 
A key issue in the analysis and design of feedback control systems is the stability and 
robustness of the resulting closed-loop system. That is the problem of controlling uncertain 
linear and nonlinear systems without or with time-delay subject to external disturbances is a 
basic topic that is situated in the center of interest of control researches and engineers. One 
approach to solving this problem is by using principles and methods of variable structure 
control. 
 
A. Variable Structure Control 
 
Now, the sliding mode control approach is recognized as an efficient tool to design of robust 
controllers for complex, nonlinear and high order linear plants and time-delay systems with 
parameter perturbations and external disturbances. Variable structure control systems are 
characterized by a suit of feedback control algorithms and a decision rule. The decision rule, 
termed the switching function, has its input the measurable state variables and produces as an 
output the particular feedback linear or nonlinear controller that should be used at that instant in 
time. In other words, a variable structure system consists of a set of linear or in general 
nonlinear subsystems with proper switching function logic. Such systems also may be called 
multi-structure systems. The resulting control action is a discontinuous function of the system 
states, reference model errors, disturbances and etc. Briefly, variable structure system is 
characterized by discontinuous control action which changes structure upon reaching a set of 
switching surfaces. Well known relay or on-off or bang-bang regulator is simple discontinuous 
controller which is widespread because of its easy implementation and efficiency of control 
hardware. The basic design concept for the majority of variable structure systems rests upon 
enforcing sliding modes. The well known sliding mode control methodology is a particular type 
of variable structure systems. 
Sliding mode is a principle operational mode in variable structure control. Practically all design 
methods for variable structure systems are based on the deliberate introduction of sliding modes 
which have played an exceptional role both in design and in practical applications. In sliding 
mode control, variable structure controller is designed to drive and then constrain the system 
state to lie with in a neighborhood of the switching function. Therefore, the sliding surface is 
reached in finite time and then on sliding manifold is generated an asymptotically stable sliding 
motion. There are a number of advantages of sliding mode control approach: robustness or low 
sensitivity to plant parameter variations, external disturbances, model uncertainties, etc, which 
eliminates the necessity of exact modeling; easy implementation; system order reduction 
property; the possibility of stabilizing some non-linear systems which are not stabilizable by 
continuous state feedback lows; etc. Sliding mode control enables the decoupling of the overall 
system motion into independent partial components of lower dimension and as a result, reduces 
the complexity of feedback control design. Sliding mode design principles are based on two 
stage procedures. Both of them are concerned with stability or attractivity concepts. The first 
considers the design of the desired dynamics for a system (n-m)-order by proper choice of a 
sliding manifold s(t)=0. The second consists of designing a controller which will ensure the 
sliding mode, and thus, the desired performance is attained and maintained. Sliding mode 
control implies that control actions are discontinuous state or output function which may easily 
be implemented by convential elements of automation, for example on-off or relay elements, 
power converters, pneumatic modules, etc. Finally, analysis of the discontinuous signal applied 
to the system can be used as a technique to model the signal activity required in order to 
achieve the ideal performance from the system. Due to these properties, variable structure 
control has been proved to be applicable to a wide range of problems in oil-chemical process 
control, aircraft and missile guidance systems, pneumatic and hydraulic systems, time-delay 
systems, mechanical systems, robotic systems, electric drives, nuclear reactors, vehicle and 

 11



motion control  etc. Enforcing sliding motion in this manifold is equivalent to a stability 
problem of the m-order system. 
The first stage is often termed sliding manifold design problem and the second sliding mode 
existence problem. The conditions 0ss <  in general is referred to us as a reaching condition for 
the state to reach the sliding manifold s(t)=0 after a finite time for arbitrary initial conditions. A 
time response of the system consists of two phases: 1) hitting or reaching phase and the 2) 
sliding phase. 
In general, the theory of variable structure systems has made several important contributions to 
the problem of robust stabilization. Now, it is suitable to continue the presentation of brief 
historical outline of emergence, advances and formation of the basic ideas and concepts of the 
variable structure systems and sliding mode control. 
Variable structure control systems with sliding mode was first proposed, introduced and 
elaborated in the Soviet Union by Emelyanov in the 1950s and advanced by his several co-
researches of first generation: Utkin, Taran, Kostyleva, Shubladze, Ezerov, Dubrovsky, 
Khabarov, Fedotova, Behrmant, Drazenovic, Bakakin, Dudin, Buyakas, Shigin, Grittsenko, 
Kortnev, Zhiltsov, etc [1]-[6] and in parallel by Barbashin and his several co-researches: 
Gerashcenko, Tabueva, Eidinov, Bezvodinskaya, etc [7].  
The extensive investigation and establishing of variable structure theory by Emelyanov and 
Utkin etc. group’s took place in the division of the Research Institute of Control Sciences (IAT) 
in Moscow headed by academician B.N. Petrov [4] where Emelyanov and Utkin were awarded 
in 1972 by highest scientific state award in the former USSR Lenin Prize for the discovery of 
the variable structure principles. In those years variable structure systems were extensively and 
systematically investigated under directions of Petrov, Emelyanov, Utkin, etc. by the several 
groups in the center and various regions of the USSR. The author of this book was extensively 
collaborated with the Moscow’s groups and etc in 1970-1991 until the fall of the USSR. This 
period can be referred to us as second period of advances of theory of the variable structure 
control and their first industrial applications by the several co-researches of the second 
generation. In this period an extensive effort has been made to improve dynamic performances 
of linear, some times non-linear system by using the concept of the variable structure control. 
Roughly speaking, a variable structure controller uses a number of linear feedback gains 
according to the representative point of the state space. Once the representative point reaches 
the sliding manifold the system dynamics is improved and the control will force the state to 
remind in it. The special operation mode is called the sliding mode and the conditions required 
to achieve it are called the hitting or reaching conditions. Here, it was noted that an 
asymptotically stable closed loop system could be formed from two unstable linear systems by 
combining useful properties of the composite subsystems. Furthermore, the system may be 
designed to possess new properties not present in any of the composite structures. 
In first pioneering monograph [1], the plant considered was a linear second order system 
presented in canonical phase variables from. This approach later is extended to the general form 
advanced by [8] and [9] published in the first period of investigations of the variable structure 
control until 1970. Then in the second period of the advances of the theory of variable structure 
systems, the systems of the general state space form were considered by [8]-[10]. 
Formation of well known conventional or classical theory of linear feedback control systems in 
1950’s, originated by well-known early historical Polzunov water level and flow regulator in 
steam engine tank (Russia, 18 century) and Watt steam engine with centrifugal fly-ball 
governor (Britannia, 18 century)-Polzunov-Watt feedback principle-and fundamental works of 
Maxwell, Vyshnegradsky and Stodola, etc (19 century), on the one hand, and existence of 
fundamental works by Lyapunov [11],  Andronov, Vitt and Khaikin [12], Tsypkin [13], Flugge-
Lotz [14] etc on the other hand, had prepared the necessary background for the emergence of 
the variable structure principles.   
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Variable structure systems has found application in control engineering of wide range of 
problems in electric drives and generators, oil-chemical process control, vehicle and motion 
control [9].  
A set of new invented pneumatic variable structure controllers and systems for automation of 
various types of plants of chemical, oil-chemical industries was brought to production status 
and forty two sets have been installed in six plants in the USSR [15]-[56]. 
In the petroleum, petrochemical and some other industries, there exists a wide class of 
processes that feature instability in critical (economically advantageous) modes, have non-
stationarities and disturbances, numerous uncontrollable factors, interrelated controlled 
parameters and delays. In particular, the study of the dynamic of catalytic processes (alkylation 
by sulfuric acid is alkyl benzene production or copolymerization in production of butyl rubber) 
and qualitative analysis of temperature stability of the non-linear models of chemical reactors 
have shown that the state plane of the plant has two or more singular points and always has at 
least one saddle point which is indicative of the substantial non-linearity in plant equations. The 
study of dynamics of catalytic process control systems demonstrates that the domain of initial 
conditions allowing linear controllers to maintain stability of non-linear processes is rather 
bounded. In the critical modes, the linear process control becomes impracticable. If process 
parameters vary over a wide range, the linear systems cannot provide high-quality control. For 
the processes under consideration the efficiency of control algorithms with deliberately induced 
sliding modes has been theoretically substantiated. 
The Institute NIPINeftekhimavtomat in collaboration with the Institute of Control Sciences has 
designed a new “Universal set of pneumatic variable-structure devices” intended for the lower 
level of automation hierarchy of a wide class of processes in various industries where 
pneumatics has become accepted [48], [54] and [56]. 
Notably, unlike the set SUPS (Utkin and Kostyleva, 1981 [57]) where sliding motion is used 
only in data handling units, in the new set sliding motions may be induced for the first time in 
the main loops of systems controlling a wide variety of processes. This is due to the fact that for 
majority of petroleum and petrochemical processes the time constants are of the order of 
minutes, while the USEPPA (The set of pneumatic elements including controllers and units 
performing elementary operations such as summing, amplification, integration etc. which is 
produced in the USSR) elements allows one to generate self-oscillations at much higher 
frequencies, and the diaphragm actuators are known to be basically able to operate in these 
modes. 
The Research Institute NIPI Neftekhimavtomat has brought the new set to the production 
status, and a batch of 42 complete sets has been installed at six Soviet plants for control of 
chemical processes. 
The experience gained during several years of their operation in industrial environment, has 
demonstrated that these systems are more stable, reliable and maintainable, and in industrial 
environment have 2 to 6 times better control performance indices (dynamic accuracy, 
maximum overshoot, steady state error, settling time, etc.) as their linear counterparts. The 
aggregate economical efficiency of industrial application of pneumatic variable structure 
controllers set was about one million soviet ruble in 1981.This work is awarded by first class 
certificate of Institute of Control Sciences AN SSSR and confirmed by its director academician 
V.A. Trapeznikov. 
This is the first industrial confirmation of the existence and usefulness of the sliding mode. 
However, usage of sliding mode idea did not appear outside of USSR until the mid of 1970s 
when a book by Itkis (1976) [58] and survey paper by Utkin (1977) [10] were published in 
English. Later a survey paper DeCarlo, Zag and Matthews [59] provides a good tutorial 
introduction. 
Since 1980s more and more researches in various aspects of sliding mode control has been 
done world wide by Young (1978) [60], Slotine and Sastry (1983) [61], Izosimov, Matic Utkin, 
Sabanovic, (1978) [62], Kaynak, Harashima, and Hashimoto (1984) [63], Sira-Ramizer, (1988) 
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[64], Fu (1991) [65], Sira-Ramizer, (1993) [66], Elmali and Olgac (1993) [67], Itkis (1976) 
[68], Drazenovic (1969) [69], Zinober, El-Ghezavi, and Billings, (1982) [70], Walcott and Zak 
(1988) [71], White (1983) [72], El-Ghezavi, Billings and Zinober  (1983) [73]-[74], Ercshler, 
Roubellat and Vernhes (1974) [75], Hikaita (1988) [76], Cheres (1989) [77], Spurgeon (1991) 
[78], Gutman (1979) [79], Ryan (1983) [80], Dorling and Zinober (1986) [81], (1988) [82], 
Woodham and Zinober (1993) [83], Hong and Wu (1989) [84]-[85], Zhou and Fisher (1992) 
[86], Slotine, Hedrick, and Misawa (1987) [87], Slotine and Li (1991) [88], Hung, Gao, and 
Hung (1993) [89], Asada and  Slotine (1986) [90], Abdallah, Dawson, Dorato and Jamshidi 
(1991) [91], Banks (1986) [92], Gau (1990) [93], Bartolini (1989) [94], Sarpturk, Istefanopulos, 
and Kaynak (1987) [95], Singh (1989) [96], (1990) [97], Slotine (1984) [98], Vadali (1986) 
[99], Yeung and Chen (1988) [100], Ferrara,  Magnani and Scattolini (2002) [101], Chen and 
Fukuda (1997) [102], Furuta (1990) [103], Edwards and Spurgeon (1998) [104], Utkin, Guldner 
and Shi (1999) [105], Young (1993) [106], Palm, Driancox and Hellendoorm (1997) [107], 
Zinober (1994) [108] and (1990) [109], Flippov (1988) [110], Young and Özgüner (1999) 
[111], Choi (2004) [112], Spong and Vidyasagar (1989) [113], Emelyanov, Burovoi, and 
Levada (1998) [114], Young, Utkin, and Özgüner (1999) [115], Garofalo and Glielmo (1996) 
[116], Watanabe, Fukuda and Tzateftas (1992) [117], Parlakci, Jafarov, and Istefanopulos 
(2004) [118], (2005) [119], Calise  and Kramer (1984) [120], Esfandiari and Khalil (1991) 
[121], Khalil (2002) [122], Oh and Khalil (1995) [123], Jafarov and Tasaltin (1998,2000) 
[124],[126], Perruquetti and Barbot (2002) [127], Ha, Rye, and Durrant-Whyte (1999) [128], 
Sage, De Mathelin and Ostertag (1999) [129], Lewis, Dawson and Abdallah (2004) [130], 
Bailey and Arapostathis (1987) [131], Stepanenko and Su (1993, 1999) [132], [133], Zhihong 
and Palaniswami (1994) [134], Parlakci, Jafarov, Istefanopulos and Belegradek (2001) [135], 
Istefanopulos, Jafarov and  Parlakci (2001) [136], Sabanovic, Fridman and Spurgeon (2004) 
[137], Sciavicco and Siciliano (1996) [138], Choi (1997, 2002) [139]-[140], Singh, Steinberg 
and Page (2003) [141], Yeh, Chien and Fu (2003) [142], Jerouane, Sepehri and Lamnabhi-
Lagarrigue (2004) [143], Dodds and Walker (1991) [144], Fu, Gonzales and Lee (1987) [145], 
Fossard (1993) [146], Shtessel (1998) [147], Dzhafarov-Jafarov and Iskenderov (1980) [148], 
Parlakci, Jafarov and Istefanopulos (2003) [149], Levine (1996) [150], Er, Zribi, Lee and  
Mastorakis (1998) [151], Yu and Chen (2003) [152],  Yu, X. and Yu, S. (2000) [153], Chinaev, 
Dzhafarov-Jafarov and Iskenderov (1979) [154] etc.  
Nowadays, this period of the advances of the variable structure control can be referred to us as 
a third period of the advances of the sliding mode control theory and practice. Recently, several 
special issues of International Journals and International Workshops are devoted to variable 
structure systems and sliding mode control [155]-[159]. Some new theoretical and practical 
results are summarized in these references. Now, it is difficult to calculate the number of the 
papers, proceedings, journals and books devoted to sliding mode control.  
 
B. Time-Delay Systems 
 
The sliding mode control approach provides an efficient way to tackle challenging robust 
stabilization problems not only for finite-dimensional dynamic systems, should also be 
considered for systems with aftereffect. 
It is well known that major engineering and communication systems contain time-delay and 
parameter uncertainties subject to external disturbances. The existence of time-delay effect is 
frequently a source of instability. Robust stabilization of time-delay system is not as easy as 
that of a delay-free system. Therefore, the problem of robust stabilization of uncertain 
dynamical systems with time-delay has received considerable attention of control researchers. 
From the point of view of robust control design approaches the variable structure control 
concept has played most important role because of its robustness to parameter uncertainties and 
external disturbances. There are a large number of such papers in literature. However, the 
number of papers concerning time-delay systems is not relatively large. Shyu and Yan (1993) 
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[160] have treated an integral variable structure controller involving equivalent control term 
and relay term for stabilization of time delay systems with parameter uncertainties. Robust β -
stability condition for unforced perturbed system is derived by using Razumikhin-Hale type 
theorem. System matrix and its variation are cancelled by equivalent control term while relay 
term is used only for generation the sliding mode on the integral sliding surface. However, 
actually exact equivalent control term is unavailable since it is dependent on unknown norm-
bounded parameter uncertainties. Finally, VSC is designed only for nominal time-delay system. 
Moreover, global stability condition needs the existence of stable system matrix. In spite of 
this, Shyu and Yan type controller for the considered system is designed very well. 
Luo and De La Sen (1993) [161] have designed the VSC including absolute values of state and 
delayed-state feedback for robust stabilization of single input-delayed systems with parameter 
uncertainties. Global stability condition is derived by using matrix measure method. Such 
design approach is generalized for single state and input delayed SISO and MIMO system with 
parameter uncertainties and external disturbances (Luo, De La Sen and Rodellar, 1997 [162]). 
Robustness properties of sliding time-delay systems are analyzed. 
Koshkouei and Zinober (1996) [163] have designed a sliding mode controller including 
equivalent control term and relay term for stabilization of time-delay canonical MIMO system 
with matched external disturbances by using Lyapunov-Krasovskii V-functional method. 
Lyapunov-Krasovskii V-functional method (Lyapunov 1992 [11], Krasovskii 1956, 1959 [164], 
[165]) has been introduced to stability analysis of variable structure systems with time-delay by 
Jafarov (1980, 1998) [166], [167]. 
Lyapunov-Krasovskii V-functional method has been used for stabilization of multiple state-
delayed linear systems by Nazaroff (1973) [168]. Four-term sliding mode controller design for 
multiple state-delayed systems with mismatching parameter perturbations and matching 
external disturbances are considered by Li and DeCarlo (2001 and 2003) [169] and [170]. This 
approach is applied to systems with differentiable time-varying delays (Li and DeCarlo, 2003 
[170]). 
Recently, several sliding mode controller design methods for uncertain systems with and 
without time-delay are considered by many authors. 
The behavior and design of sliding mode control system with state and input delays are 
considered by Perruquetti and Barbot (2002) [127] using Lyapunov-Krasovskii functionals. 
Latest research results in this area are given in survey paper by Richard, Gouaisbaut and 
Perruquetti (2001) [171]. The combination of delay phenomenon with relay actuators makes the 
situation much more complex. Designing a sliding controller without taking delays into account 
may lead to unstable or chaotic behaviors or, at least, results in highly chattering behaviors. 
Four-term robust sliding mode controllers for matched uncertain systems with single or 
multiple, constant or time-varying state delays are designed by Gouaisbaut, Dambrine, and 
Richard (2002) [172] by using Lyapunov-Krasovskii functionals and Lyapunov-Razumikhin 
function combined with LMI’s techniques. 
Shyu and Yan (1993) [160] design approach is extended to a combined four-term sliding mode 
controller design for matched/mismatched uncertain time-delay systems with a class of 
nonlinear inputs by Yan (2003) [173]. Delay-dependent stability condition is derived by using 
quadratic Lyapunov function already involving an unknown delay constant. Conservativeness 
example with good results is presented. 
An analysis and design of bounded switching feedback controller for delay free variable 
structure systems with matched lumped uncertainties are presented by Choi (2004) [112]. 
In general, an overview of some recent advances and open problems in time-delay systems and 
sliding mode control for systems with input/output delays is given in large survey paper by 
Richard (2003) [174]. Some delay-dependent stability criteria for time-delay systems are 
advanced by Jafarov (2001, 2003) [175], [176]. 
Another type of VSC known as the min-max controller for robust stabilization of time-varying 
state-delayed dynamical systems with matching parameter uncertainties and external 
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disturbance has been designed by Cheres, Gutman and Palmor (1989) [177]. The global 
stability and β-stability conditions are formulated in terms of differential Riccati equations by 
using Razumikhin-Hale type theorem (Razumikhin 1956 [178] and Hale 1977 [179]). Stability 
analysis of variable structure systems with time-delay by using Lyapunov-Krasovskii functional 
considered by Jafarov (1978, 1980, 1987 and 2001) [180]-[183] and Jafarov and Kalyon (1997) 
[184]. Brief analysis of reviewed papers shows that various types of sliding mode controllers 
and design techniques for uncertain systems with and without time-delay are considered. 
However, global asymptotical stability and sliding conditions for stabilization of multivariable 
time-delay systems with parameter perturbations and external disturbances by using a modified 
Shyu and Yan controller and combined sliding mode controller are not investigated 
systematically. In light of above mentioned design approaches, some modified simple two-
terms sliding mode controllers without an equivalent control term for perturbed and delayed 
systems with unstable system matrix will be developed by new advanced design techniques. 
Time-delay effect is frequently encountered in oil-chemical systems, metallurgy and machine-
tool process control, nuclear reactors, bio-technical systems missile-guidance and aircraft 
control systems, aerospace remote control and communication control systems, etc. The 
presence of delay effect complicates the analysis and design of control systems. Moreover, 
time-delay effects in the state vector, especially in the control input degrade the control 
performances and make the closed–loop stabilization problem challenging. For better 
understanding of time-delay effect properties let us briefly analyze the existing design 
methodologies. There are three basic control design methodologies for the stabilization of input 
delayed systems: 1) Smith predictor method, 2) Reduction method, 3) Memoryless control 
approach. 
A common design method of input-delayed systems is well known Smith predictor control to 
cancel the effect of time-delay. Smith predictor is a popular and very effective long delay 
compensator for stable processes. The main advantage of the Smith predictor control method is 
that, the time-delay is eliminated from the characteristic equation of the closed-loop system. 
Classical Smith predictor was suggested by Smith (1957), (1958) [185], [186]. Modified Smith 
predictor scheme’s have been advanced by Marshall (1974) [187], Aleviskas and Seborg (1973) 
[188], Watanabe and Ito (1984) [189], Watanabe, Ishiyama and Ito (1983) [190], Al-Sunni and 
Al-Nemer (1997) [191], Majhi and Atherton (1999) [192], etc.  
Note that Smith Predictor removes only the time–delay from closed–loop while it is remained 
in feed-forward path. Therefore, it is also an input-delayed system. An extension of the Smith 
predictor method for the MIMO systems with state and input delays is considered by Aleviskas 
and Seborg (1973) [188]. The control algorithm in a Smith Predictor is normally a PI-
controller. The D–part normally is not used since the prediction is performed by the dead–time 
compensation. Prediction through derivation is not suitable when the process contains a long 
dead– time. Replacing a PID-controller with a Smith predictor gives a drastic increase in 
operational complexity. This is the main reason why most processes with long time–delay are 
still controlled by PI-controllers. A modified Smith predictor based on industrial PI-controller 
is designed by Hagglund (1996) [193]. A modified Smith predictor and controller for unstable 
processes with time–delay are developed by DePaor (1985) [194]. Modified Smith predictor 
control for multivariable systems with delays and unmeasurable disturbances is extended by 
Watanabe, Ishiyama and Ito (1983) [190]. Modified Smith predictor and controller design 
procedure for unstable processes is proposed by Majhi and Atherton (1999) [192]. A Smith 
predictor fuzzy logic based PI-controller design for processes with long dead–time is proposed 
by Al-Sunni and Al-Nemer (1997) [191]. 
The second important control design method of input–delayed systems is the reduction method 
that was suggested by Kwon and Pearson (1980) [195].  
This control strategy has been shown to overcome some of inherent problems of the 
conventional Smith predictor method. For example, unstable system can be stabilized and the 
effects of the initial conditions are taken into consideration. The reduction method, however, 

 16



suffers from a weakness that the complete reduction to a delay free system is only possible with 
an exact model of the system. Reduction method is extended to time–varying system with 
distributed delays by Arstein (1996) [196]. A new robust stabilizing controller for a multiple 
input–delayed system with parametric uncertainties by using a modified reduction method is 
proposed by Moon, Park and Kwon (2001) [197]. However, an industrial implementation of 
reduction method controllers is much complicated than conventional method. 
The third design approach to stabilization of input-delayed systems is so-called memoryless 
control method, which is similar to the conventional linear control method. Such controllers 
have feedback of the current state only, are designed to delay–independent stabilization of 
input–delayed systems by using Lyapunov–Krasovskii functional method, for example, see 
Choi and Chung (1995) [198], Kim, Jeung and Park (1996) [199], Su, Chu and Wang (1998) 
[200], etc. However, this approach is conservative when the actual size of the delay is small. In 
fact, information on the size of the delay is often available in many processes. Hence, by using 
delay information and past control history as well as the current state delay–dependent 
controllers may provide much better performance than memoryless controllers. 
Some examples concerning time-delay systems and stability analysis are given by Kolmanovski 
and Nosov (1986) [201], Elsgolts and Norkin (1971) [202], Rezvan (1983) [203], Gorecki, 
Fuksa, Gabrovski and Korytovski (1989) [204], Marshall, Goreki, Walton and Korytowski 
(1992) [205], Dugard and Verriest (1998) [206], Wang, Lee, and Tan (1999) [207], Mac 
Donald (1989) [208],   
In analysis and design of time-delay systems, in general, the Lyapunov-Krasovskii functional 
method is commonly used. Recent advances in time-delay systems are presented by Richard 
(2003) [174], Fridman and Shaked (2003) [209], Jafarov (1990), (1999), (2000), (2003), (2003) 
and (2005) [210]-[215], Niculescu and Gu (2004) [216], Niculescu (2001) [217], Mahmoud 
(2000) [218], Gu, Kharitonov and Chen (2003) [219], Boukas and Liu (2002) [220]. Some 
sufficient delay-dependent stability conditions for linear delay perturbed systems are derived 
using exact Lyapunov-Krasovskii functionals by Kharitonov and Niculescu (2003) [221]. 
Several new LMI delay-dependent robust stability results for linear time-delay systems with 
unknown time-invariant delays by using Padé approximation are presented by Zhang, Knospe 
and Tsiotras (2002) [222]. Both delay-independent and delay-dependent robust stability LMI’s 
from conditions for linear time-delay systems with unknown delays by using appropriately 
selected Lyapunov-Krasovskii functionals are systematically investigated by Zhang, Knospe 
and Tsiotras (2003) [223] in another paper. Stability of the internet network rate control with 
diverse delays based on Nyquist criterion is considered by Tian and Yang (2004) [224]. 
Improved delay-dependent stability conditions for time-delay systems in terms of strict LMI’s 
avoiding cross terms are developed by Xu and Lam (2005) [225]. A new state transformation is 
introduced to exhibit the delay-dependent stability condition for time-delay systems by 
Mahmoud and Ismail (2005) [226]. Determining controllable sets from a time-delay description 
is given by Rhodes and Morari (1996) [227]. 
Some new approaches to analysis and design of time-delay systems are advanced by Su, Ji, and 
Chu (2005) [228], Wu, He, She and Liu (2004) [229], Kim (2001) [230], Mahmoud and Al-
Muthairi (1994) [231], Fiagbedzi and Pearson (1986) [232], Moon, Park, Kwon and Lee (2001) 
[233], Olgac and Sipahi (2002) [234], Zheng, Cheng and Gao, (1993) [235], Hu, Basker and 
Crisalle (1998) [236], Jing, Tan and Wang (2004) [237], Wang and Unbehauen (2000) [238], 
Cao and Sun (1998) [239], Kim, Park and Oh (2000) [240]. 
 
Resuming the brief analysis of considered references concerning the existing design 
approaches, it can be concluded that time-delay systems are intensively investigated recently by 
researchers in light of the above mentioned three directions. Several books and a great number 
of Journal papers recently written on variable structure control and time-delay systems. 
However a few papers are written in their intersection. This book is one more item in that 
series. 
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Recent advances in sliding mode control and time-delay systems and their intersection are 
presented in this book which, cover the essential background to modern robust variable 
structure control analysis and design method and sliding mode control of time-delay systems. 
The book consists of six chapters and is organized as follows. 
Chapter 1 considers analysis and design of robust linear and variable structure control of 
uncertain systems without time-delay. Sliding mode control design techniques for aircrafts and 
missiles are presented in Chapter 2. Variable structure relay, P, PD, PID - controller design 
methods for robot manipulators with non-linear dynamics are systematically developed in 
Chapter 3. Variable structure control analysis and design methods of time-delay systems with 
parameter uncertainties and external disturbances are considered in Chapter 4. In this chapter, 
robust stabilization of multivariable single and multiple state-delayed systems with 
mismatching parameter uncertainties and matching/mismatching external disturbances are 
considered. Two types of robust sliding mode controllers design techniques are presented. 
Chapter 5 formulates reduced and full orders sliding mode observers design methods for 
uncertain systems with and without time-delay systems. Stability analysis and control of time-
delay systems using reduction method and Lagrange mean value theorem are described in 
Chapter 6. 
This book will be useful I hope for researchers and practitioners in field of Control and Systems 
Engineering, and also for teachers and graduate students on mentioned courses. The material of 
this book is original and published in the pages of the several archival Journals and 
International Conference Proceedings, which are results of research and teaching activities of 
author in Aeronautical and Astronautical Engineering Faculty of Istanbul Technical University 
since 1996. 
It is clear that in the preparation of this book some mistakes of various types may have been 
made. Any of those mistakes found by readers will be gladly accepted and corrected in the 
following editions. 
I wish to thank my students, Ph.D. Erkan Abdulhamitbilal and M.Sc. Ahmet Sofyalı for their 
helping with the computer preparation of the manuscript. 
 

 
Prof. Dr. Elbrous M. Jafarov  
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CHAPTER 1 
 

 

Robust Linear and Variable Structure Control of Multi-Input 
Uncertain Systems 

 
1.1 Introduction 
In this chapter, two types of very simple robust full state feedback controllers: 1) combined 
linear and 2) combined variable structure controllers design techniques for stabilization of 
multi-input linear dynamical systems with matched/mismatched but available upper norm-
bounded unknown parameter uncertainties subject to matched but upper norm-bounded external 
disturbances are advanced. The conventional equivalent control term is not used in second 
controller because equivalent control term needs to use the matching conditions and unavailable 
parameter uncertainties. The robust global asymptotical stability, β-stability and sliding 
conditions are parametrically obtained by using Lyapunov V-function method and 
systematically formulated in terms of some matrix equations. The robust controller’s 
computational algorithms are presented. By these algorithms stability conditions can be reduced 
to standard algebraic Riccati equation (ARE) problem. Two design examples with simulation 
results for jet fighter F-16 are given to illustrate the usefulness of the obtained results. 
 
1.2 Brief review of robust systems 
 
Recently, much attention has been paid to the design problem of robust state feedback 
controllers for stabilization of linear dynamical system with norm-bounded parameter 
uncertainties via Lyapunov variable structure control design because of their robustness to the 
matched parameter perturbations and external disturbances (for example, Garofalo and 
Glielmo, 1996 [1]). There are two basic design approaches: 1) conventional linear state 
feedback and 2) Lyapunov min-max or variable structure controllers design approaches. 

Robust linear continuous and discontinuous Lyapunov quadratic controllers’ design for linear 
uncertain systems with external disturbances has been considered by (Corless, 1994 [2]). 
Quadratic stability and β -stability conditions are formulated in terms of algebraic Riccati 
equations combined with LMI’s techniques. Robust memoryless linear state feedback 
controllers design for stabilization of time-delay systems with matched parameter uncertainties 
have been successfully designed for example by (Mahmoud and Al-Muthairi 1994 [3], Cao and 
Sun 1998 [4]), etc. Global stability conditions are formulated in terms of matrix norm and 
algebraic Riccati inequalities. Riccati equation approach is used in designing of robust linear 
controllers for uncertain systems by (Petersen and Hollot, 1986 [5], and Shen, Chen and Kung, 
1991 [6]). 

There is a large number of types of variable structure controllers in literature: variable structure 
control (Emelyanov, 1967 [7]); equivalent control, VSC+relay term (Utkin, 1977 [8]; Utkin, 
Guldner and Shi, 1999 [9]; Sabanovic, Fridman and Spurgeon, 2004 [10]); VSC, min-max, 
relay term, equivalent control and their combinations (DeCarlo, Zak and Matthews, 1987 [11]); 
VSC, relay, equivalent control, reaching law method (Hung, Gao and Hung, 1993 [12]); VSC, 
relay, min-max, equivalent term (Spurgeon, 1991 [13]; Edwards and Spurgeon, 1998 [14]); 
equivalent term+VSC (Hong and Wu, 1989 [15]); min-max, equivalent term, relay, VSC 
(Dorling and Zinober, 1986 [16]; Koshkouei and Zinofer, 2004 [17]); continuous sliding mode 
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control (Zhou and Fisher, 1992 [18]); nominal equivalent term+switching function+min-max 
term (Yoo and Chung, 1992 [19]); equivalent control+unit vector term (Zinober, 1994 [20]); 
VSC, min-max (Jafarov and Tasaltin, 2000 [21]); integral sliding mode controller (Jafarov and 
Tasaltin, 2001 [22]); PD-variable structure controller (Jafarov, 2003 [23]); PID-variable 
structure controller with PID sliding surface (Jafarov, Parlakci and Istefanopulos 2005 [24]);  
three mixed terms: linear state control+switching function+variable structure term controller, 
for multivariable canonical systems with mismatched uncertainty in the state matrix (Kim, Park 
and Oh, 2000) [25]; two terms switching function+min-max output controller for regular form 
multi variable systems with lumped uncertainty (Choi, 2002 [26]); three terms switching 
function+equivalent control+min-max state controller (Choi, 1997 [27]), mixed VSC for 
multivariable canonical uncertain systems (Choi 2001 [28]), various types of sliding mode state 
and output feedback controllers (Edwards and Spurgeon, 1998 [14]; Edwards, Spurgeon and 
Hebden, 2003 [29]; Perruquetti and Barbot, 2002 [30]; Journals special issues [31] and [32]); 
flight path controller (Singh, Steinberg and Page, 2003 [33]); missile-guidance sliding mode 
controller (Yeh, Chien and Fu, 2003 [34]); variable structure force controller (Jerouane, Sepehri 
and Lamnabhi-Lagarrigue, 2004 [35]) etc. A new class of variable structure controllers known 
as the min-max controllers has been introduced by (Gutman, 1979 [36]). Asymptotic stability in 
sense of Lyapunov is analyzed via generalized dynamical systems. (Cheres, 1989 [37]) has 
successfully designed the min-max controller with prescribed sliding motion for systems with 
lumped uncertainties. The basic difference between min-max controller and the variable 
structure controller is their design method. The VSC has been design to stabilize the system via 
a prescribed sliding mode, whereas the min-max control has designed via the second method of 
Lyapunov and the concept of generalized dynamical systems. As shown by (Gutman, 1979 
[36]) since a min-max is in general simpler then a VSC one it seems reasonable to obtain a min-
max design for VSC. The design of sliding mode controller for nominal systems may need to 
an unpredictable behavior of the closed-loop in the case of mismatching disturbances. Taking 
this mismatching into account the sliding surface is designed by (Takahashi and Peres, 1999 
[38]) via the minimization of a quadratic performance criterion in the regular form. But, sliding 
and stability conditions are not considered and controller is not designed. An LMI-based 
switching surface design for canonical multivariable systems with mismatched uncertainties in 
the state matrix is developed and a new invariance condition is derived by (Choi, 2003 [39]). 
Two new combined variable structure and norm-bounded relay controllers design methods for 
the stabilization of matched/mismatched uncertain systems with external disturbances are 
developed by (Choi, 1997 [27], 2002 [26] and 2004 [40]). The sliding, stability, β -stability and 
ultimately boundedness conditions are formulated in terms of LMI’s techniques. Equivalent 
control term depending on unknown parameter uncertainties and external disturbances can be 
defined according to (Utkin, 1977 [8]) and using by (Ryan, 1983 [41]); (Spurgeon, 1991 [13]); 
(Zinober, 1994 [20]); (Hung, Gao and Hung, 1993 [12]).When so-called matching conditions 
(Drazenovic, 1969 [42]; Utkin, 1977 [8]) are satisfied that the sliding mode is invariant to the 
parameter perturbations and external disturbances. The physical meaning of matching 
conditions is that all modeling uncertainties and external disturbances enter the system through 
the control channel (Hung, Gao and Hung, 1993 [12]). But clearly that the equivalent control 
cannot be synthesized explicitly as it involves the unavailable unknown functions (Ryan, 1983 
[41]). Robust optimal combined variable structure controller with novel sliding surface 
including the nominal dynamics for multivariable uncertain systems with external disturbances 
is considered by (Park and Ahn, 1999 [43]). However, combined controller consists of seven 
terms, therefore it is complicated. Stability analysis in large is not investigated. Another robust 
sliding mode control with application for uncertain multivariable non-linear systems with 
external disturbances is considered by (Ha, Rye and Durrant-Whyte, 1999 [44]). Proposed three 
terms controller consists of equivalent term, robust term and fuzzy term. Stability analysis in 
large is not investigated. Chen and Fukuda type of combined sliding mode controller (Chen and 
Fkuda 1997 [45]) consists of three terms which is designed for stabilization of continuous 
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canonical form of single input systems.Existence conditions of sliding mode is derived. 
Recently, some special journal issues [31] and [32] are devoted to various aspects of sliding 
mode control. Some new theoretical and practical results are summarized in these references. 

However, as pointed by (Utkin, 1992) [46], it should be remembered that as rule the original 
system equations are given with respect to variables characterizing physical processes in 
individual system elements rather than to canonical variables, which implies that the system 
behavior is described in terms of a general state space equation. For this reason, above 
mentioned controller design techniques developed for transformed canonical systems in regular 
form may be unacceptable to original not transformed full state systems. Moreover, the 
following comments can be pointed for our purposes. VSC in (Choi, 1997 [27]) is relatively 
complicated and designed system for mismatching case is only uniformly ultimately bounded. 
The original system in (Kim, Park, Oh, 2002 [25]) is transformed to canonical form, but 
controller is described in terms of old and new variables. Coupling stability analysis in large 
with respect to new variables is not investigated. Norm boundedness conditions for 1ξ  involve 
unknown parameters. Output variable structure controller, designed by (Choi, 2002 [26]), is 
simple. But stability analysis is given in terms of old and new variables, and in evaluating upper 
bounds the control terms’ norms are going with positive sign. For this reason, upper bounds are 
increased too much. Mismatched state matrix uncertainty and external disturbances are 
compensated by the linear term of controller. But, this implies to force a gain constant of linear 
control term excessively. Indeed, as calculated in example, linear gain 30.481 : 2 = 15.2405 
time greater that switching gain. 

In this chapter, two types of very simple robust full state feedback controllers: 1) combined 
linear and 2) combined variable structure controllers design techniques for stabilization of 
multi-input full state linear dynamical systems with matched/mismatched, but available upper 
norm-bounded unknown parameter uncertainties subject to matched but upper norm-bounded 
external disturbances are advanced. The conventional equivalent control term is not used in 
second controller because equivalent control term needs to use the matching conditions and 
unavailable parameter uncertainties. In different from existing results robust global 
asymptotical stability, β -stability and sliding conditions are parametrically obtained by using 
Lyapunov V-function method and systematically formulated in terms of some matrix equalities. 
Two design examples with simulation results for jet fighter F-16 are given which show the 
effectiveness of design procedures. 

 

1.3 System description and assumptions 
Consider the uncertain multi-input systems with external disturbances descried by the following 
state equations: 
 

( ) [ ( )] ( ) [ ( )] ( ) ( )x t A A x t B B u t Df tσ σ= +∆ + + ∆ +                (1.1) 

 
where  is the measurable current value of the state,  is the control input 

 is unknown external disturbance vector but uniformly bounded 

nRtx ∈)( mRtu ∈)(
nRtf ∈)( θ≤)(tf , where 

)(tf  is the Euclidean norm vector, =θ constant,  are known constant matrices of 
appropriate dimensions with  of full rank, 

DBA ,,

B )(σA∆ , )(σB∆  represent the bounded uncertainty 
of the linear portion and the bounded input matrix uncertainty, respectively,   is the 
uncertain element. We shall use , 

PRt ∈)(σ
TW )(Wλ , )(min Wλ , )(max Wλ  to denote, respectively, the 
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transpose, eigenvalues, minimum eigenvalues, and maximum eigenvalues of a square matrix 
. We let  or  to signify the positive or negative definite matrix W .  W 0>W 0<W

Note that, such description of generalized system of type (1) with disturbance input is known 
very well in literature, for example Iwasaki and Skelton (1994) [47], Cheres (1989) [37], etc. 
The objective of this work is to develop the robust controller design techniques for the 
stabilization of uncertain multi-input systems with external disturbances.  

To achieve this goal we design two types of robust combined linear and variable structure 
controllers. Using Lyapunov V-function method we derive new global robust stability and 
sliding conditions, which are formulated in terms of algebraic Riccati equations. 

Now, we make following conventional assumptions. 

Assumption 1:  There exist some bounded matrix functions ( nm× )- )(σH , ( )-mm× 0)( >σE , 
( )-nm× F , such that for all uncertain elements the following conventional matching conditions 
(Drazenovic 1969 [42], Utkin 1977 [8], Gutman 1979 [36], Dorling and Zinober 1986 [16], et 
al.) are satisfied:  

   
( ) ( )
( ) ( )

A BH
B BE

D BF

σ σ
σ σ

⎫
⎪
⎬
⎪
⎭

∆ =
∆ =
=

                 (1.2) 

and )()( σσ BFD =  for the general case if )(σD  is a bounded uncertain matrix. In particularly, F 
is a known constant matrix if D is a known constant matrix.  

Define following norms for bounded uncertain and certain matrices: 
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H H H

F F F F

F mn F f

f t
E E E

σ

σ σ

σ

σ σ

σ σ

ω λ
σ

ρ σ λ σ σ

σ σ λ σ σ

σ σ

θ

α σ σ σ η

⎫
⎪
⎪
⎪
⎪
⎪

⎬

⎡ ⎤⎣ ⎦

= =

= ∆

= = <

≤ =

≤ ≤ =

=

< = ≤ ≤ = <

⎪⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎭

              (1.3) 

where  P is a positive definite matrix to be determined; ηθρω ,,,,, fa  are some positive scalars. 
Without loss of generality similar to Mahmoud and Al-Muthairi (1994) [3] we can  assume that 

1<η  for 0)( >σE  [3]. 

Observation 1: (Shyu and Yan, 1993) [48]. If 

( ) ( )tz t e x tβ=                   (1.4) 

where  is the solution to the (1) and )(tx 0)( =tz  is asymptotically stable, then the system (1) 
has the stability degree 0>β . 
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1.4 Robust linear controller design   

In this section, a new combined linear controller design techniques for stabilization of matched 
perturbed system (1) is considered. The stability and β -stability conditions are derived in 
terms of some matrix equations.  

1.4.1 Combined linear control law 

Let us construct following combined linear controller: 

( ) ( )Tu t kB Px t µ= − −                  (1.5) 

where  is a constant feedback gain, k µ  is a constant control vector term to be selected; 
δµ ≤ . 

Controller (5) consists of two parts: 1) Conventional linear state feedback similar to (Mahmoud 
and Muthairi 1994 [3], Cao and Sun 1998 [4]) which is used to compensate the parameter 
uncertainties and 2) Constant control term which is different from [3], [4], and used to reject the 
external disturbances. Note that, this control law is continuous and linear in state. Therefore, the 
existence of the solution of (1) under controller (5) also in the usual sense can be guaranteed. 
We want to design the parameters ,k µ and P such that the perturbed closed-loop system is 
globally robustly asymptotically stable. 

1.4.2 Global stability conditions 

The following theorem summarizes our stability results.  

Theorem 1: Suppose that Assumption 1 holds. Then the uncertain system (1) under the action 
of the linear controller (5) is globally robustly asymptotically stable, if the following conditions 
are satisfied: 

0)1(22 2 <−=−−++ QIkIPAPA nn
T ωηωρ               (1.6) 

where  is a positive definite matrix Q

1
fθδ
η

=
−

                  (1.7) 

Proof: Choose a Lyapunov V-function candidate as  

( ( )) ( ) ( )TV x t x t Px t=                  (1.8) 

where  is a positive definite matrix. 0>= TPP

The time derivative of (8) along the trajectory of (1), (5) is given by: 
 

( ( )) ( ) ( ) ( ) ( )T TV x t x t Px t x t Px t= +  

( ) ( )

( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( )

T T T T T T

T T T T T T
m

x t A Px t x t PAx t x t P A x t x t PDf t x t P B B u t

x t A P PA x t x t PBH x t x t PBF f t kx t PB I E B Px t

σ σ

σ σ σ

⎡ ⎤⎣ ⎦= + + ∆ + + +∆

= + + + − +
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( )

( )

2 ( ) ( )

( ) ( ) 2 ( ) ( ) ( )

T
m

T T T

x t PB I E

x t A P PA x t x t PBH x t

σ µ

σ

− +

= + +

                                                                   (1.9) 

( )

( )

2 ( ) ( ) ( )

2 ( ) ( ) ( ) ( )

T T
m

T
m

kx t PB I E B Px t

x t PB F f t I E

σ

σ σ µ⎡ ⎤⎣ ⎦

− +

+ − +

                                

  

In according to Rayleigh’s principle (Skogestad and Waite 1997 [49], Zang 1999 [49]), 
 

max maxmin min( ) ( ) ( ) ( )A B A B A Bλ λ λ+ < + < +λ  

 

where A, B are positive definite matrices, A + B > 0 and triangle inequality BABA +≤+ , 
we can evaluate:  
 

min0 1 1 min ( ( )) ( ) 1mE I E
σ

η λ σ σ< − < + ≤ + ≤ +η         (1.10) 

 
where 1minmin ( ( )) 0E

σ
λ σ α= > . 

 
Correctness of inequalities (10) directly follows also from Fan’s type results [49], [50] for 
positive semi-definite matrices A and B: 
 

max max max max( ) ( ) ( ) ( ) ( )T T TA B x x x A B x A B xλ λ λ λ⎡ ⎤ ⎡⎣ ⎦ ⎣− ≤ + ≤ + x⎤⎦  
 

Then  
 

( ) xxEIxx T
m

T )1()()1( ηση +≤+≤−   
 

or 
 

ηση +≤+≤− 1)(1 EI m . 
 
Hence   )1()( ησ −−≤+− EI n , 1<η ;             (1.11) 
 
Therefore we can evaluate 
 

( ) ( ) ( ) ( )( )

( ) ( )

2 (1 ) ( ) ( ) 2 ( ) ( ) ( )

2 (1 ) ( ) ( )

T TT T T T
m

TT T

k B Px t B Px t k B Px t I E B Px t

k B Px t B Px t

η σ

η

− ≤ +

≤ +

                                    (1.12) 

 

Since Schwarz’s inequality holds: 
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( ) ( )

( )

2 ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( )

T T
m m

T
m

x t PB F f t I E x t PB F f t I E

x t F f t I E

σ σ µ σ σ µ

ω σ σ

⎡ ⎤⎣ ⎦− + ≤ − +

= − + µ
  (1.13) 

 
Again based on Rayleigh’s principle [49], [50]: 
 

)()( )()( minmaxmaxmin BABABA λλλλ +≤−≤−   
 
for  and triangle inequality (Vidyasagar 1978 [51]):  0≥− BA

x y x y− ≤ −  for two given vectors x and y, we can evaluate the upper bound of (13) as 

follows: 
 

( ) ( ) ( )

( )

max maxmin ( ) ( ) ( ) max ( ) ( ) ( ) ( )

( ) ( ) ( )

T
m m

m

F F f t I E F f t I E

F f t I E

σ σ
λ σ σ λ σ µ σ σ µ

σ σ µ

− + ≤ − +

≤ − +

 

( ) ( )max maxmax ( ) ( ) ( )  min ( ) (1 )T
mmn F F f t I E f

σσ
λ σ σ λ σ µ θ η δ≤ − + ≤ − −

)

    (1.14) 

As a matter of fact we want, in light of 0, to make an upper bound of this term to be 
equal to zero: 

≤))(( txV
( µσσ )()()( EItfF m +−  = 0, which always is possible because of selecting the 

some value of design parameter µ .    

Let us evaluate: 
 
2 ( ) ( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( );T T Tx t PB H x t PB H x t x t x t x tσ σ ωρ∆ ≤ =     (1.15) 
 
Then 
 

( )( ( )) ( ) ( ) 2 ( ) ( )T T TV x t x t A P PA x t x t x tωρ≤ + + 22 (1 ) ( ) ( ) 2 (1 ) ( )Tk x t x t f xη ω ω θ η δ⎡ ⎤⎣ ⎦− − + − − t  

 
2( ) 2 2 (1 ) ( ) 2 (1 ) ( )

( ) 2 (1 ) ( )

T T
n n

T

x t A P PA I k I x t f x t

x Qx t f x t

ωρ η ω ω θ η δ

ω η δ θ

⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦

⎡ ⎤⎣ ⎦

= + + − − + − −

= − − − −
      (1.16) 

 
In view of (16), if conditions (6) and (7) or the following same conditions are satisfied: 
 

min: [ ( )] 0QλΦ = >                (1.17)  

: [ (1 ) ]2 0fδ η θ ωΩ = − − =               (1.18) 
 
Then (16) reduces to  

2( ( )) ( ) ( ) ( ) 0V x t x t x t x t≤ −Φ −Ω = −Φ <2          (1.19) 
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Therefore, we conclude that the closed-loop perturbed system (1), (5) is globally robustly 
asymptotically stable. The theorem is proved. 

Remark 1: There are three approaches for evaluation of terms in (9): 

1) Vector-matrix norm evaluation approach: 

Schwarz’s inequality: Tv w v w≤  

Matrix product inequality: WUUW ≤  

where  are some vectors and  are some matrices. wv, WU ,

Then, for example: 

2

2 ( ) ( ) ( ) 2 ( ) ( ) ( )

2 ( ) max ( ) ( ) 2 (

TT T

T

x t PBH x t B Px t H x t

)B P x t H x t x tσ

σ σ

σ ωρ

⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦=

≤ =

                           (1.20)  

 
This approach is used in (15). Similar evaluation is frequently encountered in literature, for 
example Cheres (1989) [37], Mahmoud and Al-Muthairi (1994) [3], Shyu and Yan (1993) [48] 
etc. 

2) Summation evaluation approach also is very well known in literature, for example Cao and 
Sun (1998) [4]. This approach based on following inequality: 

12  ,                 0T T Tv w v v w wα α
α

≤ + >              (1.21) 

Then 

2 ( ) ( ) ( ) 2 ( ) ( ) ( )
TT Tx t PBH x t B Px t H x tσ σ⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦= ( ) ( ) ( ) ( ) ( ) ( )T T T Tx t PBB Px t x t H H x tσ σ≤ +  

       
                               2222 )()(max)( txHtxPB σσ+≤ 222 )()( txρω +=   (1.22) 
 
3) Modification to summation evaluation approach: 
 

2

2 2 2 2

2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )max ( ) ( )

1 max ( ) ( ) 1 ( )

T T T T T

T T

x t PBH x t x t x t x t PBH H B Px t

x t x t x t PBH x t

PBH x t x t

σ

σ

σ σ σ

σ

σ ω ρ⎡ ⎤ ⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

≤ +

≤ +

= + ≤ + 2

2

                    (1.23) 

 
Note that, considered various evaluation approaches are true and there is a following 
relationship between them 

2 2 22  1ω ρ ω ρ ω ρ≤ + ≤ +                (1.24) 

which is also true. Here and further, for our problems we can use all of alternative approaches 
that only inconsiderably influence the damping constant of V-function, stability region or 
equilibrium point of perturbed system. 
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Note that in this case the control action (5) is sufficient to reject the external disturbance, since 
(1 ) fδ η− = θ . Then the equilibrium point of perturbed closed-loop system (1), (5) is shifted 

from ex Ω=
Φ

 to origin 0ex =  because δ is selected such that 0=Ω  that is the uniformly 

bounded external disturbance is vanished by the negative constant control action (5). Moreover, 
 does not contain the non-vanishing perturbation and becomes negative definite. 

Therefore, the origin of the closed-loop perturbed system (1), (5) becomes an equilibrium point 
by the control action (5) for uniformly bounded disturbance the effect of which is suppressed. 
For this reason also we may say that the origin of perturbed closed-loop system (1), (5) is 
globally asymptotically stable. Thus, the uniformly bounded disturbance is suppressed and 
origin is globally asymptotically stable if only if 

))(( txV

0Ω =  or (1 ) fδ η θ− = . But the origin cannot 
be made to be equilibrium by the control (5) for arbitrary disturbance ( )f t . This particular 
result for linear perturbed systems does not contradict to Khalil (2002) [52] concept of 
ultimately boundedness solution of perturbed system. 

Remark 2: The equilibrium of the perturbed system (1), (5) in general varies with the 
disturbance ( )f t  since ( )f t  is allowed to be a persistent disturbance. Let us consider following 
cases: 

1) First, assume that  or 0Ω > (1 ) fδ η θ− > . Then from (19) we have 
2( ( )) ( ) ( ) 0V x t x t x t< −Φ −Ω <  because 0Φ >  and 0Ω > . Therefore, we conclude that the 

solution of (1), (5) is uniformly ultimately bounded. Equilibrium point is shifted from origin to 

ex Ω= −
Φ

 because linear controller (5) in this case does not suppress only the effect of 

disturbance, but has produced an excessive negative constant control action as a non-vanishing 
perturbation. Although, this over control extended the region of stability, it cannot make the 
origin to be in equilibrium. Region of stability follows from inequality 0)()( 2 <Ω−Φ− txtx  

or (( ) ( ) 0x t x t− Φ +Ω <)  which is hold if 0)( >tx  and ( )x t Ω> −
Φ

. Thus, in this case the 

solution of (1), (5) is uniformly ultimately bounded in region ( )x t Ω> −
Φ

. Therefore, origin is 

stable but it is not an equilibrium point. Perturbed system is unstable or unbounded in region 

( , Ω−∞ −
Φ

].  

2) Second, we consider the case when 0Ω <  or (1 ) fδ η θ− < . Then from (19) we have  

2( ( )) ( ) ( )V x t x t x t< −Φ +Ω ( )( ) ( ) 0x t x t= − Φ −Ω < . This inequality is satisfied if 

0)( >tx  and ( )x t Ω>
Φ

. Therefore, perturbed system is uniformly bounded in region 

( )x t Ω>
Φ

. Origin of perturbed system (1), (5) is shifted to ex Ω=
Φ

 because the negative 

constant control action is not sufficient for suppression of disturbance. Therefore, origin is 
unstable or unbounded. Thus, in this case the perturbed system (1), (5) is uniformly bounded in 

region ( )x t Ω>
Φ

 and origin is unstable or unbounded. Perturbed system is unstable or 

unbounded in region (-∞,
Φ
Ω ].  
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3) Third, we consider the case when the external disturbance is not presented . In this 
case linear controller (5) without constant term or  renders the origin of the 
matched uncertain system (1) without external disturbance, to globally asymptotically stable. 
Since from (19) we have  

( ) 0f t =

( ) ( )Tu t kB Px t= −

0)())(( 2 <Φ−< txtxV , because of 0Ω = . Then this system has an 
equilibrium point at origin 0ex = . Origin is globally asymptotically stable in region  ( ). ∞−∞,

1.4.3. Robust stabilization with a stability degree β>0 
 
With the Observation 1 now we are ready to present the following Corollary 1 of Theorem 1. 

Corollary 1: Suppose that Assumption 1 holds. Then the perturbed system (1) driven by linear 
controller (5) is globally asymptotically stable with stability degree β>0 if the following 
conditions are satisfied:      

( ) ( ) 22 2 (1 )T
n n n nA I P P A I I k I Qβ β ωρ η ω+ + + + − − = −      (1.25) 

where Q  is a positive definite matrix         

1
fθδ
η

=
−

                (1.26) 

Proof: Utilize (4) to transform (1) into 
 

( ) ( ) ( ) ( ) ( ) [ ( )] ( )

( ) ( ) ( ) ( )

( ) [ ( )] ( ) ( ) ( ) ( ) ( )

t t t t
n m

t t

m

z t e x t e x t A I e x t B I E e u t

BH e x t BF e f t

Az t B I E u t BH z t BF f t

β β β

β β

β β

σ σ

σ σ σ

= + = + + +

+ +

= + + + +

βσ

                                         (1.27) 

 
where for the sake of simplicity, we let 
 

( ) ( )

( ) ( )

n

t

t

A A I

u t e u t

f t e f t

β

β

β= +

=

=

                (1.28) 

 
: 2 [ (1 ) ] 0te fβ ω δ η θΩ = − − =               (1.29) 

Then controller (5) can be transformed into: 

( ) ( ) ( ) ( )t T t t Tu t e u t kB Pe x t e kB Pz tβ β β µ µ= = − − = − −      (1.30) 

where µµ βte= . 

Now let us choose a Lyapunov V-function as: 

)()())(( tPztztzV T=                (1.31)  

where P  a positive definitive matrix.  
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The time derivative of (31) along the transformed system (27), (30) can be evaluated similar to 
proofs of Theorem 1 as follows: 

 

0)()()())(( 22 <Φ−=Ω−Φ−≤ tztztztzV         (1.32) 

 

Therefore, we conclude that the transformed closed-loop perturbed system (27), (30) is globally 
robustly asymptotically β -stable. The Corollary 1 is proved. 

1.4.4 Robust stabilization control algorithm 1 

The sufficient stability condition can be transformed into standard algebraic Riccati equality 
and robust linear controller with constant term can be obtained by solving an ARE.  

Taking into account lover bound of evaluation (12) and (22) condition (6) can be rewritten as. 

 
2 2 (1 )T T TA P PA PBB P I k PBB P Qρ η+ + + − − = −           (1.33)  

 

Letting  

1
2 QQI =+ρ ,                (1.34) 12 <ρ

1
1

k
η

=
−

             (1.35) 

where  is a positive definite symmetric matrix.  1Q

Then, condition (6) can be reduced to standard ARE: 

1 0T TA P PA PBB P Q+ − + =               (1.36) 

Now, control algorithm can be obtained by following steps: 

• The parameters A, B, D, , a ρ , , f θ  and η  are given. 

• Solve ARE (36) for given  by using MATLAB command. 1Q

• Check condition (6) 

• Find k from (35) 

• Find δ  from (7) 

• Obtain control algorithm from (5) 
 

1.4.5 Design example 1: Linear control for F-16 

Consider design of linear control system (1), (5) for jet fighter F-16. F-16 linearized lateral 
dynamics at the nominal flight condition is taken from (Stevens and Levis 2003 [53]). This 
dynamics is augmented by the aileron and rudder actuators given by simplified model 

2.20
2.20

+s
 [53]. A washout filter r

s
srw 1+

=  is used with r yaw rate and  the washout yaw wr
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rate. The full dynamics model of F-16 aircraft with actuators, washout filter and control can be 
presented in the following state space form BuAxx += : 

 

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

r

a

w

r

a

w

r

a
u
u

x

r
p

x

r
p

0      0   
20.2   0   

0   20.2
0      0   
0      0   
0      0   
0      0   

 

    1-      0             0        57.2958        0            0         0         
0      20.2-        0               0            0            0         0         
0         0          20.2-          0            0            0         0         
0    0.0620-  0.0319-   0.4764-   0.0254-    0     8.5396    
0    0.1315     0.7333-  0.6646     3.6784-    0    30.6492- 
0           0            0        0.0037           1          0          0        
0    0.0008     0.0003   0.9917-    0.0364    0.640  0.329 

δ
δ

φ
β

δ

δ

φ

β

 

The output is of the form y = Cx:  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

w

r

a

w

x

r
p

p
r

δ
δ

φ
β

φ
β

0     0   0       0               0    57.2958    0      
0     0   0       0               0         0     57.2958
 0     0   0       0          57.2958   0          0      

1-   0   0   57.2958        0         0          0      

 

 

where β  is the sliding angle, φ  is the bank angle, p is the roll rate, r is the yaw rate, aδ  is the 
aileron deflection, rδ  is the rudder deflection,  is the washout filter state. The control inputs 
are the aileron  and rudder  servo-inputs. 

wx

au ru

The linear controller design can be fulfilled by the following steps: 

• Solve the matrix inequality MI (6) (or ARE (36)) by using MATLAB programming: 

 
 clear 

 clc 

 format long 

 A=[-0.322 0.064 0.0364 -0.9917 0.0003 0.0008 0; 

     0 0 1 0.0037 0 0 0;-30.6492 0 -3.6784 0.6646 -0.7333     

      0.1315 0;8.5396 0 -0.0254 -0.4764 -0.0319 -0.0620 0; 

     0 0 0 0 -20.2 0 0;0 0 0 0 0 -20.2 0;0 0 0  57.2958 0 0 -1 ]; 

 Lambda=eig(A); 

 B=[0 0; 0 0;0 0;0 0;20.2 0;0 20.2;0 0]; 

 C=[0 0 0 57.2958 0 0 -1;0 0 57.2958 0 0 0 0; 

    57.2958 0 0 0 0 0 0;0 57.2958 0 0 0 0 0]; 
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 CO=ctrb(A,B); 

 RankCo=Rank(CO) 

 OB = obsv(A,C); 

 RankOb=rank(OB) 

t=45 

 H=[0.2*cos(t)  0   0 0 0 0 0; 0  0.2*sin(t)  0 0 0 0 0 ]; 

 E=[0.2*cos(t)  0; 0  0.2*sin(t)];  

 F=[0.2*cos(t) 0 0 0 0 0 0; 0 0.1*sin(t) 0 0 0 0 0];   

 DeltaA=B*H; 

 DeltaB=B*E; 

 D=B*F; 

 a=norm(DeltaA) 

 ro=norm(H) 

 f=norm(F) 

 eta=norm(E) 

 Q=[1 0 0 0 0 0 0; 0 1 0 0 0 0 0; 0 0 1 0 0 0 0; 

    0 0 0 1 0 0 0; 0 0 0 0 1 0 0; 0 0 0 0 0 1 0; 

    0 0 0 0 0 0 1]; 

 P=[100.678  0.875 -3.119 10.225 10.67 0.047  -2.6412; 

   0.875  586.16  -0.501   0.335  -0.377  10.63   1.1764; 

   -3.119  -0.501   24.801 7.351 -0.762  0.128   -9.1344; 

    10.225   0.335  7.351   5.491  -0.36  -0.72  .58763; 

    10.67  -0.377  -0.762  -0.36 10.0247   0  10.999; 

    0.047   10.63   0.128  -0.72  0  10.0247  -0.195; 

   -2.6412 1.1764   -9.1344   .58763 10.999  -0.195  367.416]; 

 Peig=eig(P) 

 Omega=sqrt(max(eig(P*B*B'*P))) 

 I=Q; 

 k=0.1 

 MI=A'*P+P*A+2*Omega*ro*I-2*k*(1-eta)*Omega^2*I+Q 

  MIeig=eig(MI) 

 ft=[0.2*cos(t) 0.2*sin(t) 0 0  0 0 0]; 

 theta=norm(ft) 

 delta=f*theta/(1-eta); 

where  

RankCo =7 

 RankOb =7 
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t =45 

a =3.43765023911784 

ρ  =0.17018070490682 

f =0.10506439776355 

η =0.17018070490682 

 0.2000  =θ

0.0253=δ  

The eigenvalues of open-loop system are: 

( ) 1.0000;  -0.4226  3.0634i;  -0.4226  3.0634i; -0.0163 ; -3.6152; -20.2000 ; -20.2000 eig A = − + −
 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

367.416  0.195-  10.999  0.58763   9.1344-   1.1764   2.6412-  
0.195-  10.0247     0         0.72-      0.128       10.63     0.047     

10.999        0       10.0247     0.36-   0.762-    0.377-   10.67     
0.58763     0.72-     0.36-      5.491   7.351       0.335    10.225    
9.1344-   0.128     0.762-      7.351  24.801     0.501-    3.119-  

1.1764     10.63    0.377-      0.335   0.501-  586.16     0.875     
2.6412-  0.047    10.67        10.225  3.119-   0.875    100.678   

P
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

096415586.364764
084026368.011053
439956103.036178
5256327.0893205
42849.90852600
49048.69280340
78521.49275441

eig(P)
 

 

⎥
⎦

⎤
⎢
⎣

⎡
=

3.9390-   202.4989      0         14.5440-    2.5856    214.7260     0.9494  
222.1798         0     202.4989     7.2720-   15.3924-    7.6154-   215.5340

 PBT   
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

4.9379     0.0798-   4.4991    0.1558-   0.3430-   0.2538-   4.7884  
0.0798-   4.1006       0         0.2945-     0.0524    4.3482    0.0192  
4.4991        0         4.1006    0.1473-   0.3117-   0.1542-   4.3645  
0.1558-   0.2945-   0.1473-   0.0264    0.0074    0.3068-   0.1581- 
0.3430-   0.0524    0.3117-   0.0074     0.0244    0.0672    0.3315- 
0.2538-    4.3482    0.1542-   0.3068-   0.0672    4.6165    0.1438- 

4.7884      0.0192    4.3645    0.1581-   0.3315-   0.1438-   4.6456 

P  

 

[ ]0.0000  0.0000  0.0000   0.0000   0.8725   1.3727   0* 005+1.0e )( =Peig  

ω  =3.705035436862447e+002 

k =0.10000000000000

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2.3390-    0.0003    0.0227-   2.1047    0.0044    0.0001-    0.0288  
0.0003    2.3060-   0.0000-   0.0004    0.0010    0.0215-   0.0012- 
0.0227-   0.0000-   2.3059-   0.0621    0.0000-   0.0009    0.0197- 

2.1047    0.0004    0.0621    2.2604-   0.0534-   0.0069    0.0440- 
0.0044    0.0010    0.0000-   0.0534-   2.2839-   0.0588    0.0681- 
0.0001-   0.0215-   0.0009    0.0069    0.0588    2.2655-   0.0024  
0.0288    0.0012-   0.0197-   0.0440-   0.0681-   0.0024   2.2354- 

* 004+1.0eMI
 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0645280.19357938-  
5872292.17217989-  
2890932.24355990-  
0256452.30322752-  
7033832.31257559-  
2955382.36253528-  
0079954.40849596-   

* 004+1.0eeig(MI) 
 

 

which is a negative definite matrix. Thus, all design parameters are obtained.  

System (1), (5) for F-16 is simulated by using Matlab-Simulink. Block diagram of this system 

is shown in Figure 1.1. Time responses and control functions are shown in Figure 1.2 and 1.3, 

respectively. Simulation results show that the control performances are satisfactory, for 

example settling time is 15 sec.  
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Figure 1.1 Robust linear control scheme for uncertain multi-input systems 

 

 

 

 

 
         Figure 1.2 State responses        Figure 1.3 Linear control 
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1.5. Variable structure controller design 
In this section combined variable structure controller design techniques for robust stabilization 
of uncertain system with parameter perturbations and external disturbances are advanced. The 
stability and sliding conditions are derived by using Lyapunov V-function method and 
formulated in terms of some matrix equalities. Matching and mismatching cases are considered 
also.  

1.5.1 VSC law and matching sliding conditions 

Form the combined simple variable structure controller as:    

[ ]
)(
)(

ts
ts δx(t)ku(t) +−=               (1.37) 

where  is a scalar feedback gain and k δ  is a relay constant to be designed. The sliding surface 
is defined as follows 

Px(t)Bs(t) T=                            (1.38)   

where TB P C=  is a sliding mode ( nm× )-matrix of full rank and  is invertible, 
because 

TCB B PB=
PBBT  is a positive definite ( mm× )-matrix. 

VSC (37) consists of two parts: 1) min-max or quasi-relay term to compensate the matched or 
mismatched parameter uncertainties and to drive the system trajectories toward the switching 
surface until intersection occurs, 2) relay part to reject the matched external disturbances. After 
selecting the sliding mode control the next step is to choose the design parameters δ,k  and P  
such that the stable sliding motion can always be generated on the manifold s(t)=0. With regard 
to the sliding condition, we may state the following theorem. 

Theorem 2: Suppose that the Assumption 1 holds. Then the asymptotically stable sliding mode 
can always be generated on the sliding surface ( ) 0s t =  (38) defined for perturbed system (1), 
(37) if the following conditions are satisfied: 

 

QPPBBkIPBBPAAP T
n

TT −=−−++ )()1(2)(2 min1max ληωρωλ          (1.39) 

)()1(
)(

min

max

PBB
PBBf
T

T

λη
θλ

δ
−

=               (1.40) 

where PPBBP T=  is a positive semi-definite matrix, Q  in general is a positive semi-definite 
matrix and 1 1ω ω= . 

Proof: Choose a Lyapunov function candidate as 

( ( )) ( ) ( )TV s t s t s t=          (1.41)  

The time derivative of (41) along the trajectory of the system (1), (37), (38) can be calculated as 
follows: 
 

[ )()()()(2)()(2 txAPBtPAxBPBtxtstsV TTTT σ∆+== ])()())(( tDftuBBPBT +∆++ σ  

    [ )()()()(2 txPBHBtPAxBPBtx TTT σ+= ])()()())(( tfPBFBtuEIPBB T
m

T σσ +++         (1.42) 
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     ( ) )()()(2)()( txPBHPBBtxtxPPBBAPAPBBtx TTTTTT σ++= ( ) ( )2 ( ) ( ) ( )
( )

T T
m

s tk x t s t B PB I E
s t

σ− +  

         ( )2 ( ) ( ( )) 2 ( ) ( ) (
( )

T T T T
m

s t )s t B PB I E s t B PBF f t
s t

δ σ− + + σ  

Since 

min2 (1 ) ( ) ( ) ( )Tk B PB x t s tη λ− ( )2 ( ) ( ) ( ( ))
( )

T T
m

s tk x t s t B PB I E
s t

σ≤ +   

                                                   max2 (1 ) ( ) ( ) ( )Tk B PB x tη λ≤ + s t ;     (1.43) 

maxmin
( )2 (1 ) ( ) ( ) 2 ( ) ( ( )) 2 (1 ) ( ) ( )
( )

T T T T
m

s t ;B PB s t s t B PB I E B PB s t
s t

δ η λ δ σ δ η λ− ≤ + ≤ +  (1.44) 

       max2 ( ) ( ) ( ) 2 ( ) ( )T T Ts t B PBF f t f B PB s tσ θλ≤  

and  

max2 ( ) ( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( ) ( )T T T T Tx t PBB PBH x t s t B PBH x t B PB s t x tσ σ ρλ= ≤     (1.45) 

Then  
 

( )

max min

maxmin

( ( )) ( ) ( )

   2 ( ) ( ) ( )    2 (1 ) ( ) ( ) ( )

   2 (1 ) ( ) ( ) 2 ( ) ( )

T T T T

T

T T

V s t x t PBB PA A PBB P x t

TB PB s t x t k B PB x t s t

B PB s t f B PB s t

ρλ η λ

δ η λ θλ

≤ +

+ − −

− − +

   (1.46) 

 
Since the following matrix inequalities hold: 

( ) ( ) ( ) ( )T Ts t B Px t B P x t x tω= ≤ =        (1.47) 

and    1
( )

( ) ( )
s t

x t sω
ω

− ≤ − = − t              (1.48) 

Then 

 

2
1min min

1 min

2 (1 ) ( ) ( ) ( ) 2 (1 ) ( ) ( )

2 (1 ) ( ) ( ) ( )

T T

T T T

k B PB x t s t k B PB s t

k B PB x t PBB

η λ ω η λ

ω η λ

− − ≤ − −

= − − Px t
  (1.49) 

Therefore   
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max

1 min

maxmin

2
min

( ( )) ( ) 2 ( )

   2 (1 ) ( ) ( )

2 (1 ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T T T T T
n

T T

T T

T

V s t x t PBB PA A PBB P B PB I

k B PB PBB P x t

B PB f B PB s t

x t Qx t s t Q x t s t

ρωλ

ω η λ

δ η λ θλ

λ

⎡⎣

⎤⎦

⎡ ⎤⎣ ⎦

≤ + +

− −

− − −

=− −Ω ≤− −Ω

 

           0)()()()( 2
min

2
1 <Ω−≤Ω−−≤ tststsQλω              (1.50) 

 

if the conditions (39), (40) or 
 

[ ] 0)(: min
2

1 ≥=Φ Qλω                                  (1.51) 

[ ] 0)()()1(2: maxmin ≥−−=Ω PBBfPBB TT θλληδ          (1.52) 
 
are satisfied. Therefore, we conclude that the asymptotically stable sliding mode is always 
generated on the ( ) 0s t =  (38) defined for (1), (37). In other words, the sliding manifold s(t)=0 

(38) is reached in finite time and reaching time can be evaluated as _

||)0(||

Ω
≤

sts . 

Theorem 2 is proven. 

1.5.2 Global stability conditions for matching and mismatching cases   

 

Now we can derive the global asymptotical stability conditions for the closed-loop 
matched/mismatched perturbed system (1), (37), (38) with respect to the state coordinates x(t). 
The following theorem summarizes our stability results.  

Theorem 3: Suppose that Assumption 1 holds. Then the multi-input system (1) with matched 
parameter uncertainties and matched external disturbances driven by variable structure 
controller (37), (38) is robustly globally asymptotically stable, if the following conditions are 
satisfied: 

0)1(22 1 <−=−−++ QPPBBkIPAPA T
n

T ηωρω            (1.53) 

(1 )
fθδ
η

=
−

                              (1.54) 

Proof: Choose a Lyapunov function candidate as:  

)()())(( tPxtxtxV T=                      (1.55) 

where P is a positive definite matrix. 

The time derivative of (55) along the trajectory of the system (1), (37), (38) can be calculated 
for both cases similar to proofs of Theorem 2: 

[ ] [ ] )()1(2)()()()1(2)()())(( 2
min tsftxQtsftQxtxtxV T θηδλθηδ −−−−≤−−−−≤    
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0)()()( 22 <Φ−=Ω−Φ−= txtstx                    (1.56) 

 
if the conditions (53) and (54) are satisfied. 

Therefore, we conclude that the perturbed system (1), (37), (38) is globally asymptotically 
stable with respect to the state vector x(t). Theorem 3 is proven.  

For mismatching system matrix case the following theorem can be stated and proved similar to 
Theorem 3.  

Theorem 4: The multi-input system (1) with mismatched parameter uncertainties and matched 
external disturbances driven by variable structure controller (37), (38) is robustly globally 
asymptotically stable, if the following conditions are satisfied: 

0)1(2)(2 1max <−=−−++ QPPBBkIPaPAPA T
n

T ηωλ       (1.57) 

(1 )
fθδ
η

=
−

                (1.58) 

 

1.5.3 Robust β-stability conditions  

Finally, let us derive the robust β -stability conditions for system (1), (37), (38). This 
controlled system, in terms of new state coordinates z(t) is given by (27) for which )(tu  can be 
presented as follows: 

[ ]
)(
)()(

)(
)()])([)()(

ts
tsetzk

ts
tstxketuetu ttt βββ δδ −−=+−==

−

        (1.59) 

)()()( tPzBtsets Tt ==
−

β              (1.60) 

 

The following corollary summarizes our β-stability conditions. 

Corollary 2: Suppose that the Assumption 1 and the condition (53), (54) of Theorem 3 are met. 
Then the transformed matched uncertain system (27) driven by transformed controller (59), 
(60) has a stability degree β>0, if the following conditions are satisfied: 
 

QPPBBkIPIAIAP T
n

T
nn −=−−++++ )1(22)()( 1 ηωρωββ                 (1.61) 

 
where Q  is a positive definite matrix and 

η
θδ
−

=
1

f
                                (1.62) 

 

Proof: Choose a Lyapunov function candidate as: 
 

)()())(( tPztztxV T=                          (1.63) 
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The time derivative of (63) along the trajectory of transformed system (27), (59), (60) can be 
calculated as follows: 
 

2
min

2 2

( ( )) ( ) ( ) 2 (1 ) ( ) ( )

( ) ( ) 2 (1 ) ( ) ( )

( ) ( ) ( ) 0

T t

t

V z t z t Qz t f s te

Q z t e f s t

z t s t z t

β

β

δ η θ

λ δ η

⎡ ⎤⎣ ⎦

⎡
⎣

≤ − − − −

≤ − − − −

= −Φ − Ω = −Φ <

θ ⎤
⎦                                        (1.64) 

 
if the conditions (61) and (62) are satisfied. Therefore, we conclude that closed-loop 
transformed system (27), (59), (60) with matched perturbations is globally asymptotically β -
stable with respect to the new state coordinates z(t). Corollary 2 is proven. 

 

1.5.4 Robust stabilization control algorithm 2 

 

The sufficient stability condition can be transformed into standard algebraic Riccati equality 
and combined variable structure can be obtained by solving an ARE.  

Taking into account lover bound of evaluation (12) and (22) condition (53) can be rewritten as. 

QPPBBkIPPBBPAPA TTT −=−−+++ )1(2 1
2 ηωρ                  (1.65)  

Letting  

1
2 QQI =+ρ ,                (1.66) 12 <ρ

)1(
1

1 ηω −
=k                 (1.67) 

where  is a positive definite symmetric matrix.  1Q

Then, condition (65) can be reduced to standard ARE: 
 

01 =+−+ QPPBBPAPA TT            (1.68) 
 
Now, control algorithm (37), (38) can be obtained by following steps: 

• The parameters A, B, D, , a ρ , , f θ  and η  are given. 

• Solve ARE (68) for given  by using MATLAB command. 1Q

• Check condition (53) 

• Find k from (67) 

• Find δ  from (62) 

• Obtain control algorithm from (37) 
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1.5.5 Design example 2: Variable structure control for F-16 

Consider variable structure controller (37), (38) design for F-16. F-16 linearized lateral 
dynamics at the nominal flight condition with the parameters is given in Example 1. Variable 
structure control design for lateral-directional F-16 aircraft can be fulfilled by the following 
steps:  

• Solve the matrix inequality MI (53) (or ARE (68)) by using MATLAB programming: 
 

clear 

 clc 

 format long 

 A=[-0.322 0.064 0.0364 -0.9917 0.0003 0.0008 0; 

     0 0 1 0.0037 0 0 0;-30.6492 0 -3.6784 0.6646 -0.7333     

      0.1315 0;8.5396 0 -0.0254 -0.4764 -0.0319 -0.0620 0; 

     0 0 0 0 -20.2 0 0;0 0 0 0 0 -20.2 0;0 0 0  57.2958 0 0 -1 ]; 

 Lambda=eig(A); 

 B=[0 0; 0 0;0 0;0 0;20.2 0;0 20.2;0 0]; 

 C=[0 0 0 57.2958 0 0 -1;0 0 57.2958 0 0 0 0; 

    57.2958 0 0 0 0 0 0;0 57.2958 0 0 0 0 0]; 

 CO=ctrb(A,B); 

 RankCo=Rank(CO) 

 OB = obsv(A,C); 

 RankOb=rank(OB) 

 t=45 

 H=[0.2*cos(t)     0      0 0 0 0 0;0      0.2*sin(t)  0 0 0 0 0 ]; 

 E=[0.2*cos(t)     0  ;0      0.2*sin(t)];  

 F=[0.2*cos(t) 0 0 0 0 0 0;0 0.1*sin(t) 0 0 0 0 0];   

 DeltaA=B*H  ; 

 DeltaB=B*E  ; 

 D=B*F; 

 a=norm(DeltaA) 

 ro=norm(H) 

 f=norm(F) 

 eta=norm(E) 

 ft=[0.2*cos(t) 0.2*sin(t) 0 0  0 0 0]; 

 theta=norm(ft) 

where  

RankCo =7 

 RankOb =7 
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t =45 

a =3.43765023911784 

ρ  =0.17018070490682 

f =0.10506439776355 

η =0.17018070490682 

0.2000  =θ  

0.0253=δ  

Q=[0.2 0 0 0 0 0 0; 0 0.2 0 0 0 0 0; 0 0 0.2 0 0 0 0;  

0 0 0 0.2 0 0 0; 0 0 0 0 0.2 0 0; 0 0 0 0 0 0.2 0;  

0 0 0 0 0 0 0.2]; 

In=[1 0 0 0 0 0 0; 0 1 0 0 0 0 0; 0 0 1 0 0 0 0; 

0 0 0 1 0 0 0; 0 0 0 0 1 0 0; 0 0 0 0 0 1 0;0 0 0 0 0 0 1]; 

k1 =  10 

B1=B*B'*k1 

B1 =  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

0         0         0         0         0         0         0
0     4.0804    0         0         0         0         0
0         0     4.0804    0         0         0         0
0         0         0         0         0         0         0
0         0         0         0         0         0         0
0         0         0         0         0         0         0
0         0         0         0         0         0         0

* 0031.0e

 

P = ARE(A, B1, In) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.0004    0.0000-   0.0000-   0.0040    0.0002    0.0006    0.0177  
0.0000-   0.0000    0.0000    0.0001-   0.0000    0.0000   0.0001- 
0.0000-   0.0000    0.0000   0.0001-  0.0000-  0.0000-  0.0002- 
0.0040    0.0001-   0.0001-   0.1256    0.0001    0.0027    0.1387  
0.0002    0.0000    0.0000-   0.0001    0.0011    0.0033    0.0149  
0.0006    0.0000    0.0000-   0.0027    0.0033    0.0118    0.0367  
0.0177    0.0001-   0.0002-   0.1387    0.0149    0.0367    1.9033  

* 003+1.0eP  

Peig = eig(P) 

 Peig 1e 3 * 1.9151 0.1149  0.0119  0.0002 0.0001  0.0000 0.0000 '⎡ ⎤⎣ ⎦= +  

ω  =sqrt(max(eig(P*B*B'*P))) = 5.2798 

1ω =1/Omega = 0.1894 

k=(k1)/(2*Omega1*(1-eta) = 31.8130 

Pline=P*B*B'*P 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.0102    0.0144-   0.0189-   0.2375    0.0166    0.0548    0.4688    
0.0144-   0.0547    0.0003    0.5392-   0.0102    0.0203    0.4301-   
0.0189-   0.0003    0.0551    0.2825-   0.0564-   0.1759-   1.0429-   

0.2375    0.5392-   0.2825-   6.7351    0.1855    0.6928    9.5205    
0.0166    0.0102    0.0564-   0.1855    0.0597    0.1840    0.9849    
0.0548    0.0203    0.1759-   0.6928    0.1840    0.5696    3.1626    
0.4688    0.4301-   1.0429-   9.5205    0.9849    3.1626    23.0237   

Pline  

 
Plineeig=eig(Pline) 

[ ]0.0000   0.0000   0.0000   0.0000   0.0000   2.6317   27.8764 Plineeig =  

Lambdamax=max(Peig) = 1.9151e+003 

BtransP=B'*P 

⎥
⎦

⎤
⎢
⎣

⎡
=

0.0614-   0.2339    0.0006    2.3025-   0.0444    0.0888     1.8279-
0.0804-   0.0006    0.2348    1.1973-   0.2403-   0.7495-   4.4365-

BtransP  

⎥
⎦

⎤
⎢
⎣

⎡
==

4.7238    0.0119 
0.0119    4.7435

B*B'*PPBB'  

B'PBeig = eig(BtransPB)=  ⎥
⎦

⎤
⎢
⎣

⎡
4.7182
4.7491

δ =f*theta/(1-eta)=  0.0253 

MI=A'*P+P*A-k1*Pline+In  
 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.0001-   0.0000    0.0000    0.0004-   0.0001-   0.0001-   0.0059- 
0.0000    0.0000-   0.0000-   0.0000     0.0000     0.0000     0.0000  

0.0000    0.0000    0.0000    0.0000     0.0000     0.0000     0.0001  
0.0004-   0.0000    0.0000    0.0030-   0.0004-   0.0011-   0.0408- 
0.0000-   0.0000-   0.0000    0.0003-   0.0000-   0.0001-   0.0041- 
0.0001-   0.0000-   0.0000    0.0006-   0.0001-   0.0002-   0.0088- 

0.0063-   0.0000    0.0001    0.0486-   0.0060-   0.0161-   0.6519- 

*006-1.0eMI
 

 
MIeig=eig(MI) 

[ ] 0.0000-  0.0000-   0.0000   0.0000-  0.0000-   0.0000   0.6552-  * 006-1.0e MIeig =  

which is a negative definite matrix.  

Thus, all design parameters are obtained. System (1), (37) for F-16 is simulated by using 
Matlab-Simulink. Block diagram of this system is shown in Figure 1.4. Time responses, control 
and switching functions are shown in Figure 1.5, 1.6 and 1.7, respectively. Simulation results 
show that the control performances in general are satisfactory, for example settling time is 10 
sec. Note that, settling time for variable structure controller faster than for linear controller. 
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             Figure 1.4 Robust variable structure control scheme for uncertain multi-input systems 
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        Figure 1.5 State responses 

 

 
        Figure 1.6 Variable structure control functions 

 

 
       Figure 1.7 Switching functions 
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1.6 Conclusions 
We have designed two types of very simple robust full state feedback controllers: 1) combined 
linear and 2) combined variable structure controllers design techniques for stabilization of 
multi-input linear dynamical systems with matched/mismatched but available upper norm-
bounded unknown parameter uncertainties subject to matched but upper norm-bounded external 
disturbances are advanced. The conventional equivalent control term is not used in second 
controller because equivalent control term needs to use the matching conditions and unavailable 
parameter uncertainties. The robust global asymptotical stability, β-stability and sliding 
conditions are parametrically obtained by using Lyapunov V-function method and 
systematically formulated in terms of some matrix equations. The robust controller’s 
computational algorithms are presented. By these algorithms stability conditions are reduced to 
standard algebraic Riccati equation (ARE) problem. Two design examples with simulation 
results for jet fighter F-16 are given to illustrate the usefulness of the obtained results. 
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CHAPTER 2 
 
 

Sliding Mode Control of Aircrafts and Missiles 
 
 
2.1 Introduction 
 
This chapter consists of two paragraphs. In first paragraph a robust flight control laws based on 
variable structure control (VSC) theory and Lyupanov V-function method are designed for a 
simplified aircraft model F-18. A min-max control (MMC) and VSC laws are derived, for multi 
input multi output (MIMO) systems with matching plant uncertainties, input nonlinearity and 
external disturbances. Two types of robust feedback controllers MMC and VSC for uncertain 
MIMO systems are considered. For the both cases the existence conditions of a stable sliding 
mode and robust asymptotic stability in large of uncertain MIMO systems by MMC and VSC 
are investigated. For the design of a MMC and VSC, measurable states and sliding surface is 
chosen so that the zero dynamics of the system are stable. An application of tracking and 
positioning of VSC of longitudinal dynamics is presented. Finally, simulation results are 
presented to show the effectiveness of the design methods. In second paragraph, the guided 
missile system is considered as SISO plant with parameter perturbations. The structure 
of the missile system examined in this work is not suitable for the use of classical linear 
controllers. On the other hand the missile system should possess good performances, 
such as zero steady state error, less settling time etc. Standard VSC control laws fail to 
control the steady state error due to the structure of the system matrices. For this reason 
we have proposed two new robust output integral sliding mode controllers and design 
procedures. An integrator is included in the sliding function, which results the reduction 
and removal of the output error. The total control consists of two parts: 1) equivalent 
control part which compensates the nominal regime of the missile system and 2) VSC 
part which compensates the parameter perturbations (changes in Mach number, altitude 
and mass of the vehicle etc) of missile system. We have derived a new constructive 
sliding and stability conditions for both cases by using Lyapunov's direct method. 
Computer simulations indicate that this approach yields a satisfactory control 
performance. 
 
2.2 Robust sliding mode control systems for the uncertain MIMO aircraft model     
F-18 
 

2.2.1 Brief analysis of flight control systems 
The development of modern automatic control systems has played an important role in 
the growth of civil and military aviation. Modern aircraft include a variety of automatic 
control systems that aid the flight crew in navigation, flight management and 
augmenting the stability characteristics of the airplane. Aircraft stability and the 
analysis and synthesis of conventional and modern flight control systems are treated in 
the classical text-books [1-4]. Flight control law design techniques primarily use linear 
control theory. The aircraft dynamics are linearized and controllers are designed for a 
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variety of flight conditions. However, insurance of high control performance using the 
classical control systems for the plant which has parametrical uncertainties and external 
disturbances, nonlinearity, and time delay is a still difficult problem. 

In recent years, variable structure control with sliding mode is successfully applied to a 
flight control system with plant uncertainties [5-15]. When the system is on the sliding 
surface, the motion of system has fast response and good transient performance 
characteristics and it is insensitive to plant parameters variations and external 
disturbances. To take these advantages, modern flight control systems have been 
designed using the conventional and robust VSC techniques [14-31]. In [5], classical 
VSS theory applied to design a SISO flight control system. A variable structure 
approach to robust linear control of vertical takeoff and landing (VTOL) aircraft was 
considered in [6]. A nonlinear flight control system via sliding method was designed in 
[8]. 
Base on VSS theory, a discontinuous control law was derived, which accomplishes asymptotic 
output tracking in the closed loop nonlinear MIMO system in spite of the presence of parameter 
uncertainty [7].  This design approach was applied to synthesis nonlinear flight control system 
for asymptotically decoupled control of roll, angle of attack, and sideslip. It was assumed that 
roll angle and angle of attack represent the basic lateral and longitudinal variables the pilot 
would like the control, while there are circumstances where the pilot would like to sideslip 
without rolling and pitching. The chosen sliding surface are linear functions of tracking error, 
its derivative and integral of the tracking error. The simulated responses for the nominal system 
show that rapid, simultaneous lateral and longitudinal maneuvers can be performed in the 
presence of uncertainty in the aerodynamic coefficients [7]. Variable structure robust flight 
control system for the simplified F-14 aircraft model was designed in  [9]. For MIMO uncertain 
systems a VSC law was derived. For the derivation of the control law, a choice of a sliding 
surface is made so that the zero dynamics of the system are stable.  The linear lateral and 
longitudinal dynamics of the F-14 are decoupled. A VSC law with linear switching function 
was derived for the control of the roll angle, lateral velocity and yaw rate. Thus, VSC is 
successfully designed for the flight control system. However, sliding surface include higher 
order derivatives of the tracking error and may cause instability due to unmodelled system 
dynamics. The development and set point sliding mode controllers including saturation for a 
multi input nonlinear non-minimum phase PVTOL aircraft with external disturbances were 
considered in [10]. The aircraft state was determined by the position, x, y of the aircraft center 
of the mass , the pitch Euler angle, θ, of the aircraft relative  to the x axes, and the 
corresponding velocities  The control inputs are u.,, θyx 1- the trust, and u2 the rolling moment. 
A dynamic sliding mode control approach was employed for the aircraft system. The 
asymptotical stability robustness of the resulting closed – loop zero dynamic system and sliding 
reachability condition were successfully analyzed by using Lyapunov function method. 
A sliding mode control was applied to a nonlinear system representing an air-to-air 
missile target interception process in [11]. Missile dynamics, control actuator dynamics, 
target dynamics, and interception model dynamics grouping together all the dynamical 
equations, a nonlinear 8th order model was obtained.  A novel method was proposed 
incorporating the theory of VSC which yields excellent performance and desirable 
robustness properties. The existence condition of the sliding mode is formulated 
alternatively in terms of the motion of an equivalent control. Advantages and 
disadvantages of SMC for missile target system were analyzed.  The pursuit, pure 
proportional navigation, true proportional navigation and proportional navigation 
candidates of switching surfaces, which are fairly simple but nonetheless have practical 
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interpretations, were examined. It was shown that the proposed sliding mode controllers 
for nonlinear missile target system have very good transient performance. In [12], an 
equivalent sliding mode controller was designed for longitudinal time-variant motion of 
aircraft. 
VSC, associated with model reference following, was designed for a helicopter flight control 
system [13]. For a given forward velocity, linearized state description was expressed in the 
MIMO time variant standard form, where 8 states correspond to a physical variables, namely: u 
being to the forward velocity; v2 the vertical velocity; v the lateral velocity; θ and q the pitch 
attitude and pitch rate; φ and p roll attitude and roll rate; and r the yaw rate. The control defined 
by θ2 and θ1  are respectively, the longitudinal and lateral cyclic pitches and θr is the tail rotor 
pitch. From 8 states, only 5, the attitude and rates, can be measured and the outputs to be 
controlled are θ, r, ϕ. The performances obtained here can be favorable compared, to many 
other conventional control schemes. In [14], a new robust multivariable model reference control 
based on sliding mode scheme and Lyapunov function has been presented. The strategy 
requires only output information and utilizes a sliding mode observer to obtain estimates of the 
plant states.  The closed loop-loop system has been proved to be stable and invariant with 
respect to matched uncertainty. The practicality oh the scheme has been demonstrated by 
considering a realistic helicopter control problem. It has been shown that a single controller can 
provide good performance across the full flight envelope. Thus, the given brief survey of papers 
and books [5-16] show that the VSC with sliding mode in recent years was successfully applied 
to design of many modern SISO, MIMO, time-invariant, time-varying and uncertain flight 
control systems. There fore, the design of VSC for modern flight control systems is an 
important problem. Here, of course, all problems are not solved, but the robust control via 
variable structure with sliding mode and Lyapunov techniques are basic instrument for the 
engineering design of modern flight control system. Therefore, now briefly analyze the method 
of robust control synthesis for uncertain systems. 
In recent years, different approaches to the problem of robust control design for 
uncertain dynamical systems have been proposed. If bounds on the uncertainties are 
known then in such a case deterministic approach to the controller synthesis is a viable. 
Recently, two major approaches to the deterministic control systems are given [22]: 
1) Variable structure control methods [17-21, 27-33]. 
2) Deterministic control using Lyapunov functions [22, 23, 26] 
3) Combined methods [20, 24, 25, 34]. 
 
As shown in [24] the basic difference between the Lyapunov min-max control (MMC) 
and the variable structure control (VSC) is in their design methods. As explained above, 
the VSC is designed to stabilize the system via a prescribed sliding mode, where as the 
Lyapunov control is designed via the second method of Lyapunov and the concept of 
generalized dynamical system. Since a Lyapunov control design is, in general, simpler 
than a VSC, it seems reasonable to obtain a Lyapunov control design for a VSC. We 
will show that, both design methods can be successfully be applied to synthesis of 
uncertain systems.  

In this paper a robust flight control laws for a simplified F-18 aircraft model are 
designed via variable structure and Lyapunov function. Two types of feedback 
controllers:  MMC and VSC for MIMO systems with matching plant uncertainties, 
input nonlinearity and external disturbances are considered. For both cases the 
existence conditions of a stable sliding mode in the systems and robust asymptotic 
stability in large of uncertain MIMO systems by MMC and VSC are investigated. The 
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aircraft model has parametric uncertainty and wind gust disturbance inputs. Since the 
linearized longitudinal and lateral dynamics are decoupled, the controllers design can 
be performed separately for longitudinal and lateral control. For the design of a MMC 
and VSC a judicious choice of a measurable state vector and a sliding surface is made 
so that zero dynamics of the system are stable. This work is limited to the design of a 
longitudinal control laws though the design technique can easily be applied to the 
lateral dynamics. Finally, simulation results are presented to show the effectiveness of 
the design methods. 

This works is organized as follows. The F-18 longitudinal and lateral dynamics and 
flight control problem are given in section II. The system description and assumption 
considered in section III. The design of the robust MMC with stable sliding mode 
presented in section IV. The design of the robust VSC with stable sliding mode is 
presented in section V. Section VI presents a variable structure longitudinal flight 
control. Simulation results are presented in section VII.  

 
2.2.2 Longitudinal and lateral dynamics of F-18 
The aircraft model described in this section is based upon a modified version of the F-
18 aircraft and has been taken from [35]. 

The decoupling linearized longitudinal and lateral/directional linear state dynamical 
equations of motion of the F-18 aircraft are given by [35]: 
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where 
 
α angel of attack 
q     pitch rate 
α    angle velocity of attack 
q  pitch acceleration 

Εδ  symmetric elevator position 

PTVδ  symmetric pitch thrust velocity nozzle position 
β  angle of sideslip 
 p roll rate 
 r  yaw rate 
β  angle velocity of sideslip 
p  roll acceleration 
η  yaw acceleration 

DTδ  asymmetric elevator position 

Aδ  aileron position 

Rδ  rudder position 

RTVδ  asymmetric pitch thrust vectoring nozzle position 

YTVδ  yaw thrust vectoring nozzle position 
 
and the nomenclature, for example , is the longitudinal state matrix at Mach.3 and 26 
kft[35]. It should be noted that lateral dynamics assuming that the angel of attack is constant, 
that is: the lateral dynamics change as the angel of attack varies. 

26.3hm
longA

Thus, we can write the perturbed longitudinal and lateral state equations of follows 
 
 uxAAx )()( ∆Β+Β+∆+=                                          (2.2.3) 
 
where  , , A* : (2 x 2) and B* : (2 x 2) are matrices for  [ ]Tqx α= [ T

PTVu δδ Ε= ]

]

 
longitudinal motion;  [ ] ,Trpx β=
 

[ T
YTVRTVRADTu δδδδδ= , A* : (3 x 3), B* : (3 x 5) are matrices for lateral motion;  
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AAA ∆+=* ,  BBB ∆+=* . 

 
The flight control task is to track the reference trajectories . Suppose a reference 
trajectory (for tracking control) or 

)()( txtx r→
)(txr .constxr =  (for position control) are given. We are 

interested in designing the MMC and VSC such that, stable sliding mode can be generated and 
closed loop system states are asymptotically stable. 
 
2.2.3 System description and assumptions 
Consider the following uncertain dynamical system 
 
  )()()(),()()()( tDwtuBBxtftxAAtx +∆+++∆+=                 (2.2.4) 
 
 where is the measurable current value of the state, is control function 

 is the external disturbance vector bounded by 

nRtx ∈)( mRtx ∈)(
rRtw ∈)( θ≤)(tw where . is the Euclidean 

norm of a vector, const=θ , A, B, D are constant matrices of appropriate dimensions, with B 
of full rank, and the matrices  BxtfA ∆∆ ),,(,  and w(t) represent  uncertainty of the linear 
portion, the nonlinear input uncertainty of the system which is coupled with state variables, and 
the input matrix uncertainty respectively. System matrix A in general is an unstable matrix. 
We now make the following standard assumptions. 
 
Assumption 1: (Matching condition): The uncertainty matrices BA ∆∆ , and D satisfy the 
following rank conditions [26, 36, 28, 29, 37] 
 
 [ ] [ ] [ ] [ ]BrankDBrank ==  BBrankATBrank ∆=∆

 
where TTxx ,=  is the matrix of the basis vectors of the reduced order sliding subspace. Or for 
all uncertain element Ω∈σ  there exist matrices of appropriate dimensions  and 
g(.), such that [23, 24] 

( ) ( ) ( ).,.,. FEH

 
 ( ) ( ) ( ) ( )σσσσ BEBBHA =∆=∆ ;  
 
 BgfBFwD == ;)()( σ                    (2.2.5) 

 
where  is compact subset.  Ω
From the structural assumption, all uncertain elements can be lumped [23, 38] and the system 
(4) can be rewritten as  
 
 00 )(),()( xtxuBAxtx =++= η                   (2.2.6) 
 
where  represents the system total uncertainty or total perturbation [39] and is given by: mR∈η
 
  ( ) ( ) ( ) gwFuExH +++= σσση ,   Ω∈σ  
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Assumption 2: There are positive constants 0ρ  and 1ρ  such that [38] 
 
 .),(),( 10 xxtxt ρρρη +=≤                  (2.2.7) 
 
 In addition to Assumption 1 and 2 we also assume that the traditional assumption the pair (A, 
B) is complete state controllable is also valid. 
We now consider system (6). Let x(t) be the solution of (6) at t forced by ( ) ( ){ }ttu η, . The basic 
stability question is: find a control strategy u(x(t)) such that, the system has a sliding mode and 
the origin is uniformly asymptotically stable in the large.  
For convenience, we now introduce the following notations 
 
 ( )σµ

σ
Emin=  ; ( )σ

σ
Hh max= ; ( )σ

σ
Ff max=  ; BbPBT == ,γ   

 
       0,),( 00 >=≤ constgxgxtg                   (2.2.8) 
 

where . is the spectral norm of the matrix. We shall use ( ) ( ) )(,,, maxmin WWWW T λλλ to 
denote the transpose, eigenvalue, minimum eigenvalue and maximum eigenvalue of a square 
matrix W respectively. 
 
2.2.4 Combined min-max control 
Theoretical developments and the general way for the design of discontinuous min-max control 
and variable structure control of various uncertain systems and the derivation of sliding and 
stability conditions for the systems are known and available in the literature as we have shown 
in Section I. But uncertain systems in this combination, namely together with parameter 
perturbations ( , input matrix perturbations)A∆ ( )B∆ , input nonlinear uncertainties  
and external disturbances (w(t)) have not been considered in literature. In this section we 
propose a combined min-max control law. Thus, we need to investigate complete uncertain 
dynamical system with parameter perturbations, input nonlinearity, and external disturbances 
(4) driven by new combinations of discontinuous controllers, according to the sliding mode 
control theory. The sliding mode in min-max control and in variable structure control possesses 
attractive advantages e.g. fast response, good transient performance, and insensitivity to 
variation in plant parameters and external disturbances compared to linear control strategies, 
including robust . To take these benefits, we design two type min-max controller and 
variable structure controller to stabilize uncertain system in robust manner. To stabilize the 
uncertain system (6), we first choose a simple robust feedback MMC law, as recommended in 
[23-25, 21, 29], as follows 

( )( )xtf ,

∞H

 

   ( ) ( )[ ] ( )
( )ts
tstxktu δ+−=                  (2.2.9) 

 
where k and δ are scalar design parameters and s(t) is a switching function to be selected. 
We first discuss the behavior of the sliding mode. Note that the unit control (9) is in 
fact a sliding mode control which is discontinuous on the sliding surface. 

                   (2.2.10) PxBs T=
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where is any positive definite matrix. Provided that unknown total disturbance 
denoted by the term 

0>= TPP
( tx, )η can be rejected by the choice of the scalar feedback gain parameter 

k. The mxn matrix  is of full rank and the matrix  is non singular. PBC T= PBBCB T=
 After selecting the switching surface, the next step is to choose the scalar feedback gain k and 
P such that the sufficient condition of a sliding mode [40,17] 
  
                   (2.2.11) 0<ssT

 
is satisfied and the closed loop system dynamics on the sliding mode is stable. 
The direct switching function approach for scalar was proposed in [40], 

                                   (2.2.11a) 0<ss
 
is global. This condition is sufficient but not necessary. A similar sufficient condition that is 
local in nature was proposal in [41], 
 
   and                            (2.2.11b) 0lim

0
<

+→
s

s
0lim

0
>

−→
s

s

 
a combined approach [50] is  
 
                  (2.2.11c) s

s 0
lim
→

0<s

 
there are various global reaching conditions which is analyzed in [18]: 
The Lyapunov function approach 
 

   0,
2
1

<== ssVssV TT  when 0≠s            (2.2.11d) 

 
which is equivalent to (11). Finite reaching condition is given [18] as  

kVV −−< ε                (2.2.11e) 
 

where kandε  are positive scalar. 
The reaching law method [18] 
 
                       (2.2.11g) KsssignQs −−= )(
 
where Q and K are diagonal matrices with positive elements.  
Another reaching condition [51], [52] is  
 

  
( )
η

η
0

,
2
1 2 s

tss
dt
d

reach ≤≤               (2.2.11f) 

 
Where η  is a positive constant. 
The power rate reaching law for scalar case [18] is  
 
  ( ) 10, <<−= αα ssignsks                        (2.2.11h) 
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Similar combined reaching condition for our multivariable case can be rewritten as follows: 

  
( )
η

η
0

,
s

tsss reach
T ≤≤                (2.2.11k) 

 
This inequality implies that the trajectory reaches the sliding surface in finite time  and 
remains on the sliding surface. Note that, the sufficient condition for the existence of a sliding 
mode on switching surface, which possesses an attraction region, also satisfies the sufficient 
finite reaching condition. In [53] it was established that, any trajectory starting from any initial 
value s(0) at time 

reacht

0=t , reaches the switching surface 0)( =ts in finite time 
  

( )
)

0
1ln(1

k
s

treaxh +=
η

                           (2.2.11m) 

 
by the reaching law [53] 
 
 ( )[ ]ssignkss +−= η                (2.2.11n) 
 
which similar to (11g), (11f), (11k). 
Another reaching condition similar to (11h) and evaluation of finite hitting time was analyzed 
in [54]. After this brief analysis of sliding conditions we now summarize our results for a 
sliding mode in the following Lemma. 
 
Lemma 1: Suppose that Assumptions 1, 2 and following conditions are valid: 
 
 ( )IPBBhAPPA TT

max2 γλ++ ( )PPBBk T
min1 )1(2 λµγ +− ( ) QIPBBT −=+ max0g2 γλ  (2.2.12) 

 
where  PPBBP T=  is a positive semi-definite and Q  is a positive definite matrices.  
 

 ( )
( ) ( )PBB

PBBf
T

T

min

max

1 λµ
θλδ
+

=                  (2.2.13) 

 
Then the sufficient condition for the existence of the sliding mode in the uncertain system (4) or 
(6) is satisfied by employing the control law (9). 
 
Proof: Define a positive definite Lyapunov Function 
 
                     (2.2.14) ssV T=
 
Its time derivative along the trajectory of the system (4) or (6) can be calculated as follows 

 
ssssV TT +=  ( ) ( ) ( )[ PBBHtxPBAtx TTTTT σ+= ( )( ) PBBEItu TTT ++  

   
       ( ) ( ) PBBFtw TTT σ+ ( ) ] ( )tPxBBPBxtg TTT ,+  
 
       ( ) ( )[ ( ) ( )txPBHBtPAxBPBtx TTT σ++  
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        ( ) ( ) ( )twPBFBtuEIPBB TT σ+++ )( ( ) ]xtPBHBT ,g+               (2.2.15) 
 
    ( )( ) ( )txPABPBPPBBAtx TTTT += ( ) ( ) ( )txPBHPBBtx TT σ2+  
 
        ( ) ( ) ( )tuEIPBPBBtx TT ++ 2 ( ) ( ) ( )twPBFPBBtx TT σ2+ ( ) ( xtPBPBBtx TT ,2 g+ ) . 
 
A sufficient condition for the existence of a sliding mode is . The 
substitution of (9) into (14) yields 

00 ≠<= sforssV T

 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( ) ( ) ( )

2 2

2 ( ) 2 2 g ,

T T T T T T

T T T T T T

s t
V x t A P PA x t s t B PBH x t k x t s t B PB I E

s t

s t
s t B PB I E s t B PBF w t s t B PB t x

s t

σ

δ σ

= + + − +

− + + +

  (2.2.16)  

  

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )txtsPBBtsPBBftsPBB

tstxPBBktxtsPBBhtxAPPAtx

TTT

TTTT

max0maxmin

minmax

g2212

122

λθλλµδ

λµλ

+++−

+−++≤

 

         
Since 
 
  )()()()( txtxPBtPxBts TT γ=≤=                       (2.2.17) 

 
Hence 
 

 )()(1)( 1 tststx γ
γ

−=−≤−                        (2.2.18) 

 
Then (16) becomes 
 

( )

)()(2)()()1(2)()(g2

)()()1(2)()(2)(

maxmin1
2

max0

2
min1

2
max

tsPBBftsPBBtxPBB

tsPBBktxPBBhtxAPPAxV

TTT

TTTT

θλλµδγγλ

λµγλ

++−+

+−++=

 

 
[

] [ ] )()()()1(2)()(g2

)()1(2)(2)(

maxminmax0

min1max

tsPBBfPBBtxIPBB

PPBBkIPBBhAPPAtx

TTT

TTTT

θλλµδγλ

λµγγλ

−+−+

+−++=
 

 

   

[ ]

[ ] )()()()1(2)()(

)()()()1(2)()(

maxmin
2
1

maxmin

tsPBBfPBBtsQts

tsPBBfPBBtxQtx

TTT

TTT

θλλµδγ

θλλµδ

−+−−≤

−+−−=

           (2.2.19) 
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   0)()( 2
min

2
1 <−≤ tsQλγ                   

 
When conditions (12) and (13) of Lemma 1 are satisfied, inequality (19) reduces to and 
we conclude that stable sliding mode exists on all switching surfaces in dynamical uncertain 
system (4), (9), (10). Therefore, system is asymptotically stable relative to the sliding surface  

. 

0<V

0s Cx= =

According to equivalent control method [17, 26, 28, 29], the motion in the sliding mode may be 
determined from the defining condition ( ) 0≡= tPxBs T . Differentiating with respect to time 

and inserting the value of given in (6) gives x ( ) ( ) 0≡++ ηPBBtPBuBtPAxB TTT . Hence, the 
equivalent control  may be determined in the linear feedback form equ

 

                 (2.2.20) ( ) ( ) ( )ηBAxPBPBBtu TT
eq +−=

−1

 

This control term is unavailable because of uncertain parameter η . But,  for the nominal 
system can be presented as: 

equ

 

                 (2.2.21) ( ) ( ) ( )tPAxBPBBtu TT
eq

1−
−=

 

where    is the equivalent control feedback gain matrix. Substituting 
formally (17) into (6), we have 

( ) PABPBBG TT 1−
=

 

 

( ) ( ) ( )

( )

1

                                           0 

T T

T

x t I B B PB B P Ax B

B Px t

η
− ⎫⎡ ⎤

⎪⎢ ⎥⎣ ⎦ ⎪⎪
⎬
⎪
⎪
⎪⎭

= − +

=
                            (2.2.22) 

It is well known that sliding motion is insensitive to the total system uncertainty, if the 
invariance or matching conditions (5) are satisfied [16, 26, 28, 29, 36]. Then, 

   

         . ( ) ( ) 0,
1

≡⎥⎦
⎤

⎢⎣
⎡ −

−
xtBPBPBBBI TT η

 

Therefore, a sliding motion can be expressed as: 

 

   ( ) ( ) ( )tAxPBPBBBItx TT
⎥⎦
⎤

⎢⎣
⎡ −=

−1 ( ) ( ) ( )txAtxGAA eq=−=             (2.2.23)       
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The transient motion of the system therefore consists of two independent stages: a) (preferable 
rapid) motion bringing the state of the system to the switching surface in which sliding occurs, 
and a slower sliding motion, in which the state goes towards the origin while remaining in the 
sliding subspace. In view of (23) it can be seen that the sliding motion was described by linear 
system equations. Sliding surface is to be designed to provide not only to guarantee the 
existence of stable motion, but also accomplishes the desired transients (such as given 
eigenvalue placement) in sliding mode. This problem successfully investigated in [28], [29], 
[45]-[47]. According to this design sliding surface method, by an appropriate choice of the gain 
matrix G, the eigenvalue of matrix in the linear sliding mode equation (23) may be 
arbitrarily placed because the pair (A, B) is completely state controllable. Moreover, note that 
this design of desired sliding motion problem may be solved via well known pole placement 
method of linear control system design theory. The present design techniques begins with a 
determination of the desired closed-loop poles based on the transient-response, such as speed, 
damping ratio, or bandwidth, as well as steady-state requirements. Let us assume that the 
desired closed-loop pole locations are 

eqA

np λλλ ,...., 21=  then the desired characteristic equation 
of closed-loop system becomes 

 

( ) ( )( ) ( )nppp λλλλ −−−=Φ ......21             (2.2.24) 0..... 1
1

1 =++++= −
−

nn
nn ppp ααα

 

Note that, ( ) 0=Φ eqA since the Cayley-Hamilton theorem state that satisfied its own 
characteristic equation (24). According to the Ackermann’s formula [48], [49], the state 
feedback gain matrix G may be determined as follows: 

eqA

 

                                                           (2.2.25) [ ][ ( )ABAABBG n Φ=
−− 11....10.....00 ]

 

which is free from plant uncertainties. 

We now examine the robust global asymptotical stability in large of the closed loop uncertain 
dynamical system (4), (9), (10). The following Theorem 1 provides our robust stability result. 

Theorem 1: Suppose that Assumption 1, 2 and conditions of Lemma 1 are met. Then the 
uncertain system driven by combined min-max controller (9), (10) is asymptotically stable if 
the following conditions are satisfied: 

 

 IhPAPAT γ2++ ( ) IgPPBBk T γµγ 01 212 ++− Q−=               (2.2.26)  

 

where P and Q are positive definite matrices 

 

 
µ
θδ
+

=
1

f
                                                    (2.2.27) 
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Proof: We define a Lyapunov function candidate as 

 ( ) ( ) ( )tPxtxtV T=                                 (2.2.28) 

 

where P > 0 is a solution of algebraic Riccati equation (26) 

 The time derivative of V along the trajectory of system (4), (9), (10) can be evaluated 
similar to proofs of Lemma 1 as follows: 

 

( ) ( ) ( ) (txPtxtPxtxV TT += )  

    ( )( ) ( )txPAPAtx TTT += ( ) ( ) ( )txPBHtxT σ2+ ( ) ( ) ( )tuEIPBtxT ++ 2  

    ( ) ( ) ( ) ( ) ( )xtPBgtxtwPBFtx TT ,22 ++ σ  

    ( )[ IhPAPAtx TT γ2++≤ ] ( )txIgPPBBk T γµγ 01 2)1(2 ++−  

    ( )[ ] ( )tsfθµδ −+− 12  

    ( ) ( ) ( )[ ] ( )tsftQxtxT θµδ −+−−= 12  ( ) ( ) 02
min <−≤ tsQλ                   (2.2.29) 

 

if the conditions (26), (27) of Theorem 1 are satisfied then . Thus, we conclude that the 
closed-loop trajectories of the uncertain system (4) or (6) under the action of the min-max 
controller (9), (10) is robustly asymptotically stable in large. 

0<V

Note that, the conditions for the existence of the sliding motion and the conditions of robust 
stability in large are in accordance with each other or the conditions coincide. The conditions 
given by Lemma 1 and Theorem 1 in same cases, may state the sane information. But the 
condition given by Lemma 1 are derived from the Lyapunov function with respect to the 
switching variable s(t). Where as the Lyapunov function given by Theorem 1 are written with 
respect to the state variable x(t). In some cases these conditions may completely coincide. But 
this is very rare. If they coincide these design is said to be successful. This fact is another 
verification of our results. The Theorem 1 therefore proved. 

Thus, we have successfully developed a new constructive sliding and stability condition for 
completely uncertain system driven by a simple min-max controller and present there 
conditions in term of matrix norm, which are different from the existing conditions in the 
literature. The matrix norm provides an easy application of the variable structure control. This 
is very advantageous for multivariable systems. 

In order to reduce discontinuous control activity (“softening” the sliding mode) we should add 
nominal equivalent control term into the min-max controller (9), (10), which allows to make the 
sliding inequality less conservative and to reduce the amplitude of discontinuous term. Thus 
new modification of min-max controller can be presented as: 

 

   ( ) ( ) ( ) ( )[ ] ( )
( )ts
tsTT txktPAxBPBBtu δ+−−=

−1
              (2.2.30) 
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Now, for the control law given by (30) we should derive the sliding and stability conditions. In 
general, these are similar to Lemma 1 and Theorem 1. In the next section we will derive the 
remaining conditions in term of variable structure control. 

 

2.2.5 Variable structure control 
In this section we propose the following “softening” variable structure controller for the 
uncertain system (4) or (6): 

 

   ( ) [ ] ( ) ( )[ txRtCAxCBtu Ψ+
+

−= −1

1
1
µ

( )( )tssignδ+ ]             (2.2.31) 

 
where the elements ijΨ of the ( m x n) dimensional matrix Ψ obey the following logical law 
 

                               (2.2.32) 

0

0,

1,2.. , 1,2..

ij i j

ij ij i j

for s x

for s x

i m j

α

β

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

>

Ψ = <

= = n
 
                    (2.2.33) PBCCxs T== ,
 

ijα  and ijβ  are constant coefficients of the matrices α and β , R and δ are an ( m x n) 

diagonal matrices with elements  and ir iδ  respectively, 
 

( ) ( ) ( ) ( )[ ]Tmssignssignssignssign ,..., 21= . 
 
Here VSC law usually [17-19, 24-26, 29] consist of a linear equivalent component (for the 

stabilization of a nominal regime), linear state feedback with switched gains component  

(for the rejection of a plant uncertainties)  and a relay with constant gain  (for the rejection 
of a external disturbances) which are summed to form  or multi-structural control[43]. 

equ

NLu

Ru

Totalu
First we consider the conditions for the existence of a stable sliding mode which can be 
generated in an uncertain system. Define a Lyapunov function with respect to variable 
s(t) 

 

 ssV T

2
1

=                                 (2.2.34) 

 
and differentiating along the (4), (31), (32) 
 

ssV T= ( ) ( ) ( )[ txCBHtCAxsT σ+= ( ) ( ) ( ) ( )twCBFtuEICB σ+++  ( )]xtCBg ,+  
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    [ xRCAxCBHxCAxsT Ψ−−+≤ ( ) ]xCBGCBFssign ++− θδ  
 

   j
ijij

ii

n

j

m

i

T xrsCBHxs
211

βα +
−= ∑∑

==
 i

m

i

n

j
ij

ijij
i sxr∑ ∑

= =
⎥
⎦

⎤
⎢
⎣

⎡
+

+
−

1 1 2
δ

βα
 

        
       xCBGsCBFs TT ++ θ  
 

   ( ) xRGHCBsT
⎥⎦
⎤

⎢⎣
⎡ +−+= βα

2
1

 ii

m

i

n

j

ijij
i xsr∑∑

= =

+
−

1 1 2
βα

θδ CBFss T
m

i
ii +−∑

=1

 

 

   ii

m

i

n

j

ijij
i

T xsrxHs ∑∑
= =

+
−=

1 1 2
βα

∑
=

−+
m

i
ii

T sFs
1
δθ ,                             (2.2.35) 

 

where ( )⎥⎦
⎤

⎢⎣
⎡ +−+= βαRGHCBH

2
1

, 

 
[ ]TmCBFF θθθθ ,....,, 21== , ( ) xGxtg ≤, ,  are positive constants, ijg

 
[ ]Tnxxxx ,...., 21= , ( ) ( )µσ +−≤+− 1EI . From (35) as shown in [41-44] we conclude that, 

 
if   
 

  ijjij
ijij

i hr max,max
2

≥
+ βα

,  njmi ....2,1,....2,1 ==                         (2.2.36) 

 
   miii ,....2,1, =≥ θδ                                (2.2.37) 

 
are satisfied then everywhere outside of  the sliding surface s = 0. Here 0<V ijh are elements 

of matrix θθθ =FH , is constants vector with elements iθ . Thus, the following Lemma 2 

summarizes our results. 
 
Theorem 2: Suppose that Assumptions 1, 2 and the conditions given in (35), (36) are valid, 
then a stable sliding mode, driven by the VSC (31), (32) always exist in uncertain system (6).  
And now we will study the robust asymptotic stability in the large with respect to the state 
variables. 

Corollary 1: The uncertain variable structure system (6), (31)-(33) with stable sliding 
mode(23) is asymptotically stable in large if the sliding conditions (36), (37) of Theorem 2 are 
satisfied. 
 
Proof: Choose a Lyapunov function candidate with respect to the state variable x(t), as follows: 
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   ( ) ( ) ( )txPtxtV T

2
1

=                               (2.2.38) 

 
where PPPPBBP TT == , is a positive semi-definite matrix. 
 
Then, 
 

1 1 1
   .

2

T T T T

m n m
ij ijT T T

i i j
i j i

V x PBB Px s B Px

s Cx s Hx r s x s F s
α β

θ δ
= = =

= =

+
= ≤ − + −∑∑ ∑ i i

                          (2.2.39) 

 
and we have the same results as (35). So, if the conditions (36), (37) are satisfied, then . 0<V
Therefore, VSS (6), (31)-(33) is robustly asymptotically stable in large. Note that, the 
conditions of the robust stability fully coincide with the conditions for the existence of 
sliding mode in the VSS. As it was stated in section IV these conditions may or may 
not coincide. This depends on the selected Yaupon function candidate. We successfully 
select the Yaupon function candidate as in (38). 

Thus, we have solved the design problem to the end. Because we have derived a new 
sliding and stability condition for the uncertain systems with parameter perturbations 
and external disturbances by applying a new variable structure controller. Our design 
results are presented in terms of matrix norm, which is different from the known results 
given in literature. 
 
2.2.6. Longitudinal flight control 
 
According to the design procedure of VSC in section V we consider the longitudinal flight 
control for F-18, which has two control inputs and two output variables. This is a typical plant 
model of F-18 (38). Our theoretical development of previous sections will be implemented on 
this model. It is assumed that the system states α and q are available so that state estimation is 
not required. 
For the longitudinal motion the tracking error is denoted as αe (t) and we (t) 
 
 ( ) ( ) ( ) ( ) ( ) ( )tqtqtqttt erer =−=− ;ααα                  (2.2.40) 
 
Where αr (t) and or (t) are reference trajectories. From (1), the tracking error dynamics and 
VSC law have the following form 
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Note that, for the position control αr(t)= αd(t)=const, qr(t)= qd(t)=const, therefore  
 

.0,0 == dd qα  
 
According to Theorem 2 and Corollary 1, the following conditions must be satisfied for 
the existence of a stable sliding mode. 
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where ;2,1;2,1,maxmax* === jihh ijji  
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2.2.7 Simulation results 
 
The complete closed–loop system (41), (45) is simulated using MATLAB. The block diagram 
is shown in (1.). the system matrices A is assumed in the form of A=Anom+∆A, where ∆A is the 
uncertainty matrix with random elements. 
The controller design parameters are selected so that they obey the rules given by (44),(45),(46) 
and (47). Obviously infinite number of parameters set is possible. Three groups of parameters 
are listed in Table1, 2 and 3 and named as case 1, case 2 and case 3 respectively. These 
parameters are selected intuitively and then checked whether they obey the above rules.  

Step inputs are applied for both reference signals. The outputs q(t), α (t) are shown in Fig 2.a), 
3.a), 4.a). The aircraft control inputs are shown in Fig 2.b), 3.b), 4.b). The error responses qe(t), 
αe(t) are shown in Fig 2.c), 3.c), 4.c).The switching functions plot are shown in Fig 2.d), 3.d), 
4.d). Fig.2, Fig.3, Fig.4 represent case 1, case 2, case 3 respectively. As it is seen from the 
figures error responses are in an acceptable range for the three cases. Fig.2, Fig.3 and Fig.4 
reveal that the switching variable s(t) decreases very rapidly and reaches the sliding surface in a 
few seconds, which is in agreement with the reaching law for our multivariable case, given by 
(11k). Chattering exists for case 1 and case 2 and the system is free of chattering for case 3. 
Note that, we form the sliding mode controllers such that by varying the coefficient of  
“importance” of each term ueg(t), umin-max(t) and uNL(t), we may reduce discontinuous control 
activity. So, it is possible to guarantee sliding motion with chattering and also free of chatting. 
Decreasing the value of design parameters r1, r2 and δ1, δ2 we may completely eliminate 
chattering effect. The disadvantages of this particular type of control law become apparent 
during the physical implementation. It is imperative that the switching of the control takes place 
at a very high frequency but the real plant may not tolerate such behavior at the input. In same 
cases control chattering is absolutely impractical for controlling deflections of aerodynamic 
surfaces and thrust vector. However, a small chattering effect with low frequency or with high 
frequency but different from natural frequencies of the plant and actuators 

 may   be   in   same   cases useful. But all parts of space vehicle vibrate, 
and small chattering with minimum energy dissipations keeps the plant always in active 
position “tenacious of life”. This may increase the system reliability in a sense. This is very 
important for space control systems. On the other hand  actuators (hydraulic and pneumatic) in 
aircraft control systems are in general, has first or second order dynamics.  This will weaken the 
high frequency components which exist due the switching effects. Thus, the average of the 
control signal is converted to nearly a continuous from while it passes through the actuators.  

)( naturalwswitchwnw ≠

It is well known that pneumatic and hydraulic actuators can coop with the chattering 
phenomena. For instance set of pneumatic sliding mode controllers can work well with the real 
dynamic plants with diaphragm actuators [47], [55]. An electro hydraulic velocity servo control 
system using the integral variable structure controller approach was successfully illustrated in 
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[56]. Simulation results show that VSC can achieve accurate servo tracking and is fairly robust 
to plant parameter variations and external load disturbances. A second order sliding mode 
 

 

 

 

Table 1. Case 1 design parameters Table 2. Case 2 design parameters 
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practical implementations in aircraft control was successfully implemented in [57]. One 
must recall that existence of chattering in control systems guarantees the robustness. 
Therefore, one usually does not prefer to completely remove the chattering. 
Compromises have to be made between the robustness and chattering effects.  

A general way to avoid chattering effects is a smooth approximation of the signum function [9], 
[52] i.e., by replacing sign(s(t)) by sat(s(t)) we have 
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where φ  is small boundary layer thickness. 
So by continuous approximation of discontinuous control law it is possible to form a quasi-
sliding motion with free of chattering. Sliding and stability properties of a continuous 
implementation of variable structure control in which signum nonlinearity is approximated by 
saturation nonlinearity is studied in [58]. Note that this result which was derived for linear 
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systems are also valid for our case. Another reduction of chatting in variable structure control 
systems has analyzed in [59]. 
The main feature of this approach consists of an increase in the order of the sliding regime and 
of the introduction of an approximate control which asymptotically converges to the ideal 
sliding mode. 
 
 
 
 

Table 3. Case 3 design parameters 
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In practical realizations, the chattering problem must be treated by examining the dynamic 
characteristics and physical situation of each plant. The effect of varying design parameters on 
closed loop system performance was not studied analytically in this work. Optimization of 
design parameters will be examined in a separate work. Preliminary results of this study were 
presented in [60]-[62]. 
 
2.2.8 Conclusions 
 
A robust flight control system was investigated via variable structure and Lyapunov function 
for simplified F-18 model. Two types of feedback controllers: MMC and VSC for MIMO 
systems with matching plants uncertainties, and input nonlinearity and external disturbances 
were considered. For both cases the existence conditions of a stable sliding mode and the robust 
asymptotic stability in large of uncertain MIMO systems by MMC and VSC were investigated. 
For the derivation of the control law, a suitable sliding surface was chosen such that the zero 
dynamic of the closed-loop system are asymptotically stable in the sliding regime. These results 
were applied to design of a longitudinal flight variable structure controller for the F-18 aircraft 
model. Simulation results were presented to show the effectiveness of the design methods. The 
values of design parameters greatly affect the existence of chattering. Optimization of these 
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parameters will be studied in another work. This includes classical optimization techniques and 
optimization via fuzzy control algorithms. 

               Figure 2.1 Block Diagram of the aircraft VSC system 
 
 
 

                  
                 Figure 2.2 Step response of the case 1 system 
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                   Figure 2.3 Step response of the case 2 system 
 
 
 
           

         
                  Figure 2.4 Step response of the case 3 system 
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      2.3 Design of output integral sliding mo e controllers for guided missile system 

 
s considered as SISO plant with parameter 

.3.1 Introduction 

mode control has been successfully applied to the missile control 

ph, the guided missile system is considered as SISO plant with parameter 

d
with unmatched parameter perturbations 

In this paragraph, the guided missile system i
perturbations. The structure of the missile system examined in this work is not suitable for the 
use of classical linear controllers. On the other hand the missile system should possess good 
performances, such as zero steady state error, less settling time etc. Standard VSC control laws 
fail to control the steady state error due to the structure of the system matrices. For this reason 
we have proposed two new robust output integral sliding mode controllers and design 
procedures. An integrator is included in the sliding function, which results the reduction and 
removal of the output error. The total control consists of two parts: 1) equivalent control part 
which compensates the nominal regime of the missile system and 2) VSC part which 
compensates the parameter perturbations (changes in Mach number, altitude and mass of the 
vehicle etc) of missile system. We have derived a new constructive sliding and stability 
conditions for both cases by using Lypunov's direct method. Computer simulations indicate that 
this approach yields a satisfactory control performance. 
 
2
 

ears the sliding In recent y
systems. In (Brierley and Longchamp, 1990)[63] a sliding mode control law has been derived 
for a nonlinear system which corresponds to an air to air missile-target interception process. 
The performance of the feedback controller was evaluated and shown to be robust to certain 
parameter variations. The advantages and disadvantages of chattering phenomenon which 
appears in missile control systems have been analyzed. In (Kim and Song, 1998)[64] an 
adaptive nonlinear control design technique was applied to the pitch acceleration controller for 
an aerodynamically controlled missile model. A nonlinear model with unknown parameters and 
uncertainties was used for missile motion. In (George et. al, 1998) [65] a variable structure 
controller was designed for the pitch plane dynamics of a flight vehicle. A discontinuous 
control law was synthesized by applying Lyapunov function to ensure that a sliding mode exists 
on the switching surface. However, this leads to the chattering phenomenon. The conventional 
approach to eliminate chattering was to use a continuous control signal instead of the ideal 
control based on the signum function. Here, a signum function was approximated by the 
hyperbolic tangent function. This implementation requires the computation of the equivalent 
feedback gain. 
In this paragra
perturbations. This model has been taken from (Hartman and Grebing, 1990) [66]. The missile 
and aircraft control system is investigated according to the sliding mode control theory (Utkin, 
1992; Young, 1993; Garafalo and Galielmo, 1996; Edwards and Spurgeon, 1998; Mita et al., 
1996; Gessing, 1998; Jafarov and Tasaltin, 1998; Jafarov and Tasaltin, 1999; Jafarov and 
Tasaltin, 2000; Levant et al., 1999) [67]-[76]. Various missile systems are controlled by using 
the classical linear controllers  (Blakelock, 1991) [77]. The structure of the missile system 
examined in this work is not suitable for the use of classical linear controllers due to wide range 
of parameter variations. On the other hand the missile system should possess good 
performances, such as zero steady state error, less settling time etc. Standard VSC control laws 
fail to control the steady state error due to the structure of the system matrices. For this reason 
we have proposed two new robust output integral sliding mode controller design procedures. 
An integrator is included in the sliding function, which results the reduction and removal of the 
output error. The total control consists of two parts: 1) equivalent control part which 
compensates the nominal regime of the missile system and 2) VSC part which compensates the 
parameter perturbations (changes in Mach number, altitude and mass of the vehicle etc) of 
missile system. We have derived a new constructive sliding and stability conditions for both 
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cases by using Lyapunov's direct method. Computer simulations indicate that this approach 
yields a satisfactory control performance. 
This paragraph is organized as follows: Description of missile dynamic is given in section 2. 

3.2 Description of missile dynamics 

on of a rigid guided missile over different operating 

                 (2.3.1) 

             (2.3.2) 

The output sliding mode control law is derived in section 3. A simplified and a complete design 
procedure are investigated in that section. Section 4 summarizes the simulation results of the 
missile control system. Section 5 contains the major conclusions arrived at in the paper.  
  
2.
 

vertical acceleratiIt is desired to control the 
conditions. The missile is open loop stable, but has insufficient damping and has non-minimum 
phase transfer function. The guided missile model described in this section is based upon a 
modified version that is given in (Hartman and Grebing, 1990) [66]. The behavior of rigid body 
guided missile may be described as follows: 
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here ,  x(t) is the state variable, u(t) is the scalar control input, y(t) is the controlled  

= elevator command (radians)  
) (  in Fig.2.5) 

), ig

 
w  3)( Rtx ∈
scalar output variable, e(t) is the scalar output error: 
 
 
 
 
 

η 
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Figure 2.5 Notation used to describe missile 

 
 
 
 
 
  
 
  
 
 
u
 y= vertical acceleration ( 2sec/m za

1x = pitch rate (radians/sec in F .2.5) ( q∆  

2x α∆ ) in Fig.2.5= angle of attack (radians), (

3x = elevator deflection angle (radians), ( η∆ in Fig.2.5) 
e= in

 and 

 error between output and desired set po refy  t
 
A A∆  are nominal system matrix and parameter variation matrix, respectively. It is desired 
to find a controller to control the vertical acceleration y subject to the following conditions: 
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 1) For a set point change in  , the % overshoot inrefy %10≤y , and the steady-state error 

  %5≤
 2) The elevator deflection angle  should be limited to . The elevator deflection 

angle rate  should be limited to
3x 0

3 20|| ≤x

3x sec/6000
3 ≤x .  

 3) The above control specifications have to be satisfied for ten given operating conditions 
(which depend on Mach number, altitude and mass of the vehicle).  In this vehicle, the pitch 
rate  can be measured and used for control purpose. 1x
 The data for this problem is given as follows: 
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where ,  are given in Table 1 for ten different operating conditions. 
The nominal values of A,b,c can easily be determined from the table.   

,,, 221211 aaa 21,bb 11211 ,, dcc

 
2.3.3 Output integral sliding mode controllers 
 
By employing SMC theory, we will treat a robust sliding mode controller for a missile system 
with uncertain parameters. For robust stabilization of missile systems, we propose two new 
output integral sliding mode controllers, to increase the system performance, namely, to remove 
the steady state error, and to reduce the settling time. In other words to provide high precision 
of missile control system we introduce an integrator into the sliding surface in the control law. 
To solve this problem we need to make the following standard assumptions. 
 
Assumption 3: A∆  is bounded 
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σ
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σ
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where β  and 1β  are given constants.  
 
Assumption 4: Rate of output parameter variations is very small or 
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2.3.3.1 Simplified Design 
 
We select the following combining sliding mode controller with dynamic equivalent controller 
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 where is the equivalent control for the nominal system, k is the scalar feedback gain that is to 

be selected by the designer, xxtx T=||)(||  is the Euclidean norm of the vector x(t) . 
Introducing the integral error which characterizes the mismatch between the measured output 
variable and its set point for nominal system  
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and we define a switching variable as 
 
  1,)( 3332211 =++= aeaeaeats                  (2.3.9) 
 
where  are to be selected so that the following polynomial is stable (Mita et al., 1996) 
[71] 
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According to the equivalent control method (Utkin, 1992) [67], we can get  for the 
nominal system by differentiating s(t) with respect to time 
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Hence, we have the dynamic equivalent control in the form of the first order system with right 
side 
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or in form of Laplace transform  
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Therefore, we construct the integral output sliding mode control as in (7), (9), (12) to ensure the 
high performance control. After selecting the sliding mode control with integral switching 
surface s(t)=0 the next step is to choose the design parameter k such that the sufficient 
condition for the existence of a sliding mode  
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 is satisfied and the closed loop sliding system is stable. 
 
Lemma 2: Suppose that Assumptions 3, 4 are hold, then the stable sliding motion on switching 
surface s(t)=0 (9) is always generated in missile system (1), (2), (3) driven by autopilot-
controller (7), (9), (12), if the condition  
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is satisfied  
 
Proof: Define a positive definite Lyapunov function  
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and its time derivative along the trajectory of the control system with unmatched uncertainties 
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 where     ||||||;|| bA == γα ; 
 
Inequality (16) is written with the aid of |)(|))(()( tstssignts = .  In view of (16), if the 
condition (13) is satisfied then (16) reduces to 0)()( <tsts  for  and 0)( ≠ts 0)( ≠tx  
Therefore, we conclude that the robust stable sliding motion is always generated in the missile 
system. Moreover, it follows from (9) that s(t)=0 causes  and  since (10) is 
stable.  

0)( →te 0→e

 
2.3.3.2 Complete Design 
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In the previous section we have designed the reduced integral sliding mode controller for 
missile system with unmatched perturbations. The method is sufficient to obtain the desirable 
control performance but it is not straightforward in the design procedure sense. Therefore, 
below we propose another type of sliding mode controller and design procedure. A design 
method has been considered for sliding mode control in the space of output error variable and 
its derivatives for the time invariant system in [67]. Here, we generalize this design method for 
the system with model uncertainties. First, we describe the original system (1), (2), (3) in terms 
of output error variable and its derivatives. Introducing 
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Switching surface is defined in the form of (9). The transformed system (17) includes the time 
derivative of control input, hence we introduce the following dynamic system [67] 
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where  is the discontinuous function of output error, and just introduced state variables  
are assumed to be measurable. The coefficient λ may be arbitrarily chosen so as to facilitate the 
realization. Again, we determine the equivalent control for nominal system (17) from
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Thus, we propose the following new output integral sliding mode controller 
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where  and k ρ  are design parameters which are to be selected for the transformed system 
with unmatched plant uncertainties which is described in the following form 
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Now, we will analyze the sliding condition from which the design parameters  and k ρ  will be 
determined. 
Lemma 3: Suppose that Assumptions 3 and 4 are met. Then the stable sliding motion is always 
generated on the switching surface 0)( =ts  (9) defined for the system (22) which is driven by 
controller (21), if the following conditions are satisfied: 
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if the conditions (23)-(24) are satisfied. 
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Therefore, the stable robust sliding motion (22) is always generated in the system with 
unmatched uncertainties. Note that, both sliding conditions (13) and (23), (24) are in 
accordance which is the another verification of design results. Thus, we have successfully 
design two new types of robust output integral sliding controllers for the stabilization of the 
vertical acceleration of the missile system with parameter perturbations. The stable sliding 
motion is always generated in the missile system and this motion has not been affected by 
parameter perturbations. So, desired closed loop missile system with high control performance 
is achieved.  
 
2.3.4 Simulation Results 
 
The above designed missile control systems has been simulated using MATLAB and special 
numerical routines. The block diagram of missile control system is shown in Fig.2.6. 
Simulation results are presented in Fig.2.7 through Fig.2.11. As can be seen from the figures, 
the structure of the applied control law in each case can control the vertical acceleration of the 
missile system in principle. Namely, the output can track the reference step input, i.e. the output 
error goes to zero in all cases. The switching function also goes to zero rapidly, which is very 
important for successful operation of VSC. The settling time is determined by two factors, 
namely, the hitting time and the sliding time. The less hitting time means the reduction of 
settling time. It should be mentioned that the performance criterions, which is outlined in 
Section 2 are fulfilled in each cases, i.e. the percent overshoot is around 10 percent, the output 
steady state error is zero, elevator deflection angle, and elevator deflection rates are in the 
required bounds. The most important is the fact that the controlled system keeps its robustness 
when the missile parameter varies in a wide range. Notice that the model contains 10 operating 
conditions which depend on Mach number, altitude, and mass of the vehicle, etc. The controller 
can successfully control the missile system for all 10 flight conditions.  
It is also noted that the missile system has a non-minimum phase transfer function, thus it is 
difficult to find a control strategy which satisfies both steady state and transient response 
criteria. Furthermore, the standard VSC i.e. without integral control fail to control due to 
structure of A and b matrices. 
The two new control strategies are applied to the missile system. The results are quite 
satisfactory. The missile system has undamped characteristic and vibrates. Due to the chattering 
phenomena VSC is in general not suitable to this type of systems. However, if chattering 
frequency is kept far away from the missile system natural frequencies, then we can use the 
VSC in confidence. Note that, it is easy to reduce the chattering phenomena by varying the 
controller parameters. However, this affects the closed loop system robustness. Thus, there is a 
controversy between the chattering vibration and system robustness. However, since the 
elevator actuator (hydraulic or pneumatic) has a second order low pass filter characteristics, the 
high frequency component produced by the VSC is weakened, and can be applied to the control 
elements of missile system.  
The figures are ordered as follows:  
 
Fig.2.7 represents the results when VSC is absent (k=0), The controller is operated as an 
equivalent control, i.e. the control is a continuous control law, although it is derived from the 
condition  Note that the equivalent controller has a first order dynamic and the 
equivalent control law  is obtained by solving a first order differential equation. As can 
be seen from the figure the equivalent control law brings the system close to the desired state. 
The output error goes to zero but other performances such as the settling time are not in stated 
bounds. Although, it is possible to get better performance by varying the equivalent control 
design parameters, it is not possible to fulfill the desired criteria. The VSC is added to the 
system to fulfill these criteria.  

0)( =ts
)(tueq
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Fig.2.7.g and 2.7.h denotes the phase plane of error and switching coordinates. Fig. 2.8, 2.9, 
2.10, 2.11 denotes the graphs where both the VSC and the equivalent control present. Random 
disturbances are given to the system. The values of design parameters corresponding to figures 
Fig. 2.8, Fig. 2.9, Fig. 2.10, Fig. 2.11 are tabulated in Table.4 where k is calculated considering 
the condition (2.3.14). Detailed analysis of output error in Fig. 2.8, 2.9, 2.10, 2.11 shows that 
the output steady state error goes to zero very rapidly and, settling time and other control 
performance indices are in required bounds. Random disturbances are given in each integration 
step corresponding to changes in flight conditions. The amplitude of disturbances is adjusted in 
such a way that the simulation covers almost the whole  
 
 

Table 4 

1a  2a  3a  k  α  β  γ  

2232.6 65.4 1 0 545 15 190 
1851.3 357 1 9.7 545 27.8 190 
2019.5 271 1 8.1 545 33.2 190 
1926.6 187.8 1 11.2 545 54 190 
1981.6 154.5 1 7.9 545 82 190 

 
 
envelope of the given flight conditions. In Fig.2.11 elements of the system matrix A are 
perturbed in such a way that the envelope includes all of 10 cases of flight conditions. 
Maximum change of value of an element in one integration step was 0.5 percent of the 
elements mean value, and maximum variance from the mean is determined by Table.5. Note 
that, Fig.2.11 represents a kind of "the worst case", and even in this worst case, system can still 
be assumed as robust. Perturbation of system parameters does not deteriorate the system 
performance.  
As can be seen from the Fig.2.11 when system parameters change rapidly chattering 
phenomenon exhibits clearly. Two points should be mentioned here. First, this type of system 
cannot be controlled by the use of equivalent control only. Second, the vibration caused by the 
VSC is damped by the system dynamic. Phase plane of switching function s(t) and its 
derivative and phase space of , , , are shown in g) and h) parts of Fig.2.7 
through 2.11. Phase plane graphs shows that the state trajectories of the missile control system 
have a stable focus (or stable node, or stable saddle point). Therefore any initial motion has 
been attracted to the stable focus (or stable node) by the control action. Thus the phase plane 
shows that the missile system with integral sliding mode control is asymptotically stable.  

)(ts )(1 te )(2 te )(3 te

As can be seen from the phase space the states rapidly reach to the switching hyperplane, and 
from this hitting time, the sliding motion is generated on this hyperplane. The sliding motion is 
continuing towards origin, exhibiting asymptotic stability. Note that, the sliding phase plane 
and the output error phase space of missile system confirm our design procedure. Thus by the 
use of proposed sliding mode controllers the system keeps its robustness while without loosing 
its main performances. 
The above results show that the proposed sliding mode control strategies can be used to control 
a missile system which is difficult to control by classical control strategies (Jafarov and 
Tasaltin, 2001) [78]. 
 
2.3.5 Conclusion 
 
In this paragraph, the guided missile system is considered as SISO plant with parameter 
perturbations. The structure of the missile system is not suitable for the use of classical linear 
controllers. On the other hand the missile system should possess good performances, such as 
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zero steady state error, less settling time etc. Standard VSC control laws fail to control the 
steady state error due to the structure of system matrices. For this reason we have proposed two 
new robust output integral sliding mode controllers and design procedures. 
An integrator is included in the sliding function s(t) , which results the reduction and removal 
of the output error. The total control consists of two parts: 1) equivalent control part which 
compensates the nominal regime of the missile system and 2) VSC part which compensates the 
parameter perturbations (changes in Mach number, altitude and mass of the vehicle etc) of 
missile system. In the first design method, the equivalent control law is obtained by solving a 
first order differential equation, i.e. equivalent control is a dynamic controller type. For this 
case the sliding condition with respect to the switching variable are investigated. The 
asymptotic stability of the missile system with parameter perturbations in large with respect to 
the state coordinates are derived by using the Lypunov's direct method. The second case 
considers the complete design of the missile control system. New state (control) variables are 
included into the system, i.e. we augmented the system in such a way that the augmented 
system has better performance and easier design procedure than those of the first method.  
We have also derived a new constructive sliding and stability conditions for this case by using 
Lypunov's direct method. Note that, the results of both cases are coincide and in accordance 
with each other.  
Various simulation results are added to show that the proposed sliding mode controllers provide 
good closed loop performances of output steady state error, settling time (hitting time and 
sliding time), overshoot etc. The variation of system parameters does not affect the controlled 
system performances considerably, i.e. the control system is robust against parameter 
variations. 
Simulation results of the proposed design procedure are verification of our theoretical 
foundations. As a result, we can clearly state that the VSC can be applied for missile control 
systems.  
 
                                                           Table 5 
Altit. 0m 0m 0m 0m 0m 12km 12km 12km 12km 12km 
Mach Num 0.8 0.8 1.6 1.6 2.5 2.0 2.0 2.0 3.0 4.0 
a11 -0.327 0.391 -0.688 -0.738 -0.886 -1.363 -0.333 -0.337 -0.369 -0.402 
a12 -63.94 -130.3 -619.3 -651.6 -1068 -92.82 -163.2 -224 -253.7 -277.2 
a22 -1.0 -1.42 -2.27 -2.75 -3.38 -4.68 -0.666 -0.663 -0.8 -0.884 
b1 -155.9 -186.5 -552.9 -604.2 -1004 -128.5 -153.3 -228.7 -249.9 -419.3 
b2 -0.237 -0.337 -0.429 -0.532 -0.582 -0.087 -0.124 -0.112 -0.135 -0.166 
c11 0.326 0.35 0.65 0.66 0.79 1.36 0.298 0.319 0.33 0.36 
c12 -208.5 -272.4 -651.1 -913.6 -1926 -184.3 -247.8 -375.7 -500.6 -796.2 
d1 90.93 75.06 283.4 250.5 402.9 76.43 63.77 117.49 103.8 178.6 
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Fig.2.6 Block diagram of the missile control system 
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CHAPTER 3 
 
 

Variable Structure Control of Robot Manipulators with 
Parameter Perturbations 
 
 
In this chapter, robust relay, PD, PID-sliding mode controllers for position and tracking control 
of robot manipulators with non-linear dynamics are systematically designed. 
 
3.1 Robust relay and PD-sliding mode controllers design methods for robot 
position systems with parameter perturbations 

 
This paragraph introduces three new position variable structure controllers design methods for 
robot position systems with parameter perturbations. The first method considers a relay type 
discontinuous sliding mode controller which employs well-known equivalent control scheme. 
The second approach uses an equivalent control-like method. However, both approaches 
require exact knowledge of the robot dynamics. Therefore, a third variable structure PD-control 
scheme is proposed with the assumption of having inexact information about the robot arm 
system. The proposed controller uses only some robot bound parameters and measurable joint 
variables. The sufficient conditions are derived for the existence of a sliding mode in the robot 
arm system. The techniques of matrix norm inequalities are often addressed for robustness 
analysis of the controllers. In addition, the stability conditions are also investigated in a global 
sense. Effective parameter-independent conditions are developed by using a full quadratic form 
of Lyapunov function. Simulation results have been presented indicating that the control 
performance is satisfactory. 
 
3.1.1 Introduction 
 
One of the advanced control approaches is the variable structure control which is introduced 
systematically to the control theory [1-2] and process control [3] for the first time. Variable 
structure systems are a class of systems with discontinuous feedback. They can offer very 
robust controllers which are insensitive to parameter uncertainties and external disturbances. A 
control law that ensures the stability of the intersection of the discontinuity surfaces to reduce 
the complexity of the design is developed in [4]. For a set-point regulation control of robot 
manipulators, a new control algorithm which successfully utilizes the advantage of symmetric 
positive definiteness of the inertia matrix is introduced in [5]. A model-based adaptive variable 
structure control scheme for underactuated robots can be seen in [6]. A survey paper [7] 
presents an overview of six different robust control schemes including current robot state 
coordinates for robot manipulators. Discontinuous min-max control term combined with the 
linear control term is given for robot control systems. However, sliding and stability conditions 
are not considered in this paper. Robust relay discontinuous sliding mode controller with the 
chattering effect is considered in [8]. Sliding and global stability conditions are derived for 
robot system. 
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In this paragraph three new sliding-mode controllers are considered for the set-point 
stabilization problem of robot manipulators with parameter perturbations. The first two 
approaches depend upon the availability of exact robot dynamics but the third control scheme 
does not do so. The sufficient conditions are derived for the existence of a sliding-mode in the 
robot manipulator system. For a global asymptotic stabilization of the multivariable system, 
extended stability conditions are investigated. The advantage of the symmetric positive definite 
inertia matrix is often taken into account. A reduced design is also given. Finally, the control 
algorithms are tested through simulations with a two-link direct drive robot arm. The simulation 
results reveal that the control performance is satisfactory. The application of a saturation 
function in the control law instead of a pure signum function is shown to result in a smooth 
transient performance. 

 
3.1.2   Relay controller with equivalent control term: design with full dynamics                                  
knowledge 
 
In this section, it is assumed that the information related to the dynamics of the robot 
manipulator is exactly known. The conventional equivalent control method is considered in the 
controller design. The goal of the proposed scheme is to achieve a set-point regulation. The 
dynamics of an n-link manipulator is given by the following equations: 
 

                 (3.1.1)  [ ])()(),()(,
1

tufBM +−−==
−

θθθθθωωθ
 

where θ  is an  angular position vector, 1×n ω  is an 1×n  angular velocity vector, )(θM  is an 
 symmetric positive definite inertia matrix,  is an nn× ),( θθB nn×  Coriolis and centrifugal 

matrix,  is an  joint friction vector and  is an )(θf 1×n )(tu 1×n  control input vector. Let 
dθ (constant) and )0(=dω  denote the desired trajectory. Then the error dynamics is written as 

follows: 

[ ])()(~),()(~,~~ 1
tufBM +−−==

−
θωθθθωωθ                (3.1.2)  

 
where θ~  and ω~  represent the error trajectory, i.e. dθθθ −=

~ , dωωω −=~ . The sliding mode 
relay control law with full exact dynamics knowledge is chosen as: 
 

))((sign)()( tsktutu eq −=                 (3.1.3)  
 

where  represents the equivalent control input, k  is a positive constant scalar position 

gain parameter to be selected, 

)(tueq

( )⋅  is the Euclidian norm, [ ]Tn tststs ))((sign)),...,((sign))((sign 1=  
as the vector of signum function and  is a conventional sliding surface given as: )(ts

 
ωθ ~~)( += Cts                    (3.1.4) 

 
where  is a nonnegative constant design matrix to be selected. The standard equivalent 
control law is given by: 

C

 
[ ] )(~),()()()(0)( θωθθθ fBCMtututs eq ++−=≡⇒=                (3.1.5) 
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Substituting the control law (3) with (5) into (2) yields the following error system dynamics: 
 

))((sign)(~~,~~ 1 tskMC −−−== θωωωθ                 (3.1.6) 
 

The control problem can be formulated as choosing  so that a multivariable sliding mode 
exists and the sliding robot system is guaranteed to be globally asymptotically stable. 

k

 
3.1.2.1 Sliding conditions 
 
The following lemma presents the sufficient condition for the existence of a sliding mode for 
the position control. 
Lemma 1: The stable and −η stable sliding mode on 0)( =ts  (4) always exists in the error 
system (6) driven by the controller (3), if the following condition holds: 
 

   FM
n

k )(max θη
θ

≥                    (3.1.7) 

 
where η  is a positive constant scalar and ( ) ( ) ( )( )⋅⋅=⋅ T

F trace  is the Frobenius norm and  is 
degree of freedom of robot. 

n

Proof: A Lyapunov function candidate is introduced as: 
 

  
[ ]2))((sign)(

2
1 tstsV T=                     (3.1.8)  

 
Taking the time derivative of (8) along the state trajectory of system (4), and (6) yields: 
 

   
               (3.1.9) [ ] ))((sign)())((sign))((sign)( 1 tskMtststsV TT −−= θ

It follows from (9) that V  is already guaranteed to be negative definite. However, it might be 
desirable to use a −η reaching condition [9]. For this, (9) can be converted into an inequality 
as: 

[ ] [ ]

22

2

max

12

)()(
)(max

)(
)(

))((sign)())((sign)(

tsts
M
nk

ts
M
nktsMtstskV

F

T

η
θ

θλ
θ

θ

−≤−≤

−≤−≤ −

             (3.1.10)  

  
Therefore, if condition (7) is fulfilled then the sliding inequality (10) reduces to  for all 

. This concludes that the sliding motion is always generated on the switching surface 

.  

0V <
( ) 0s t ≠
( ) 0s t =

 
3.1.2.2 Global Stability conditions  
 
The following theorem introduces some additional conditions to globally asymptotically 
stabilize the robot regulation system. 
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Theorem 1: Suppose that the condition of Lemma 1 holds, then the error system (6) driven by 
the relay controller (3) is globally asymptotically stable if the following conditions hold: 
 

  

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

+
>

>+

F

FF M
QR

P

n

M
k

QR

)(max
2
1

),(),(min

),(max)(max

0),(),(

,
0

,

2

, θµ
θθθθλ

θθθ

θθθθ

θθ
θθ

θθθ

            (3.1.11) 

 
where 
 

 
[ ] [ ]

),(),(            

),(,)()(
2
1)()()(

2
1),( 000

θθθθ

θθθµθµθµθθθθ

CPCP

QCMMCCCMWWMAAMP T

+=

−+−+=
 

[ ]WMWAMACMCR )()()(
2
1),( 0 θθθµθθ −−=   

 
and 
 

( )ndAwC Ι+= 0
0

0

µ
, , 2

0
2

00 dw +=µ nwW Ι= 0 , ndD Ι= 0 , 0)det( ≠A , ( ) 0det 12
00 ≠−Ι −Awd n   

 
with scalars  and . 0w 0d
 
Proof: A positive definite full quadratic form of Lyapunov function candidate can be chosen as 
 

3 ( ) 01 1( , , ) ( ) sign( ( ))
0 ( )2 2

T T
nT

T
n

MA W A W
V t s t s t

MW D W D
θ

T
θ θθ ω

θω ω
⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

= +              (3.1.12)  

 
where A , W  and  are constant symmetric gain matrices which are selected as described in 
the statement of Theorem 1. Taking the time derivative of 

D
)~,~,( ωθtV  along the state trajectory 

of system (4) and (6) gives: 
 

     

( ) { }
0

1
0 0 0

1

1( , , ) ( ) ( ) ( ) ( ) ( )
2

1( ) ( ) ( ) ( ) sign( ( ))
2

( ) sign( ( )) sign( ( )) ( ) sign( ( ))

T T T T

T T T T

TT

V t AM A WM W AM A WM W CM

CM M C M C M k s t

s t s t s t M k s t

θ ω θ θ θ θ θ θ θ µ θ

ω µ θ µ θ ω µ θ ω θ ω θ

θ

−

−

ω⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤⎣ ⎦

= + + + +

+ + + + − −

−

  (3.1.13) 
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The last two summing terms of (13) can be separately rearranged as follows: 
 

{ }

0 0

1

2
0

0

( ) ( ) ( ) sign( ( ))

( ) sign( ( )) sign( ( )) ( ) sign( ( ))

( ) ( ) ( )
max ( )

2 ( ) ( )

T T T

TT

T T

F

T T T
n

L CM C M C ks t s t

s t s t s t M k s t
nCM C M C k s t
M

CKC CK CM C K M C
θ

µ θ θ ω ω θ ω µ

θ

µ θ θ ω ω θ ω
θ

µ θ θ θ θ ω ω θ

−

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

ω⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= − + −

−

≤ − + −

≤ − + + + Ι +  

where 
FM

nkK
)(max θ

θ

= . The right-hand part of L  is substituted into (13) appropriately to 

get 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−≤

ω
θ

ω
θωθ ~

~

~

~
)~,~,( HtV

T

                              (3.1.14)  

 
where HHH T == 2222 , ),(1111 θθRCHCHH T +== , ),(12 θθPCHH −= and  
 

)(
2
1

00 θµµ MKH n −Ι= . Applying Schur’s complement to H  yields: 

 
0,00 12

1
22121122 >−>⇔> − HHHHHH T                 (3.1.15)  

 
Rewriting (15) explicitly gives: 0),(),(),(),(,0 1 >−+> − θθθθθθθθ PHPQRH T . Then (15) 
can be rearranged as follows: 
 

[ ] ( )[ ] 0),(max),(),(min                           

),(),(),(),(          0),(),(

1
min

2

,,

1

>Ι
⎭
⎬
⎫−

⎩
⎨
⎧ +>

−+⇒>+

−

−

nF

T

HPQR

PHPQRQR

λθθθθθθλ

θθθθθθθθθθθθ

θθθθ
  

which implies to fulfill 
 

( ) [
1

,

2

,,
00min ),(),(min),(max)(max

2
1 −

⎟
⎠
⎞⎜

⎝
⎛ +>−> θθθθλθθθµµλ

θθθθθθ
QRPMKH

FF
]             (3.1.16)  

 
Thus, in view of (16), if conditions given in (11) are satisfied then the inequality (14) reduces to 
 

  
                 (3.1.17)  0~

~

~

~
)~,~,( <⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−≤

ω
θ

ω
θωθ HtV

T

 
Hence theorem 1 is proved. 
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3.1.2.3 Reduced design 
 
The design parameters can be chosen more systematically. The gain matrix A  can be 
selected as  with . Then 0 nA a= Ι 00 ≠a ncC Ι= 0  where ( )000

1
00 dawc += −µ . Choosing , 

 and  such that  yields the following: 
0a

0w 0d 2
00

2
0

2
0 2 cwa µ=+ 2

0 0
1( , ) ( )
2

P c Mθ θ µ= θ , 

3
0 0( , ) ( )Q c Mθ θ µ θ=  and 2

0 0
1( , ) ( )
2

R c Mθ θ µ= − θ . In order to guarantee 

, one needs to choose  as 0),(),( >+ θθθθ QR 0c ( ) 1

0 ,

1 max ( ) min ( )
2 F

c M M
θθ θ

θ λ θ
−

⎡ ⎤⎣ ⎦> . Then 

the control parameter  is chosen in accordance with  k
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⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

⎥⎦
⎤
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>
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MMc
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n

M
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2
1

)(max)(min2

)(max)(max

,

,,0

22
0

0

2

1
θ

θθλ

θθ
µ

θθ

θθθθ

θθ  

 
It is clearly seen that the lower bound for  does not depend on  ,  and  explicitly. 
Choosing an appropriate  seems to be sufficient to be able to select . The question is 
whether this situation guarantees existence of real solutions for the remaining gain parameters. 
The following are the five constraints in the selection of these parameters: 

k 0a 0w 0d

0c k

 

  ( )

0
2 2 2

0 0 0 0 0 0 0
2 2

0 0 0 0 0 0 0

(1) 0
(2) 0, (3) 2 ,
(4) , (5) 

a
a d w a w c
w d w a d c

µ 2

0µ µ

≠

− ≠ + =
+ = + =

 

Assuming that 0µ  and  are set, these expressions can be easily verified if an  triangle 
shown in Fig. 3.1.1 with , 

0c
∆

ABC
0135)ˆ( =CABm 090)ˆ( =CDAm 0µ=AB , 00 2µcAC = , 0wAD = , 

0dBD =  and 0aDC =  is carefully investigated with Euclid’s metric formulas: (1) Since  
can be drawn,  is a nonzero side length. (2) The square of the height of the hypotenuse is 

equal to the product of the portions that the height intersects on the hypotenuse.  is not a 
right triangle, thus the formula does not work. (3, 4) Applying Pythagorean theorem in the right 

triangles  and 

∆
ABC

0a
∆

ABC

∆
ADC

∆
ADB  verifies them respectively. (5) The left-hand part gives twice the area 

of . Using trigonometry to compute twice the area as 
∆

ABC )135sin(2
2
12)(2 0

000 µµ cABCs =
∆

 

gives the right-hand part. 
 
 
3.1.3 An alternate sliding mode controller design with equivalent control-like 
method 
Assuming that robot dynamics are exact, the sliding mode control law is proposed as follows: 

 

  [ ]))((ign~),()()( tsksCMtu −= ωθθθ               (3.1.18) 
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where  is a positive scalar gain to be selected and k CBMC −= − ),()(),( 1 θθθθθ  with  being 
the sliding surface slope matrix. The error dynamics (2) is rearranged to get 

C

 

  ))((sign)()()(~
~~

11 tskMfM −− −−=
=

θθθω
ωθ                 (3.1.19)  

 
Ignoring friction, the time derivative of (4) is obtained as ))((sign~~)( tskCts −=+= ωω  implying 

 asymptotically. Choosing a Lyapunov function of 0)( →ts )()(
2
1 tstsV T=  and taking the time 

derivative yields . Since ))((sign)()()( tstkststsV TT −== ∑
=

=
n

i
i

T tststs
1

)())((sign)(  is always 

nonnegative, V  is ensured to remain always negative.  
 
3.1.3.1 Sliding conditions 
 
The following lemma summarizes the general sufficient conditions for the existence of a sliding 
mode in the robot system. 
 
Lemma 2: The stable and −η stable sliding mode on 0)( =ts  (4) always exists in the system 
(19) driven by the controller (18), if the following condition holds: 
 

  
( )

,
max ( )

min ( )

f
k

M
θ θ

θ

θ
η

λ θ
≥ +                   (3.1.20)  

 
where η  is a positive constant scalar. 
 
Proof: A Lyapunov function candidate is introduced as: 
 

  
)()(

2
1 tstsV T=

                 
(3.1.21)  

Taking the time derivative of (21) along the state trajectory of system (4), and (19) and using 
the −η reaching condition approach [9] yields: 
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))((sign)(),(max)()(
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1
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f
k

tstksftsM
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T
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⎣

⎡
−−≤

−≤

−=
−

−

θλ

θθ

θθθ

θθθ

θ

θθ

θθ

    

          (3.1.22)  

 
Therefore, if condition (20) is satisfied then the sliding inequality (22) reduces to  for all 

. This verifies that the sliding motion is always generated on the switching surface 

. 

0V <
( ) 0s t ≠
( ) 0s t =
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3.1.3.2 Global stability conditions 
The results of a global asymptotic stability analysis are presented with a theorem as follows: 

Theorem 2: Suppose that the condition of Lemma 2 holds, then the error system (19) driven by 
the controller (20) is globally asymptotically stable if the following conditions hold: 
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)(max
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min
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θ
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(3.1.23) 

 

where [ ]CCdAP 02
1

−= ,  and CPPCQQT +== W
d

CCT

0

1
==  with , 

, , with scalars  and . 

0>= AAT

WW T = ndD Ι= 0 0w 0d
 
Proof: A positive definite Lyapunov function candidate in quadratic form can be chosen as 
 

  

31 1( , , ) ( ) sign( ( ))
2 2
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T
A W

V t s t s t
W D

θ θθ ω
ω ω
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

= +               (3.1.24)  

 
where A ,  and  are selected as described in the statement of Theorem 2. The time 
derivative of 

W D
)~,~,( ωθtV  along the state trajectory of system (19), (4) gives: 
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     (3.1.25)  

 
The last two summing terms of (25) are rearranged and (25) is rewritten in the form of an 
inequality: 
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where CCkHH T == 1111 , PCkH −=12 , n

T kHH Ι== 2222  with  
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Applying Schur’s complement to H  and following the similar steps from (15) to (17), 
Theorem 2 is proved. 
 

3.1.3.3 Reduced design 

 
The gain matrix A  can be selected as naA Ι= 0  with 00 ≠a . Then PcQ 02=  with 

ndcaP Ι−= )(
2
1

0
2

00  and the sliding and stability conditions reduce to 
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3.1.4 Main results: PD-controller design without full dynamics knowledge 
In this section, it is assumed that the controller to be designed has only inexact knowledge 
about the dynamics of the robot. The controller knows only the lower and upper bound values 
of the robot system parameters. These parameters involve very complicated nonlinearities and 
they are sources of strong natural parameter perturbations. A robust control law can be 
introduced as: 
 

  
( ) ))((sign~~)( tsKKKtu dpr ωθ ++−=

   
                     (3.1.27) 

 
where  is a positive constant scalar relay gain parameter,  is a positive constant scalar 
position gain parameter,  is a positive constant scalar derivative gain parameter all to be 
selected. 

rK pK

dK

 
3.1.4.1 Sliding conditions 
The sufficient conditions for the existence of a sliding mode in the robot system are given with 
the following lemma: 

Lemma 3: The stable and −η stable sliding mode on 0)( =ts  (4) always exists in the error 
system (2) driven by the PD-variable structure controller (27), if the following conditions hold: 
 

  
FFd

FFFFdFp
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),(max)(max
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≥

             (3.1.28)  

 
Proof: Let a positive definite Lyapunov function candidate be selected as 
 

  
)()()(

2
1 tsMtsV T θ=                  (3.1.29)  
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Since ),()(
2
1 θθθ BM −  is skew-symmetric, the time derivative of V  along the state trajectory 

of (2), and (27) is: 
 

( )( ) ( ) ( , ) ( ) ( ) ( ) sign( ( ))T
r p dV s t M C B C f K K t K t s tθ ω θ θ θ θ θ ω ⎤⎡
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If conditions in (28) are fulfilled,  is guaranteed. However, the multivariable 0<V −η reaching 
condition can be derived. For this,  and  are chosen as in (28) and the Cauchy-Schwarz 
triangle inequality is employed in (30) to get 

rK pK
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−≤−−≤                (3.1.31)  

 
Therefore, it follows from (31) that conditions in (28) ensure  for all . This 
concludes that  asymptotically.  

0<V 0)( ≠ts
0)( →ts

 
3.1.4.2 Global stability conditions  
In order to make the robot position control system globally asymptotically stable, a theorem is 
introduced as follows: 

Theorem 3: Suppose that the conditions (28) of Lemma 3 hold, then the error system (2) 
driven by the PD-sliding mode controller (4) and (27) is globally asymptotically stable if the 
condition given in the first half of (11), dFp KCK ≥  and  
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where , C 0µ , A , W  and  are defined in the statement of Theorem 1. D
 
Proof: The Lyapunov function (12) can be used. Then the time derivative of (12) along the 
state trajectory of system (4), (27) can be computed as: 
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Denoting the last summing term as L , it can be rearranged as follows: 
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Substituting the right-hand part of L  into (32) gives (15). The proof proceeds with following 
the steps from (15) to (17). 
 
3.1.4.3 Reduced design 
The gain selections used in Section 2.3 can as well be used. This time  has to be chosen such 

that 

0c

( ) 1

0 ,
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F
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−
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3.1.5 Simulation example 
A simple two-link direct drive robot manipulator is simulated to test the robust control systems 
designed in Sections 2, 3, and 4. The manipulator is modeled as two rigid links with point 
masses at the ends of the links (see Fig. 3.1.2). The model dynamic equations can be seen in 
[10-12]. 
To illustrate the feasibility of the designed controller let us consider the tracking control of a 
two-link SCARA type manipulator shown in Figure 1. [ ]21 θθθ =   and  one can 

define 

[ 21 uuu = ]
)(θM ,  and and ),( θθB )(θf )(θg  as below: 
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where the inertial parameters are set as 16.31 =p , 106.02 =p , 173.03 =p , , 
, , 

kgm 6.101 =

kgm 85.41 = 36.01 =l ,24.02 =l 11 =K , 102 =K , . 11 −= sc

 The initial conditions and the desired trajectories are selected to be 1(0) 0.025 θ = , 

2 (0) 0.05θ = , , , and 02.0)0(1 =θ 0.001)0(2 =θ 1 2 3.0d dθ θ= = . The simulation results are 
presented in Fig. 3.1.3-3.1.10. 
 
3.1.6 Numerical comparison analysis  
The position and velocity errors under relay sliding mode control with equivalent control term 
shown in Fig. 3.1.3 indicates that the convergence of the errors is much better and faster than 
the errors under relay sliding mode control with equivalent control like method depicted in Fig. 
3.1.5. However, the performance under robust sliding mode PD control with inexact dynamics 
shown in Fig. 3.1.7 prove to be of a quite fast convergent nature as compared with the other 
two controllers. Viewing the control inputs given in Fig. 3.1.4, Fig. 3.1.6, and Fig. 3.1.8, it can 
be seen that there exist quite a high rate of chattering which may be intolerable due to physical 
limitations of the actuators. This is simply because of signum function in the control law (20). 
Replacing the pure signum function with a saturation function yields the position and velocity 
errors depicted in Fig. 3.1.9 and the control inputs shown in Fig. 3.1.10. It can be noticed that 
the error profiles under sliding mode PD saturation control seem to be equally well as 
compared with the one under the robust sliding mode discontinuous PD-control. Moreover, the 
chattering is completely removed. In other words, the control inputs are now smooth and 
reduced in magnitude. 
 
3.1.7 Conclusion 
In this paper, three new sliding mode control laws have been considered for robot manipulators 
with parameter perturbations. The first two approaches assume that the robot arm dynamics is 
exactly known. The first variable structure control law uses the equivalent control method. The 
second control method employs an equivalent control like term combined with discontinuous 
control. The last control method is proposed to compensate the unavailable exact information 
about the dynamics of the robot arm. The stability analysis is done using Lyapunov's direct 
method. The compact form of the results is elaborately derived using linear matrix inequalities. 
The robustness of the control laws has been ensured in large. The proposed methods are 
implemented to solve the regulation control problem of a direct drive robot arm through 
simulations. The results of the simulations clearly indicate that the robust sliding mode PD 
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saturation control with inexact dynamics perform better than the other two controllers which 
use exact robot dynamics with equivalent control and equivalent control-like methods. 

 

 

Figure 3.1.1 The  triangle 
∆

ABC

 

 
Figure 3.1.2 Joint positions of the manipulator 

 

 
        Time (sec) 

 
Figure 3.1.3 Position and velocity errors under sliding mode relay control with 

                                   equivalent control method 
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Figure 3.1.4 Control inputs under sliding mode relay control with equivalent control method 

 

 
Figure 3.1.5 Position and velocity errors under sliding mode relay control with equivalent  

                          control like method 

 

 
Figure 3.1.6 Control inputs under sliding mode relay control with equivalent control like  

                           method 
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Figure 3.1.7 Position and velocity errors under robust sliding mode PD control with inexact  

                        dynamics 

 

 

 
Figure 3.1.8 Control inputs under robust sliding mode PD control with inexact dynamics 

 

 
Figure 3.1.9 Position and velocity errors under robust sliding mode PD saturation control with  

                      inexact dynamics 
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Figure 3.1.10 Control inputs under robust sliding mode PD saturation control with  

                                  inexact dynamics 
 
 

3.2 Robust position and tracking variable structure PD-controllers design methods 
for robot manipulators with parameter perturbations 

 
In this paragraph two types of new variable structure PD-like controllers with and without full 
dynamics knowledge are designed for position and tracking stabilization of robot manipulator 
systems with parameter perturbations. The main contribution of this work is the design of the 
tracking PD-controller for robot manipulators without using full dynamics knowledge. The 
position controller is built upon the well-known equivalent control method. The tracking 
controller does not require any exact information about the robot manipulator dynamics and 
employs only the measurable joint variables and bounds of some robot perturbed parameters. 
The sufficient conditions for the existence of a sliding mode and the rate of convergence are 
investigated. Moreover, the global asymptotical stability conditions are also derived with a 
Lyapunov full quadratic form used for the first time. Linear matrix inequalities are often 
addressed. Reduced design conditions are also derived. Both analytical and numerical 
comparisons with the Qu and Dorsey control laws and stability results are also emphasized. 
Simulations are carried out with a two-link direct drive robot arm model. The simulation results 
have shown that the control performance of the designed system is satisfactory. 
 
3.2.1 Introduction 
 
Variable structure control schemes [13-14] are well known approaches in the robust control of 
uncertain systems. A survey of the robust control methodologies is given in [15]. A survey 
paper [16] presents an overview of six different robust control schemes for robot manipulators. 
For the trajectory following problem of a robot manipulator, a simple linear robust feedback 
control law with constant gain matrix is proposed in [17]. It is shown in [18] that judicious 
choices for the feedback gains make the computed torque control law robust under bounded 
unknown dynamics. Robust stability conditions for linear PD-control and robust PID-control of 
robots are considered in [19-20]. An introductory look at how robust control relates to the 
control strategies for single-input single-output systems is given in [21]. Relay-like sliding 
mode controllers with equivalent control term are developed for robot manipulators in [22-23]. 
A PD-like control law with a switching term is utilized as a feedback term in [24]. A modified 
design of PD-like variable structure controller is considered in [25].  
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In this paragraph a new robust variable structure PD-controller with and without full dynamics 
knowledge are designed for robot manipulators with parameter perturbations. Assuming that 
exact knowledge of the robot dynamics is available, well-known equivalent control term is used 
in the design of set-point control of robots. The main contribution of this work is the design of 
the PD-controller without using robot full dynamics knowledge for the tracking stabilization of 
robot manipulators. The second controller uses only some measurable joint variables and bound 
values of robot system parameters like inertia, Coriolis and centrifugal matrices which are very 
hard nonlinear functions of joint variables and sources of strong natural parameter 
perturbations. The conditions for the existence of a sliding mode and rate of convergence are 
investigated. Moreover, the global asymptotic stability of the proposed controllers is also 
analyzed. The use of linear matrix inequalities is often addressed. Reduced design conditions 
are also derived. The control algorithms are tested with a two-link direct drive robot arm. Both 
analytical and numerical comparisons with the Qu and Dorsey control laws and stability results 
are also emphasized. The simulation results indicate that the performance of the designed 
system is satisfactory.  
 
3.2.2 Preliminary results and problem statement: PD position control design with 
full dynamics knowledge 
 
In this section, it is assumed that information related to the dynamics of the robot manipulator 
is exactly known. The conventional equivalent control method is considered in the controller 
design. The goal of the proposed scheme is to achieve a set-point regulation. The analysis given 
in this section serves as a framework in order to obtain main results. The dynamics of an n-link 
manipulator is given by the following equations: 
  
 

1
, ( ) ( , ) ( ) ( )M B f uθ ω ω θ θ θ θ θ

− ⎡ ⎤
⎣ ⎦= = − − + t                 (3.2.1)  

 
where θ  is an  angular position vector, 1×n ω  is an 1×n  angular velocity vector, )(θM  is an 

 symmetric positive definite inertia matrix,  is an nn× ),( θθB nn×  Coriolis and centrifugal 
matrix,  is an  joint friction vector and  is an )(θf 1×n )(tu 1×n  control input vector. Let 

dθ (constant) and )0(=dω  denote the desired trajectory. Then the error dynamics is written:  
  

 
1

, ( ) ( , ) ( ) ( )M B f uθ ω ω θ θ θ ω θ
−
⎡ ⎤
⎣ ⎦= = − − + t                 (3.2.2) 

 
where θ~  and ω~  represent the error trajectory, i.e. dθθθ −=

~ , dωωω −=~ . The variable 
structure position PD-control law with full exact dynamics knowledge is chosen as:  
 
  ( ) ))((sign~~)()( tsKKtutu dpeq ωθ +−=                (3.2.3) 

 
 where  represents the equivalent control input,  is a positive constant scalar position 

gain parameter,  is a positive constant scalar derivative gain parameter to be selected, 

)(tueq pK

dK ( )⋅  is 

the Euclidian norm,  as the vector of signum function 
and  is a conventional sliding surface given as: 

[ T
n tststs ))((sign)),...,((sign))((sign 1= ]

)(ts
 
  ωθ ~~)( += Cts                      (3.2.4) 
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where  is a nonnegative constant design matrix to be selected. The standard equivalent 
control law is given by:  

C

 
[ ] )(~),()()()(0)( θωθθθ fBCMtututs eq ++−=≡⇒=                (3.2.5) 

 
Substituting the control law (3) with (5) into (2) yields the following error system 
dynamics:  

( ) ))((sign~~)(~~,~~ 1
tsKKMC dp ωθθωωωθ +−−==

−
                (3.2.6) 

 
The control problem can be formulated as choosing  and  so that a multivariable sliding 
mode exists and the sliding robot system is guaranteed to be globally asymptotically stable. 

pK dK

 
3.2.2.1 Sliding conditions 
 
The following lemma presents the sufficient conditions for the existence of a sliding mode for 
the position control. 
 
Lemma 4: The stable and −η stable sliding mode on 0)( =ts  (4) always exists in the system 
(6) driven by the controller (3), if the following condition holds:  
  

 FddFp M
n

KKCK )(max, θη
θ

≥≥                  (3.2.7) 

 
where η  is a positive constant scalar and ( ) ( ) ( )( )⋅⋅=⋅ T

F trace  is the Frobenius norm and  is 
degree of freedom of robot. 

n

 
Proof: A Lyapunov function candidate is introduced as: 
  

 [ ]2))((sign)(
2
1 tstsV T=                    (3.2.8)  

Taking the time derivative of (7) along the state trajectory of system (4), and (6) yields: 
 
  [ ] ( ) ))((sign~~)())((sign))((sign)( 1 tsKKMtststsV dp

TT ωθθ +−= −                (3.2.9) 

It follows from (9) that V  is already guaranteed to be negative definite. However, it might be 
desirable to use an −η reaching condition [26]. Choosing in accordance with (7) in (9) and 
employing the Cauchy-Schwarz triangle inequality gives:  
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             (3.2.10) 

 
Therefore, if condition (7) are fulfilled then the sliding inequality (10) reduces to  for all 

. This concludes that the sliding motion is always generated on the switching surface 

. The rate of convergence for the state errors can be determined by the rate of decay of 

0<V
0)( ≠ts
0)( =ts
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(8). It can be inferred from (8) that 22 )(
2
1)(

2
1 tsnVts ≤≤  which is employed in (10) 

appropriately. Assuming that V has an exponential solution of  with  being a 

constant positive scalar and r denoting the rate of decay of V  yields 
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Using (8), the following is verified and obtained as:  
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where  and [ nCC Ι=′ [ T

x ωθ ~~
= . This shows that convergence of state errors is fast as 

much larger as  is chosen. dK
 
 
3.2.2.2 Global stability conditions  
 
 
The following theorem introduces some additional conditions to globally asymptotically 
stabilize the robot regulation system. 
 
Theorem 4: Suppose that the conditions of Lemma 4 hold, then the error system (6) driven by  
the controller (3) is globally asymptotically stable if the following conditions hold: 
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Proof: A positive definite full quadratic form of Lyapunov function candidate can be chosen as 
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where A , W  and  are constant gain matrices which are selected as described in the statement 
of Theorem 4. Taking the time derivative of 

D
)~,~,( ωθtV  along the state trajectory of system (4)  

and (6) gives:  
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Choosing  in accordance with (7), the last summing term of (14) can be separately 
rearranged as follows: 
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The right-hand part of L  is substituted into (14) appropriately to get 
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Rewriting (16) explicitly gives: 0),(),(),(,0 1 >−> − θθθθθθ PHPRH T . Then (16) can be 
rearranged as follows:  
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Eventually, in view of (17), if conditions given in (12) are satisfied then the inequality (15) 
reduces to  
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Hence Theorem 4 is proved. 
 
3.2.2.3 Reduced design 
 
The design parameters can be chosen more systematically. The gain matrix  can be selected 
as  with 
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It is clearly seen that the lower bound for  does not depend on  ,  and  explicitly. 
Choosing an appropriate  seems to be sufficient to be able to select . The question is 
whether this situation guarantees existence of real solutions for the remaining gain parameters. 
The following are the five constraints in the selection of these parameters: 
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Assuming that 0µ  and  are set, these expressions can be easily verified if an  triangle 
shown in Fig. 3.2.1 with , 

0c
∆

ABC
0135)ˆ( =CABm 090)ˆ( =CDAm 0µ=AB , 00 2µcAC = , 

0wAD = , 0dBD =  and 0aDC =  is carefully investigated with Euclid’s metric formulas: (1) 

Since  can be drawn,  is a nonzero side length. (2) The square of the height of the 
hypotenuse is equal to the product of the portions that the height intersects on the hypotenuse. 

 is not a right triangle, thus the formula does not work. (3, 4) Applying Pythagorean 

theorem in the right triangles  and 

∆
ABC 0a

∆
ABC

∆
ADC

∆
ADB  verifies them respectively. (5) The left-hand part 
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gives twice the area of . Using trigonometry to compute twice the area as 
∆

ABC

)135sin(2
2
12)(2 0

000 µµ cABCs =
∆

 gives the right-hand part. 

 

3.2.3 Main results: tracking PD-controller design without full dynamics knowledge 

 
In this section, it is assumed the controller to be designed has only inexact knowledge about the 
dynamics of the robot. The controller knows only the lower and upper bound values of the 
robot system parameters. These parameters involve very complicated nonlinearities and they 
are sources of strong natural parameter perturbations. The controller is considered to be a 
tracking type one. The error dynamics of the robot system can be rewritten as follows:  

        (3.2.19) [ ])()()()(),()(~),()(~,~~ 1
tutMtBfBM dd +−−−−==

−
θθθθθθωθθθωωθ

 
 A robust tracking control law can be introduced as: 

 
  ( ) ))((sign~~)( tsKKKtu dpr ωθ ++−=                 (3.2.20)  

 

where  is a positive constant scalar relay gain parameter to be selected. rK

 

3.2.3.1. Sliding conditions 

 
The sufficient conditions for the existence of a sliding mode in the robot tracking system are 
given with the following lemma: 

Lemma 5: The stable and −η stable sliding mode on 0)( =ts  (4) always exists in the error 
system (9) driven by the variable structure controller (20), if the following conditions hold:  
 

FFd

FFFFdFp

dtFdtFr

CMK

CBCMKCK

tMtBfK

)(max

,),(max)(max

,)(max)(max)(max),(max)(max

,

2

,

θη

θθθ

θθθθθθ

θ

θθθ

θθθθ

+≥

+−≥

++≥

             (3.2.21) 

 
Proof: Let a positive definite Lyapunov function candidate be selected as 
 

  )()()(
2
1 tsMtsV T θ=                        (3.2.22) 

Since ),()(
2
1 θθθ BM −  is skew-symmetric, the time derivative of V  along the state trajectory 

of (19), and (20) is:  
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         (3.2.23) 

 

If conditions in (21) are partially fulfilled,  is guaranteed. However, the multivariable 0<V
−η reaching condition can be derived. For this,  and  are chosen as in (21) and the 

Cauchy-Schwarz triangle inequality is employed in (23) to get 
rK pK

 

  
( ) 22 )()()(max tstsCMKV FFd ηθ

θ
−≤−−≤               (3.2.24) 

 
 Therefore, it follows from (24) that conditions in (21) ensure that  for all . This 
concludes that  asymptotically. The rate of convergence of the state trajectory errors 
can be computed similarly as done in Section 2.1. It follows from (22) that 

0<V 0)( ≠ts
0)( →ts

[ ]( ) [ ]( ) VMtsVM 121 )(min2)()(max2 −− ≤≤ θλθλ
θθ

 whose left-hand part is substituted into (24) 

to get ( ) [ ]( ) VMCMKV FFd
1)(max)(max2 −−−≤ θλθ

θθ
. The exponential solution proposed in 

Section 2.1 is applied to obtain ( ) [ ]( ) 1)(max)(max2 −−≥ θλθ
θθ

MCMKr FFd . Then following the 

approach shown in (11) yields:  
 

( )
1

1 max ( ) max ( )
max02 min ( ) d FFK M C MTx V C C M e θ θ

θ λ θ

θ
λ λ θ

t
−

⎛ ⎞⎛ ⎡ ⎤⎜ ⎟⎜ ⎣ ⎦⎝ ⎠⎝
− − −⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⎣ ⎦

′ ′≤
⎞
⎟
⎠

.
 
Therefore, the convergence of state errors can be improved by choosing  as large as 
possible. 

dK

 

3.2.3.2. Global stability conditions  

 
In order to make the robot tracking control system globally asymptotically stable, a theorem is 
introduced as follows: 

Theorem 5: Suppose that the conditions (21) of Lemma 5 hold, then the error system (19) 
driven by the discontinuous sliding mode controller (4) and (20) is globally asymptotically 
stable if the additional conditions given in (12) and dFp KCK ≥  are fulfilled with  and 

 as: 

),( θθP

),( θθR
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           (3.2.25)
 

where , C 0µ , A , W  and  are defined in the statement of Theorem 5. D

Proof: The Lyapunov function (13) can be used. Time derivative of (13) along the state 
trajectory of system (4), (19), (20) is:  
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(3.2.26) 

 
Denoting the last summing term as L , it can be rearranged as follows: 
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Substituting the right-hand part of L  into (26) gives (15). The proof proceeds with following 
from (16) to (18). 

 

3.2.3.3. Reduced design 

 
The gain selections used in Section 2.3 can as well be used. This time  has to be chosen such 

that 

0c

[ ]
1

,
0 )(min),(max

−

⎟
⎠
⎞⎜

⎝
⎛> θλθθ

θθθ
MBc

F
 and the control gain parameter should be selected in 

accordance with  
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3.2.4 Analytical comparison analysis: Qu and Dorsey control laws 
 

For an analytical and numerical comparison, for example with the Qu and Dorsey control laws 
[17-18] and stability results, some difficulties and shortcomings which are considered in [17-
18] and should be overcome can be mentioned here. For example, it is not desirable to require 
acceleration measurements in the control law. It is desirable to use a simplified control law. The 
bound on the tracking error should be constant if possible. Moreover, several requirements are 
stated in [17-18] to make the linear feedback a viable means of solving the tracking control of 
robots. Qu and Dorsey control laws are developed to fulfill these requirements. Therefore, the 
proposed controller in this paper can be evaluated in view of these criteria. The control law (20) 
does not use any acceleration measurements. The structure of the control law (20) is of 
nonlinear switching type with linear feedback gains. Since the dynamics may not be known in 
the usual case, the switching nature of (20) makes it highly insensitive to parameter 
uncertainties. Explicit expressions that depend on the initial conditions and bounds on the 
nonlinear dynamics are derived for the lower bounds of the feedback gains. Some of the bounds 
on the nonlinear dynamics are not constant and are proportional with the tracking error. For this 
reason, an analytical relationship between the bound of the tracking error and the scalar 
feedback gain  for any initial condition is obtained in (25). It follows from (25) that 
increasing the feedback gains monotonically decrease the bound on the tracking error and that 
the bound on the tracking error tends to approach zero as 

dK

∞→t  in the limit. An important issue 
of whether asymptotic stability is feasible using finite constant gains is also taken into 
consideration. Theorem 2 shows that globally asymptotic stability of the tracking error is 
guaranteed if the feedback gains are constantly and finitely selected to be larger than certain 
bounds on the nonlinear dynamics. Even if the bounds on the nonlinear dynamics are unknown, 
the tracking error system can still be made bounded by choosing the scalar gain  large 
enough. Then the error system becomes asymptotically stable as 

dK
∞→dK . Thus, the proposed 

control law is shown to be equally fulfilling the basic requirements mentioned by Qu and 
Dorsey.  

 

3.2.5 Simulation example 

 
A simple two-link direct drive robot manipulator was simulated to test the robust control 
system designed in Section 3. The manipulator was modeled as two rigid links with point 
masses at the ends of the links. The dynamic equations can be accessed from [23-24].  

To illustrate the feasibility of the designed controller let us consider the tracking control of a 
two-link SCARA type manipulator (see Fig. 3.1.2). [ ]21 θθθ =  and [ ]21 uuu =  one can 

define )(θM ,  and and ),( θθB )(θf )(θg  as below: 
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where the inertial parameters are set as 16.31 =p , 106.02 =p , 173.03 =p , , 
, , 

kgm 6.101 =

kgm 85.41 = 36.01 =l ,24.02 =l 11 =K , 102 =K , . 11 −= sc

The initial conditions and the desired trajectories were selected to be  1)0()0( 21 ==θθ , 
 1)0()0( 21 ==θθ )sin()()( 21 ttt dd ==θθ . The proposed control law is implemented with 

, , , 6438.20 =c 1667.10=rK 8957.11=pK 6638.22=dK . For a numerical comparison, Qu and 
Dorsey control law [17] is also implemented with the vector of gravity terms, , matrix 
of dynamic friction coefficients, 

0)( =qG
0=dF  and vector of disturbances, 0=dτ  to make the model 

dynamics (1) coincident with the one in [17]. The Qu and Dorsey control law [17] is given as 
[ ]xtu ΙΙ′= αγ)(  where the scalar gain parameters α  and γ ′ are selected as 5.0=α  and 150=′γ . 

The results of the simulations are shown in Fig. 3.2.2-3.2.7. 

 

3.2.6 Numerical comparison analysis: Qu and Dorsey control laws 

 
The position and velocity errors under pd tracking variable structure control shown in Fig. 3.2.2 
indicates that the convergence of the errors is slightly better and faster than the errors under 
robust tracking control by a linear feedback law depicted in Fig. 3.2.6. The control inputs given 
in Fig.3.2.3 exhibits a high rate of chattering which may be intolerable due to physical 
limitations of the actuators. This is simply because of signum function in the control law (20). 
Replacing the pure signum function with a saturation function yields the position and velocity 
errors depicted in Fig. 3.2.4 and the control inputs shown in Fig. 3.2.5. It can be noticed that the 
error profiles under variable structure saturation control are much better than the ones under Qu 
and Dorsey control law for this design example. Moreover, the chattering has also been 
removed now. Therefore, the control inputs are smooth and smaller in magnitude as compared 
with the Qu and Dorsey control inputs given in Fig. 3.2.7. 
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3.2.7 Conclusion 

 
Two types of robust variable structure PD controllers have been designed for the position and 
tracking stabilization of robot system with exact and inexact knowledge of the robot arm 
dynamics. For the set-point regulation, the equivalent control method is used. Based on this 
design approach the robot tracking controller with inexact dynamics knowledge is designed. It 
is assumed that angular joint variables can be measured. Moreover, the bound robot parameters 
such as inertia, Coriolis and centrifugal matrices are also available. These robot parameters are 
sources of strong state parameter perturbations. The sliding and stability conditions are 
presented by using a Lyapunov full quadratic form combined with linear matrix inequalities. 
The rate of convergence is derived. Reduced design is also given. The simulations are 
performed to test the proposed design approach. Analytical and numerical comparisons with 
linear control laws are discussed. The results of the simulations clearly indicate that the 
practical results confirm the theoretical conclusions. 

 

 

Figure 3.2.1 The  triangle 
∆

ABC

 

 
Figure 3.2.2 Position and velocity errors under robust PD tracking control with inexact  

                            dynamics 
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Figure 3.2.3 Control inputs under robust PD tracking control with inexact dynamics 

 

 
Figure 3.2.4 Position and velocity errors under robust PD tracking saturation control with  

                          inexact dynamics 

 

 
Figure 3.2.5 Control inputs under robust PD tracking saturation control with inexact dynamics 
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Figure 3.2.6 Position and velocity errors under robust tracking control by a linear feedback law 

 

 
Figure 3.2.7 Control inputs under robust tracking control by a linear feedback law 

 

3.3 A new variable structure PID-controller design for robot manipulators  

 
In this paragraph a new variable structure PID controller design approach is considered for the 
tracking stabilization of robot motion. The work corroborates the utility of a certain PID sliding 
mode controller with PID sliding surface for tracking control of a robotic manipulator. In 
different from general approach, the conventional equivalent control term is not used in this 
controller because that needs to use the matching conditions, exact full robot dynamics 
knowledge and unavailable parameter uncertainties. Though the sliding surface includes also 
the integral error term which makes the robot tracking control problem complicated, the 
existence of a sliding mode and gain selection guideline are clearly investigated. Moreover, in 
different from uniformly ultimately boundedness, the global asymptotic stability of the robot 
system with proposed controller is analyzed. The sliding and global stability conditions are 
formulated in terms of Lyapunov full quadratic form and upper and lower matrix norm 
inequalities. Reduced design is also discussed. The proposed control algorithm is applied to a 
two-link direct drive robot arm through simulations. The results indicate that the control 
performance of the robot system is satisfactory. The chattering phenomenon is shown to be 
overcome by the use of a saturation function in the control law in place of a pure signum 
function. The replacement of a saturation function with the pure signum function yields a 
smooth transient performance. The proposed approach is compared with the existing alternative 
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sliding mode controllers for robot manipulators in terms of advantages and control 
performances. A comparative analysis with a plenty of simulation results soundly confirmed 
that the performances of developed variable structure PID controller are better under than that 
of both classical PID-controller and an existing variable structure controller with PID-sliding 
surface. Simulations are carried out with a two-link direct drive robot arm. Simulation results 
show that the control performance of the robot system is satisfactory. 

 

3.3.1 Brief analysis of robot control systems 
 
 
A well known approach to the control of uncertain system by non-linear feedback laws is the 
variable structure control [28]-[31], etc. In recent years, the variable structure principles are 
widely used for the stabilization of robot motion. Variable structure control is a no simple and a 
powerful control technology. It is often used to handle the worst-case control environment: 
parametric perturbations with lower and upper bounds, nonlinearities, external disturbances, 
friction and complexity, etc. Precise dynamic models are not required and the control 
algorithms can be easily implemented. Set-point regulation control problem is considered in 
[32] and [33]. A relay type of sliding mode controller with equivalent control approach for 
robot manipulators with parameter perturbations is investigated in [34]. A continuous sliding 
mode control law is used in [35], [36]. A sliding mode controller is proposed in [37] where 
simultaneous position and force control of constraint robot manipulators are taken into account. 
An integral type of variable structure control approach is presented in [38] for a guided missile 
system. The general approach in the sliding mode control is that the control law consists of two 
parts. One is the conventional equivalent control and another is the switching part. For the 
switching part, similar structure is also well documented in [39]. An adaptive variable structure 
control for robot manipulators is considered in [39]. 
An augmented sliding surface design for robot manipulators is considered in [40]. Both sliding 
and stability issues are taken into account. Integral variable structure controllers for robot 
manipulators [41] and electrohydraulic velocity servo systems [42] are designed by Chern and 
Wu. A first survey of robust control has been presented in [43]. Another survey paper [44] 
presents an overview of six different robust control schemes including current robot state 
coordinates for robot manipulators. Discontinuous min-max control term combined with the 
linear control term is used in robot control systems. But, sliding and stability conditions are not 
considered in this paper. A new combined variable structure controller with PID sliding 
surfaces for robot manipulators is proposed in [45]. This controller consists of two parts: 1) 
linear PID-control and 2) discontinuous unit vector term with PID sliding surface. Both regular 
and adaptive versions of the controller are presented. However, the control law involves a 
nonlinear vector norm. Exponentially stable sliding conditions and uniformly ultimately 
boundedness of robot system are investigated. The simulation results have demonstrated that 
the PID sliding surface provides faster response than that of traditional PD-manifold controller. 
A more recent paper that deals with chattering issue can be seen in [46]. Passivity-based 
adaptive and non-adaptive chattering-free sliding mode controllers are proposed. A desired 
transient response with global exponential convergence of tracking errors is obtained. A new 
variable structure PD-controllers design method for robot manipulators with parameter 
perturbation is developed in [50].  
In this paragraph, a new variable structure PID-controller with PID sliding surface [51] design 
approach is considered for the tracking stabilization of robot motion. The work corroborates the 
utility of a certain PID sliding mode controller with PID sliding surface for tracking control of a 
robotic manipulator. In different from general approach, the conventional equivalent control 
term is not used in this controller because that needs to use the matching conditions, exact full 
robot dynamics knowledge and unavailable parameter uncertainties. Though the sliding surface 
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includes also the integral error term which makes the robot tracking control problem 
complicated, the existence of a sliding mode and gain selection guideline are clearly 
investigated. Moreover, in different from uniformly ultimately boundedness, the global 
asymptotic stability of the robot system with proposed controller is analyzed. The sliding and 
global stability conditions are formulated in terms of Lyapunov full quadratic form and upper 
and lower matrix norm inequalities. Reduced design is also discussed. The proposed control 
algorithm is applied to a two-link direct drive robot arm through simulations. The results 
indicate that the control performance of the robot system is satisfactory. The chattering 
phenomenon is shown to be overcome by the use of a saturation function in the control law in 
place of a pure signum function. The replacement of a saturation function with the pure signum 
function yields a smooth transient performance. The proposed approach is compared with the 
existing alternative sliding mode controllers for robot manipulators in terms of advantages and 
control performances. A comparative analysis with a plenty of simulation results soundly 
confirmed that the performances of developed variable structure PID controller are better under 
than that of both classical PID-controller and an existing variable structure controller with PID-
sliding surface. Simulations are carried out with a two-link direct drive robot arm. Simulation 
results show that the control performance of the robot system is satisfactory. 
 
 
3.3.2 Variable structure PID-controller design with inexact robot parameters 
  
 
In different from existing, a new robot tracking variable structure PID controller with PID 
sliding surface design method is presented. The conventional equivalent control term is not 
used in this controller, because we assume that we do not know exact full knowledge about the 
dynamics and parameters of the robot arm system. We only know the current value of the 
angular position and the angular velocity by measuring the corresponding sensors. In general, 
the robot parameters: mass, inertia and )(θM , , , ),( θθB )(θf )(θg , etc. are not perfectly 
known. These measured robot parameters )(θM , , , ),( θθB )(θf )(θg  are very difficult 
nonlinear functions of θ , , and they intensively vary in some intervals in various depending 
variation of 

θ
θ  and . Although, the general form of the inertia matrix, Coriolis, centrifugal, 

friction and gravity effects can be modeled because robot parameters involve a nominal part 
and some variation, therefore, the upper and lower matrix norm of these parameters are only 
used in the selection of the design parameters. This is an advantage of our design methods: 
However, a parameter uncertainty is not presented in evidently form in robot dynamics. The 
design parameters of the variable structure controller are parametrically obtained by analyzing 
of sliding and global asymptotical stability conditions. These conditions are formulated in terms 
of Lyapunov full quadratic form and some min-max matrix norm inequalities. 

θ

 

3.3.2.1 Dynamics of the robot manipulator 
 
Introducing , one can consider an n-link manipulator [34], [47] whose augmented 

dynamics is given by  
∫= dttt )()( θψ

 

  

[ ])()()(),()( 1 tugfBM +−−−=
=
=

− θθθθθθω
ωθ
θψ

             (3.3.1)  

 
where ψ  is an  vector of angular joint position integral, 1×n θ  is an 1×n  vector of angular 
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joint position, ω  is an  vector of angular joint velocity, 1×n )(θM  is an  symmetric 
positive definite inertia matrix,  is an 

nn ×

),( θθB nn ×  Coriolis and centripetal force matrix,  
is an  vector of joint friction , 

)(θf
1×n )(θg  is an 1×n  vector of gravity and  is an  vector 

of control input. The state vector of the dynamics is given as 
)(tu 1×n

[ ]ωθψ=x . For the 
proceeding analysis, we need to construct the error dynamics of the robot arm system. We 
denote )(tdθ  as a time-varying reference position vector, the integral of the reference position 

obtained as , and the reference velocity given by . Then the 

deviation of the actual position integral, position and velocity from the reference counterparts 
are denoted by 

∫ ′′=
t

dd tdtt
0

)()( θψ )()( tt dd θω =

)()()(~ ttt dψψψ −= , )()()(~ ttt dθθθ −= , )()()(~ ttt dωωω −= , respectively. Then the 
error dynamics can be written as follows: 
 

 [ ] )()(),()()()(~),()(~
~~
~~

11 ttBMugfBM dd θθθθθθθωθθθω
ωθ
θψ

−−+−−−=
=

=

−−

                        (3.3.2)

 

 

The aim of the proposed controller is to design a general purpose PID sliding mode tracking 
controller for the robot manipulator system such that the system (1) will be globally 
asymptotically stable. 

 

3.3.2.2 Variable structure PID-controller with PID sliding surface 
 
In order to achieve this particular goal, a sliding mode control law is formed as  
 

  
[ ] ))((sign)(~)(~)(~)( tstKtKtKKtu dipr ωψθ +++−=

              (3.3.3) 
 
where  is a positive scalar relay gain constant,  is a positive scalar feedback proportional 
gain constant,  is a positive scalar feedback integral gain constant and  is a positive scalar 
feedback derivative gain constant parameters to be selected, 

rK pK

iK dK

( ) ( ) ( )⋅⋅=⋅ T  is the Euclidean 

norm, T is the transpose of vector or matrix, [ ]Tn tststs ))((sign)),...,((sign))((sign 1=  is the signum 
function vector. The conventionally used sliding surface definition involving the position error 
and the velocity error of the form eets Λ+=)(  can be extended to the one also including the 
integral error of the form  where ∫Λ+Λ+= edteets 21)( 1Λ , and 2Λ  are constant positive 

definite matrices and  denotes the state error term. Therefore, the augmented sliding surface 
function is appropriately introduced as 

e

 
                      (3.3.4) ).(~)(~)(~)( 21 ttCtCts ωθψ ++=

 
 where ,  are constant design matrices. Concerning the investigation of how these design 
matrices can be selected to establish a stable sliding surface, one can set  along with its 
state-space representation as  

1C 2C
0)( =ts
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Choosing  and  as positive definite design matrices yield a stable reduced error system 
given in (5). Having selected the sliding mode control law (3) with sliding surface function (4), 
the next step is to choose the design parameters such that the sufficient conditions for the 
existence of a sliding mode are fulfilled and then the closed-loop system will be globally 
asymptotically stable. For illustration of robustness versus parameter variations, we shall use 
only one of robust techniques so- called second method of Lyapunov similar to [48]. The 
potentialities of variable structure controller providing the better control performances and 
robustness are fully exploited. 

1C 2C

 

3.3.2.3 Sliding conditions 
 
In this section, we introduce a lemma in order to derive the sufficient conditions for the 
existence of the sliding mode in the robot-manipulator system. Since when sliding then system 
is robust to parameters uncertainty. 

Lemma 6: The stable sliding mode on s(t)=0 (4) always exists in dynamic system (2) driven by 
controller (3), (4), if the following conditions hold: 
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where ))()(trace()( ⋅⋅=⋅ T
F

 is the Frobenius norm, η  is a constantly selected positive scalar. 

Proof: Let us choose a Lyapunov function candidate as in [33]: 
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Time derivative of V  along the state error trajectory of system (2), (3), (4) is given by  
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Let us use an identity defined as ( JMB −= )(
2
1),( θθθ )  [34] where  is a skew symmetric 

matrix. Then we can rewrite V  as  

J
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Using the fact that )())((sign)( tststs T ≥ , and 0)()(
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=tJsts T . [34] and taking the norm of 

the remaining terms, we obtain  
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Now we can rearrange V  by taking all the terms into the common parentheses of )(ts−  and 
rewrite 
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If  can be chosen in accordance with (6), and , , and  are chosen such that  rK iK pK dK
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robot arm system. However, we wish to utilize the η -reaching condition [29, 47]. For our 
multivariable case η -reaching condition is given by 
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Let us choose  and  in according with (6) and assuming that iK pK

FFd CMK 2)(max θ
θ

> , 

we can rewrite (12) as follows 
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We can utilize the Cauchy-Schwarz triangle inequality of the form 
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Then Eq. (13) is reduced into  
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We notice that the Eq. (14) implies  
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Hence, if conditions in (6) are fully satisfied, then sliding inequality (15) reduces to  for 
all  and we conclude that a stable sliding motion is always generated on the switching 
surface  (4). However, the designed system has to be globally asymptotically stable 
with respect to the state coordinates in large. This problem is considered in the next section. 

0<V
0)( ≠ts

0)( =ts

 
3.3.2.4 Global Asymptotical Stability 
The following theorem summarizes the global asymptotic stability conditions for the closed-
loop robot system. 

Theorem 6: Suppose that the conditions (6) of Lemma 6 hold, then the dynamic system (2) 
driven by controller (3), (4) is globally asymptotically stable, if the following conditions hold 
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Proof: Let us introduce a positive definite full quadratic form of Lyapunov function candidate 
as 
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where )(θM  is the symmetric positive definite inertia matrix,  and  are sliding surface 
slope gain matrices, 

1C 2C
A  and  are symmetric gain matrices and W  is another gain matrix all 

with appropriate dimensions such that 
D
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We proceed with time derivative of ),~,~,~( tV ωθψ  along the system dynamics and the state 
trajectory of the system (2), (3), (4)  
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Substituting the system dynamics (2) into ),~,~,~( tV ωθψ , we get 
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         Since  and  are selected as the slope gain matrices of the sliding surface, then the last line 
in Eq. (19) can be rewritten as 
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If we choose  and  in accordance with (16), and utilize pK iK )())((sign)( tststs T ≥  and 
taking the norm we get 
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Choosing  in accordance with (16) and using Cauchy-Schwartz triangle inequality, we get rK
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Let us substitute (*) into ),~,~,~( tV ωθψ  appropriately then we obtain 
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We can once more use the identity given in [34] in the last product term taking into account 
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Now, let us convert ),~,~,~( tV ωθψ  (20)  into quadratic form as follows 
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where , , , , , and  are defined in the statement of 
Theorem 1. Therefore, what we should do is to investigate appropriate ’s such that 

1P 1R ),(2 θθP ),(2 θθR ),(3 θθP ),(3 θθR

dK H  

remains always positive definite allowing ),~,~,~( tV ωθψ  to remain always negative definite for a 
global asymptotically stable robot arm system. Now the next step is to choose  that makes dK
H  nonnegative. Since H  is a partitioned matrix, Schur complement is used for this aim. In 
accordance with Schur’s complement, the following inequalities are established as 
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First of all, considering the first half of (22) we notice that  is always positive definite 
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Before analyzing the third condition in Eq. (23), let us make a change of variable as 
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Then the condition in Eq. (23) can be rewritten as follows 
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In view of (27) if conditions in (16) are satisfied, then (20) reduces to 
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Hence Theorem 6 is proved. Thus the design procedure is completed. 
 
3.3.3 Reduced design 
 
In this section, we will use Theorem 6 particularly in choosing various design parameters more 
systematically. Since the existence of such Lyapunov function depends on purely mathematical 
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parameter selections: , naA Ι= 0 nwW Ι= 0 , ndD Ι= 0 , ncC Ι= 11 , nC Ι=2 , then in order to make 
the Lyapunov function candidate positive definite, the parameters should satisfy 
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Elaborately working on the condition (iii) in (29), we obtain  
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Let us choose , , then conditions of (i) and (ii) are certainly satisfied and 
condition of (iii) takes the form 
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Now we can explicitly treat the stability conditions given in Eq. (16) as follows, 

assuming
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Therefore, it is possible to find a new lower bound for  0a
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which implies that  should be selected in accordance with   0a
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Considering Eq. (29), (30), and (32),  can be chosen such that    0a
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Finally, the lower bound of the control parameter  is evaluated as follows  dK
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3.3.4 Simulation Example  
 
To illustrate the feasibility of the designed controller let us consider the tracking control of a 
two-link SCARA type manipulator [49] shown in Figure 3.3.1. [ ]21 θθθ =  and  

one can define 

[ ]21 uuu =

)(θM ,  and and ),( θθB )(θf )(θg  as below: 

 147



⎥
⎦

⎤
⎢
⎣

⎡
+

++
=

2232

232231

)cos(
)cos()cos(2

)(
ppp

pppp
M

θ
θθ

θ ,   

 

⎥
⎦

⎤
⎢
⎣

⎡ +−−
=

0)sin(
)sin()()sin(

),(
231

2321232

θθ
θθθθθ

θθ
p

pp
B ,  

 

⎥
⎦

⎤
⎢
⎣

⎡

+
+

=
)sgn(
)sgn(

)(
2221

1211

θθ
θθ

θ
KK
KK

f ,   

 

( )
⎥
⎦

⎤
⎢
⎣

⎡
+

+++
=

)cos(
)cos()cos(

)(
2122

21221121

θθ
θθθ

θ
glm

glmlmm
g , 

 

where the inertial parameters are set as 16.31 =p , 106.02 =p , 173.03 =p , , 
, , 

kgm 6.101 =

kgm 85.41 = 36.01 =l ,24.02 =l 11 =K , 102 =K , . The reference trajectory for the 
position control problem has been chosen as, 

11 −= sc
rad )6.0sin(8.0)()( 21 ttt dd ==θθ . Thus, the 

reference trajectory for position integral and velocity are computed as 
3/)6.0cos(4)()( 21 ttt dd −==ψψ  and . The simulation 

results are given in Figures 2-14. 

1
21 secrad)6.0cos(48.0)()( −== ttt dd ωω

 

3.3.5 Comparison and analysis of the alternative controllers’ simulation results 

 
For the purpose of comparison, the simulations have been carried out by considering 3 types of 
controllers under the same conditions. The first is the one that is proposed in this work. The 
second is the classical PID controller and last is the one that is proposed by Stepanenko [45]. 
Applying our novel variable structure PID controller, it can be seen in Fig. 3.3.2 that the actual 
joint positions succeed to follow the references perfectly though the first joint position makes 
temporary overshoots which die out immediately. The switching functions shown in Fig. 3.3.3 
indicate a very rapid convergence of the joint states towards the sliding manifolds. The control 
inputs are depicted in Fig. 3.3.4 in which a considerable amount of chattering effect is noticed. 
Since chattering is intolerable for a proper operation of actuators, there is a need to practically 
overcome this problem. The conventional solution in the sliding mode literature is to utilize a 
saturation function in the control law in place of the pure signum function. Under this situation, 
the trajectory following portrait for joint positions and the convergence of the switching 
functions are presented in Fig. 3.3.5 and 3.3.6, respectively, in which the behaviors are almost 
same as compared with the former case. The significant gain from this slight change in the 
control law can be seen in the control inputs shown in Fig. 3.3.7, which exhibit a chattering-free 
smooth and a decreasing control action. As the second phase of the simulations, the classical 
PID controller is utilized and the simulations are renewed with the same parameter settings. 
The actual joint positions and joint velocities versus their reference counterparts can be seen in 
Fig. 3.3.8 and 3.3.9, respectively. It is immediately noticed that there exist a considerable 
amount of deterioration in the performance of the robot manipulator. The deviations from the 
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references of the joint positions and joint velocities are intolerable unless the control parameters 
are chosen high enough which is not needed in the case of our proposed controller. The control 
inputs depicted in Fig. 3.3.10 are smooth but are of non-decreasing nature. As the final phase of 
the simulations, the control law that is proposed by Stepanenko [45] is taken into account and 
the simulations are repeated under the same circumstances. Looking at the behavior of the joint 
positions given in Fig. 3.3.11, it can be seen that there exist an intolerable amount of deviation 
from the reference trajectories which the same situation observed in the case of classical PID 
controller. This outcome is also confirmed when the switching functions are checked from Fig. 
3.3.12. There it is noticed that the joint trajectories fail to reach the sliding manifolds exactly 
and make fluctuations around them. However, the good thing is that the control torques shown 
in Fig. 3.3.13, are chattering free. As seen from Fig. 3.3.14, in different from our switching 
functions in Fig. 3.3.3 and 3.3.6, the Stepanenko switching function case is not equal to zero. 
Moreover, sometimes the sliding mode conditions are not satisfied. Therefore, this degrades the 
control performances. It also needs an attention that this performance may be improved by 
high-gain control action which means more energy consumption while the same goal can be 
achieved with less control effort by using our newly proposed variable structure saturation 
controller. Thus, comparison analysis of three alternative controllers with a plenty of simulation 
results in terms of advantages and control performances soundly confirmed that the proposed 
controller provided better performances than that in existing. 

 

3.3.6 Conclusions 

 
In this paragraph a new variable structure PID controller design approach is considered for the 
tracking stabilization of robot motion. The work corroborates the utility of a certain PID sliding 
mode controller with PID sliding surface for tracking control of a robotic manipulator. In 
different from general approach, the conventional equivalent control term is not used in this 
controller because that needs to use the matching conditions, exact full robot dynamics 
knowledge and unavailable parameter information. Though the sliding surface includes also the 
integral error term which makes the robot tracking control problem complicated, the existence 
of a sliding mode and gain selection guideline are clearly investigated. Moreover, in different 
from uniformly ultimately boundedness, the global asymptotic stability of the robot system 
with proposed controller is analyzed. The sliding and global stability conditions are formulated 
in terms of Lyapunov full quadratic form and upper and lower matrix norm inequalities. 
Reduced design is also discussed. The proposed control algorithm is applied to a two-link direct 
drive robot arm through simulations. The results indicate that the control performance of the 
robot system is satisfactory. The chattering phenomenon is shown to be overcome by the use of 
a saturation function in the control law in place of a pure signum function. The replacement of a 
saturation function with the pure signum function yields a smooth transient performance. The 
proposed approach is compared with the existing alternative sliding mode controllers for robot 
manipulators in terms of advantages and control performances. A comparative analysis with a 
plenty of simulation results soundly confirmed that the performances of developed variable 
structure PID controller are better under than that of both classical PID-controller and an 
existing variable structure controller with PID-sliding surface. Simulations are carried out with 
a two-link direct drive robot arm. Simulation results show that the control performance of the 
robot system is satisfactory. 
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Figure 3.3.1 Joint positions of the manipulator 

 

 
Figure 3.3.2 Desired (bold) and actual (dashed) joint position errors 

 

 
Figure 3.3.3 Switching functions for joint 1 and joint 2 
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Figure 3.3.4 Control inputs applied on the joints 

 

 
Figure 3.3.5 Desired (bold) and actual (dashed) joint position errors with saturation in the  

                          control law 
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Figure 3.3.6 Switching functions for joint 1 and joint 2 with saturation in the control law 

 

 
Figure 3.3.7 Control inputs applied on the joints with saturation in the control law 
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Figure 3.3.8 Desired (bold) and actual (dashed) joint position errors under classical PID control 

 

 
Figure 3.3.9 Desired (bold) and actual (dashed) joint velocity errors under classical PID control 
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Figure 3.3.10 Control inputs applied on the joints under classical PID control 

 

 
Figure 3.3.11 Desired (bold) and actual (dashed) joint position errors under Stepanenko  

                       control law 
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Figure 3.3.12 Desired (bold) and actual (dashed) joint velocity errors under Stepanenko  

                       control law 

 

 
Figure 3.3.13 Control inputs applied on the joints under Stepanenko control law 
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Figure 3.3.14 Switching functions for joint 1 and joint 2 under Stepanenko control law 
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CHAPTER 4 
 
 

Variable Structure Control of Time-Delay Systems with 
Parameter Uncertainties 

 
 
4.1 Introduction 

This chapter consists of two sections.  Section 4.2 considers robust stabilization of 
multivariable single state-delayed systems with mismatching parameter uncertainties and 
matching/mismatching external disturbances. Sliding mode control design methods for both 
certain and uncertain multi-input systems with several fixed state delays are considered in 
section 4.3.  

 
4.2 Robust sliding mode controller of multivariable single time-delay systems with 
parameter perturbations and external disturbances 
 
In this paragraph, robust delay-independent stabilization of multivariable single state-delayed 
systems with mismatching parameter uncertainties and matching/mismatching external 
disturbances are considered. To achieve this goal, two types of robust sliding mode controllers 
design techniques are advanced. The first is an integral sliding mode controller design 
modification to Shyu and Yan type controller design. The mismatching sliding conditions are 
parametrically obtained by using Lyapunov-Razumikhin-Hale method and formulated in terms 
of some matrix norm inequalities. In the second contribution, a new combined sliding mode 
controller design technique for the stabilization of multivariable single state-delayed systems 
with mismatching parameter perturbations are advanced by using Lyapunov-Krasovskii V-
functional method. The sliding, global stability and delay-dependent β -stability conditions are 
parametrically obtained and formulated in terms of matrix inequalities. A sliding mode 
controller design example for AV-8A Harrier VTOL aircraft with lateral unstable dynamic 
model parameters is considered to illustrate the controller design method.  Design procedures 
and simulation results show that our advanced method is useful. And unstable lateral dynamics 
is successfully stabilized by using combined controller 

 
4.2.1 Brief analysis of time-delay systems 
 
It is well known that major engineering and communication systems contain time-delay and 
parameter uncertainties subject to external disturbances. The existence of time-delay effect is 
frequently a source of instability. Robust stabilization of time-delay system is not as easy as 
that of a delay-free system. Therefore, the problem of robust stabilization of uncertain 
dynamical systems with time-delay has received considerable attention of control researchers. 
From the point of view of robust control design approaches the variable structure control 
concept has played most important role because of its robustness to parameter uncertainties 
and external disturbances. There are a large number of such papers in literature (for example, 
see Garofalo and Glielmo (1996) [1]; Ha, Rye and Durrant-Whyte (1999) [2]). Remember that, 
some simple and more complicated conventional variable structure algorithms for delay-free 
systems are presented by Emelyanov (1967) [3], Utkin (1974) [4], Spurgeon (1991) [5], 
Edwards and Spurgeon (1998) [6], etc. However, the number of papers concerning time-delay 
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systems is not large. Shyu and Yan (1993) [7] have treated an integral variable structure 
controller involving equivalent control term and relay term for stabilization of time delay 
systems with parameter uncertainties. Robust β -stability condition for unforced perturbed 
system is derived by using Razumikhin-Hale type theorem. System matrix and its variation are 
cancelled by equivalent control term while relay term is used only for generation the sliding 
mode on the integral sliding surface. However, actually exact equivalent control term is 
unavailable since it is dependent on unknown norm-bounded parameter uncertainties. Finally, 
VSC is designed only for nominal time-delay system. Moreover, global stability condition 
needs the existence of stable system matrix. In spite of this, Shyu and Yan type controller for 
the considered system is designed very well. 
Luo and De La Sen (1993) [8] have designed the VSC including absolute values of state and 
delayed-state feedback for robust stabilization of single input-delayed systems with parameter 
uncertainties. Global stability condition is derived by using matrix measure method. Such 
design approach is generalized for single state and input delayed SISO and MIMO system with 
parameter uncertainties and external disturbances (Luo, De La Sen and Rodellar, 1997 [9]). 
Robustness properties of sliding time-delay systems are analyzed. 
Koshkouei and Zinober (1996) [10] have designed a sliding mode controller including 
equivalent control term and relay term for stabilization of time-delay canonical MIMO system 
with matched external disturbances by using Lyapunov-Krasovskii V-functional method. 
Lyapunov-Krasovskii V-functional method (Lyapunov 1992 [11], Krasovskii 1959 [12]) has 
been introduced to stability analysis of variable structure systems with time-delay by Jafarov 
(1980 [13], 1998 [14]). 
Lyapunov-Krasovskii V-functional method has been used for stabilization of multiple state-
delayed linear systems by Nazaroff (1973) [15]. Four-term sliding mode controller design for 
multiple state-delayed systems with mismatching parameter perturbations and matching 
external disturbances are considered by Li and DeCarlo (2001 [16] and 2003 [17]). This 
approach is applied to systems with differentiable time-varying delays (Li and DeCarlo, 2003 
[17]). 
Recently, several sliding mode controller design methods for uncertain systems with and 
without time-delay are considered by many authors. 
The behavior and design of sliding mode control system with state and input delays are 
considered by Perruquetti and Barbot (2002) [18] using Lyapunov-Krasovskii functionals. 
Latest research results in this area are given in survey paper by Richard, Gouaisbaut and 
Perruquetti (2001) [19]. The combination of delay phenomenon with relay actuators makes the 
situation much more complex. Designing a sliding controller without taking delays into 
account may lead to unstable or chaotic behaviors or, at least, results in highly chattering 
behaviors. 
Four-term robust sliding mode controllers for matched uncertain systems with single or 
multiple, constant or time-varying state delays are designed by Gouaisbaut, Dambrine, and 
Richard (2002) [20] by using Lyapunov-Krasovskii functionals and Lyapunov-Razumikhin 
function combined with LMI’s techniques. 
Shyu and Yan (1993) [7] design approach is extended to a combined four-term sliding mode 
controller design for matched/mismatched uncertain time-delay systems with a class of 
nonlinear inputs by Yan (2003) [21]. Delay-dependent stability condition is derived by using 
quadratic Lyapunov function already involving an unknown delay constant. Conservativeness 
example with good results is presented. 
An analysis and design of bounded switching feedback controller for delay free variable 
structure systems with matched lumped uncertainties are presented by Choi (2004) [22]. 
In general, an overview of some recent advances and open problems in time-delay systems and 
sliding mode control for systems with input/output delays is given in large survey paper by 
Richard (2003) [23]. Some delay-dependent stability criteria for time-delay systems are 
advanced by Jafarov (2003) [24]. 
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Another type of VSC known as the min-max controller for robust stabilization of time-varying 
state-delayed dynamical systems with matching parameter uncertainties and external 
disturbance has been designed by Cheres, Gutman and Palmor (1989) [25]. The global stability 
and β-stability conditions are formulated in terms of differential Riccati equations by using 
Razumikhin-Hale type theorem. Brief analysis of reviewed papers show that various types of 
sliding mode controllers and design techniques for uncertain systems with and without time-
delay are considered. However, global asymptotical stability and sliding conditions for 
stabilization of multivariable time-delay systems with parameter perturbations and external 
disturbances by using a modified Shyu and Yan controller and combined sliding mode 
controller are not investigated systematically. In light of above mentioned design approaches, 
we will develop two types of modified simple two-terms sliding mode controllers without an 
equivalent control term for perturbed and delayed systems with unstable system matrix. Some 
new design techniques will be advanced.  
In this section, robust delay-dependent stabilization of multivariable single state-delayed 
systems with mismatching parameter uncertainties and matching/mismatching external 
disturbances is considered. To achieve this goal, two types of robust sliding mode controllers 
design techniques are proposed. The first contribution is an integral sliding mode controller 
design modification to Shyu and Yan type controller without using an equivalent control term. 
The mismatching sliding conditions are parametrically obtained by using Lyapunov-
Razumikhin-Hale method and formulated in terms of matrix norm inequalities. In the second 
contribution, a new combined two-terms sliding mode controller design technique for the 
stabilization of multivariable single state-delayed systems with mismatching parameter 
perturbations is advanced by using Lyapunov-Krasovskii V-functional method. The controller 
design approaches presented in this section are a little different from Li and DeCarlo, Shyu and 
Yan types’ controller design approaches. The sliding, global stability and delay-dependent β -
stability conditions are parametrically obtained and formulated in terms of matrix inequalities. 
Some mathematical analysis of sliding mode control and inequality estimations has been done 
also. A sliding mode controller design example for AV-8A Harrier VTOL aircraft with lateral 
unstable dynamic model parameters is considered to illustrate the controller design method. 
Design procedures and simulation results show that our advanced method is useful. And 
unstable lateral dynamics is successfully stabilized by using combined controller. Preliminary 
results of this work are presented in (Jafarov, 2003 [24]). 
This chapter is organized as follows: Section 4.2.2 contains system description and 
assumptions; Integral sliding mode controller design techniques are advanced in Section 4.2.3; 
Sliding mode controller design method and aircraft control design example are presented in 
section 4.2.4. Finally, the conclusion is included in Section 4.2.5. 
Further we shall use the following notation: R is a real-number field;  is a column vector; 

 is the transpose of a vector 

)(tx

)(txT ( )x t ; TA  is the transpose of a matrix A ; ( ) Tx t x= x  is the 

Euclidean norm; A)(AλA T
max=  is a matrix norm; min ( )Aλ  and max ( )Aλ  are minimum and 

maximum eigenvalues of matrix A , respectively, Rayleigh’s principle for a positive definite 
matrix P : 
 

2
max

2
min )()()()()()(0 txPtPxtxtxP T λλ ≤≤<  

 
4.2.2 System description and assumptions 
 
Consider the following dynamical time-delay system with parameter uncertainties and external 
disturbances described by the following state space equations  

( ) ( )0 0 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ),          0x t A A x t A A x t h Bu t Df t tσ σ= + ∆ + + ∆ − + + >�                       (4.2.1) 
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( ) ( ), 0x t t h tϕ= − ≤ ≤ ,   
 
where  is the state measurable vector;  is the control input;  and  are 
known ( )-matrices, B is a known (

nRtx ∈)( mRtu ∈)( 10 , AA D
nn× mn× )-matrix of full rank; the norm-bounded matrices 

)(0 σA∆  and )(1 σA∆  represent the parameter uncertainties; the norm-bounded  is 
unknown external disturbance; h is a known positive constant time-delay and 

nRtf ∈)(
( )tϕ  is a 

continuous vector-valued initial function on 0h t− ≤ ≤ .  
The objective of this work is to design the sliding mode controllers for robust stabilization of 
MIMO time-delay systems with parameter perturbations and external disturbances.  
We now make the following conventional assumptions. 
 
Assumption 1: There exist some norm-bounded matrices )(0 σH , )(1 σH  and E  of appropriate 
dimensions, such that the following matching conditions (Drazenovic, 1969 [27]; Cheres, 
Gutman and Palmar, 1989 [25]) are satisfied: 
 
 BEDBHABHA ==∆=∆    ),()(   ),()( 1100 σσσσ                                                                   (4.2.2) 
 
Assumption 2: )(),(),( 10 σσσ EAA ∆∆  and  are norm-bounded:   )(tf
                               
 00 )(max aA ≤∆ σ

σ
; 11 )(max aA ≤∆ σ

σ
; ησ

σ
≤)(max E ; dD ≤ ; θ≤)(tf ;                      (4.2.3) 

 
where daa ,,, 10 η  and θ  are given positive constants. 
 
Definition 1: A system is said to be robustly stable if the system is nominally stable as well, 
and allows changing in certain specific bounds of perturbation while keeping stability. 
 
Definition 2 (Cheres, Gutman and Palmor, 1989 [25]): The system (1) is said to have a 
stability degree 0>β  if there exists a positive number  (depending on initial conditions) 
such that the solution of (1) satisfies 

0c >

 
2 1( )

2 1( ) ( )t tx t ce x tβ− −≤  for all 1 2,t t R+∈ ,                                                                 (4.2.4) 2t t> 1

 
Observation 1: (Thowsen 1981 [28], Cheres, Gutman and Palmor 1989 [25], Shyu and Yan 
1993 [7] etc.): 

If  

( ) ( )tz t e x tβ=                                                                                                                          (4.2.5) 
 
where ( )x t  is the solution of (1) and ( ) 0z t =  is asymptotically stable. Then the system (1) has 
a stability degree 0>β . 
 
4.2.3 Integral sliding mode controller design  
 
In this section integral sliding mode controller design modification to Shyu and Yan type 
controller design is advanced. The mismatching sliding conditions are parametrically obtained 
by using Lyapunov-Razumikhin-Hale method and formulated in terms of matrix norm 
inequalities. 
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4.2.3.1 Modification of Shyu and Yan type controller 
 
To stabilize (1), let us form a new modification to Shyu and Yan type controller as follows: 
 

( ) 1 ( )( ) ( )
( )

T s tu t k x t B PB
s t

δ
−

⎡ ⎤⎣ ⎦= − +                                                                                     (4.2.6) 

 
where P  is a positive definite matrix,  is a scalar feedback gain constant and k δ  is a relay 
constant to be designed. 
Combined controller modification (6) consists of two parts: 1) Conventional VSC to 
compensate the parameters and their uncertainties and 2) Relay term to reject the external 
disturbances. 
The integral sliding surface is defined as given by Shyu and Yan (1993) [7]:   
 

0 1
0 0

( ) ( ) ( ) ( )
t t

s t Cx t CA x d CA x h dτ τ τ= − − −∫ ∫ τ                                                                          (4.2.7) 

 
where  is a sliding mode ( )-matrix of full rank that can be selected as . C nm× PBC T=
Unlike Shyu and Yan (1993) [7], Yan (2003) [21] and Choi (2004) [22] type controllers, our 
modification (6) has not used the equivalent control term since it is dependent on matching 
conditions and unknown parameter uncertainties. Indeed, in according to equivalent control 
method (Utkin, 1977 [29]) we can differentiate  with respect to the time: )(ts
 

0 1 0 0 1

1 0 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T T T T T T

T T T T T

s t B Px t B PA x t B PA x t h B PA x t B P A x t B PA x t h

B P A x t h B PDf t B PBu t B PA x t B PA x t h

σ

σ

= − − − = + ∆ +

+ ∆ − + + − − −

� � −
(4.2.8) 

 
0 1( ) ( ) ( ) ( )T T T TB P A x t B P A x t h B PDf t B PBu t= ∆ + ∆ − + +  

 
and obtain the equivalent control term from 0)( =ts� (8) as follows: 
 

( ) ( ) ( )1 1 1
0 1( ) ( ) ( ) ( )T T T T T T

equ t B PB B P A x t B PB B P A x t h B PB B PDf t
− − −

= − ∆ − ∆ − −              (4.2.9) 
 
It is clear that equivalent control term cannot be synthesized explicitly as it involves the 
unknown parameter uncertainties (Ryan, 1983 [30]; El-Ghezawi, Zinober and Billings, 1983 
[31]). 
 
4.2.3.2 Mismatching Sliding Conditions 
 
After selecting the sliding surface the next step is to choose the scalar feedback gains δ,k  and 
design matrix P  such that the stable sliding mode can exist. 
Theorem 1: Suppose that Assumption 2 holds. Then the delay-independent uniformly 
ultimately boundedness sliding mode can always be generated on the integral sliding surface 

(7) defined for mismatched perturbed system (1) driven by controller (6), (7), if the 
following conditions are satisfied: 

0)( =ts

 
0

1
( ) (k a )x t h x ta

ω
ω
−

− <                                                                                                   (4.2.10) 
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dδ ω θ=                                                                                                                             (4.2.11) 
 
where  max ( )T TB P PBBω λ= = P   

 
Proof: Define a positive definite Lyapunov function  
 

1
2

TV(t)     s (t)s (t)=                                                                                                              (4.2.12) 

 
The time-derivative of (12) along the trajectory of the system (1), (6), (7) can be calculated as 
follows  
 

0 1

1
0 1

1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )( ) ( )
( )

T T T T T T

T T T T T T T T T

T T T

V s t s t s t B P A x t B P A x t h B PDf t B PBu t

s ts t B P A x t s t B P A x t h s t B PDf t k x t s t B PB B PB
s t

s ts t B PB B PB
s t

δ

−

−

⎡ ⎤⎣ ⎦= = ∆ + ∆ − + +

= ∆ + ∆ − + −

−

� �

 
    0 1 ( ) ( )  ( ) ( )  ( ) ( ) ( ) ( )a s t x t a s t x t h d s t k s t x t s tω ω ω θ≤ + − + − −δ  
 
     0 1(  ) ( ) ( )  ( ) ( ) (  ) ( )k a s t x t a s t x t h d s tω ω δ ω= − − + − − − θ                                   (4.2.13) 
 
If the second condition (11) is satisfied, then (13) becomes 
 

0 1(  ) ( ) ( )  ( ) (V k a s t x t a s t x t hω ω≤ − − + −� )                                                                 (4.2.14) 
 
The first condition (10) can be rewritten formally similar to Razunikhin-Hale type theorem 
(Razumikhin, 1956 [32]; Hale, 1977 [33]) condition: 
 

( ) ( )x t h q x t− <    where   0

1
1k a q

a
ω

ω
−

= >                                                                      (4.2.15) 

 
Such choice of scalar  is successfully used in many illustrative examples by Hale (1977) 
[33], Cheres, Gutman and Palmar (1989) [25], Shyu and Yan (1993) [7], etc. Mahmoud and 
Al-Muthairi (1994) [34] treat  even as an adjustable parameter at the disposal of the control 
designer. For this reason, we shall treat  as a known scalar, which is selected in accordance 
with Razumikhin-Hale type theorem. As a result, we will have freedom of changing our 
controller design parameters such that the sliding conditions are satisfied. 

1>q

q
q

Hence, if condition (10) is satisfied then (14) reduces to   
 

0V <�                                                                                                                                   (4.2.16) 
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Therefore,   we conclude that on the integral sliding surface 0)( =ts  (7) a uniformly ultimately 
boundedness sliding mode is generated. But, a sliding region is restricted by (15). Note that, 
the usage of Razumikhin-Hale type theorem is sometimes inconvenient. 
 
4.2.4 Sliding mode controller design method 
 
In this section a new combined sliding mode controller design technique for the stabilization of 
multivariable single state-delayed systems with mismatching parameter perturbations is 
advanced. The sliding, global stability and β -stability conditions are parametrically obtained 
by using Lyapunov-Krasovskii V-functional method and formulated in terms of matrix 
inequalities. 
 
4.2.4.1 Combined control law 
 
Construct the combined sliding mode controller as follows: 
 

( ) 1 ( )( ) ( )
( )

T s tu t k x t B PB
s t

δ
−

⎡ ⎤⎣ ⎦= − +                                                                                  (4.2.17) 

 
where P  is a positive definite matrix,  is a scalar feedback gain and k δ  is a relay constant to 
be designed. Note that, combined variable structure controller (17) is norm bounded in the 
sense that ( ) 1

max( ) ( ) Tu t k x t B PBδ λ
−

⎡ ⎤⎣ ⎦≤ + . If 0k = , then we have Choi type of bounded 

switching feedback controller (Choi, 2004): ( ) 1 ( )( )
( )

T s tu t B PB
s t

δ
−

= − . 

 
But the sliding surface is defined in the conventional form (Young, Utkin and Özgüner 1999 
[35], Dorling and Zinober 1988 [36] and etc.): 
 

( ) ( )Ts t B Px t=                                                                                                                     (4.2.18) 
 
4.2.4.2 Mismatching sliding conditions 
 
The following theorem summarizes our mismatching sliding conditions. 
 
Theorem 2: Suppose that Assumption 2 holds. Then the delay-independent asymptotically 
stable sliding mode can always be generated on the conventional sliding surface (18) 
defined for the mismatched perturbed system (1) driven by controller (17) and (18), if the 
following conditions are satisfied: 

0)( =ts

 
2 2

0 0 1 0 1(2 ) 2 0T T T T
n nPBB PA A PBB P k PBB P a I a I Qω µ ω ω+ − − + + ≡ − ≤

⎥ ≤

                        (4.2.19) 
 
where  Q  in general is a non-symmetric matrix; and  or  0PBBT

1
2 ≤− PIa n µω

 

1
2 T

1 1

       -                   
0

     PBB

T

T T
n

Q PBB PA
H

A PBB P a I Pω µ

⎡ ⎤
⎢
⎢ ⎥⎣ ⎦

=
−

                                                                       (4.2.20) 

 
dδ ω θ≥                                                                                                                             (4.2.21) 
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Proof: Define a positive definite Lyapunov-Krasovskii functional as follows: 
 

( ( ), ( )) ( ) ( ) ( ) ( )
t

T T

t h

V s t s t h s t s t s s dµ θ θ θ
−

− = + ∫                                                                    (4.2.22) 

 
where µ  is a given positive scalar. Then the time derivative of (22) along the (1), (17) and (18) 
can be evaluated as follows: 
 

( )

0 0 1

1

0 0 0 1

2 ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) 2 ( ) ( ) 2 ( ) ( )

2 ( )

T T T T T

T T

T T T T T T T T

T

V s t s t s t s t s t h s t h s t B P A x t A x t A x t h

A x t h Bu t Df t s t s t s t h s t h

x t PBB PA A PBB P x t x t PBB P A x t x t PBB PA x t h

x t PBB

µ µ

µ µ

⎡⎣

⎤⎦

= + − − − = + ∆ +

+ ∆ − + + + − − −

= + + ∆ +

+

� � −

−

( ) 1
1

( )( ) 2 ( ) ( )
( )

T T T T s tP A x t h k x t s t B PB B PB
s t

−
∆ − −

(4.2.23

) 
 

       ( ) 1 ( )2 ( ) ( ) 2 ( )
( )

T T T T T s ts t B PDf t s t B PB B PB
s t

δ
−

+ −  

        )()()()( htPxPBBhtxtPxPBBtx TTTT −−−+ µµ

                                                                                                                                             
Since 
 

)()(2)()(2 0
2

0 txtxatxAPPBBtx TTT ω≤∆                                                                               (4.2.24) 
 

2
1 12 ( ) ( ) 2 ( ) ( )T Tx t PBB P A x t h a x t x t hω∆ − ≤ −                                                                (4.2.25) 

 
2 ( ) ( ) 2 ( )T Ts t B PDf t d s tω θ≤                                                                                            (4.2.26) 
 
Then 
 

( )2 2
0 0 0 1( ) 2 ( ) 2 ( ) ( )T T T T T

nV x t PBB PA A PBB P a I PBB P x t a x t x t hω µ ω≤ + + + +� −    (4.2.27) 

 
   12 ( ) ( ) 2 ( ) ( )T Tx t PBB PA x t h k x t s t+ − − 2 ( ) 2 ( ) ( ) ( )T Td s t s t x t h PBB Px t hω θ δ µ+ − − − −  

                                                                
Since  
 

( ) ( ) ( ) ( )T Ts t B Px t B P x t x tω= ≤ =                                                                           (4.2.28) 

 
And 
 

1
1( ) ( ) ( )x t s t sω
ω

≥ = t ,  
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where  

1
1ω
ω

=                                                                                                                                (4.2.29) 

Hence 
 

2
1 12 ( ) ( ) 2 ( ) 2 ( ) (Tk x t s t k s t k s t s tω ω− ≤ − = − )                                                                (4.2.30) 

 
Then 
 

2 2
0 0 0 1 1( ) 2 2 ( ) 2 ( ) ( )T T T T T T

nV x t PBB PA A PBB P a I PBB P k PBB P x t a x t x t hω µ ω ω⎡ ⎤⎦⎣≤ + + + − +� −

                                                                                                                                            
)()()()(2 1 htPxPBBhtxhtxPAPBBtx TTTT −−−−+ µ )()(2 tsdθωδ −−                                 (4.2.31) 

 
Since   2 22ab a b≤ +
 
where  and b  are some scalars, then  a
 

2 2 2
1 1 12 ( ) ( ) ( ) ( ) ( ) ( )T Ta x t x t h a x t x t a x t h x t hω ω ω− ≤ + − −                                        (4.2.32) 

 
Then (31) can be arranged as a full quadratic form: 
 

[ ] )(22)( 11
2

0
2

00 txPPBBkPPBBIaIaPPBBAPAPBBtxV TT
nn

TTTT ωµωω −++++≤�  
 
       )())(()()(2 1

2
1 htxPPBBIahtxhtxPAPBBtx T
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TTT −−−+−+ µω )()(2 tsdθωδ −−  
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1

1

htx
tx

PIaPPBBA

PAPBBQ
htx

tx

n
TT

TT

µω
( ) )(2 tsdθωδ −−                        (4.2.33) 

 
If conditions (19), (20), (21) are satisfied then (33) reduces to: 
 

( )( ) ( )
2

( ) ( )

Tx t x t
V H d

x t h x t h
δ ω θ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

≤ − − −
− −

� ( )s t                                                                (4.2.34) 

 
  ( )2 (d s t) 0δ ω θ≤ − − <    since   min ( ) 0Hλ =  

 
Therefore, we conclude that the robustly asymptotically stable sliding mode can always be 
generated on the sliding surface 0)( =ts  (18). Theorem 2 is proved. 
 
4.2.4.3 Global stability conditions 
 
We now examine the robust global asymptotical stability with respect to the state coordinates 

 of perturbed time-delay system (1) driven by variable structure controller (17), (18). The 
following theorem summarizes our global stability conditions, which are obtained by using 

)(tx
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Lyapunov-Krasovskii V-functional method and formulated in terms of some matrix 
inequalities. 
Theorem 3: Suppose that Assumption 1 (last equation) holds. Then the time-delay system (1) 
with mismatched parameter uncertainties and matched external disturbances driven by variable 
structure controller (17), (18) is globally delay-independent asymptotically stable, if the 
following conditions are satisfied:    
        

1
max max0 0 1 0 1min2 ( )  2 ( ) ( )T T T

n nPA A P k B PB PBB P a P I a P I R Qω λ λ λ µ−+ − + + + ≡ − ≤ 0     (4.2.35) 
 
where  in general is a non-symmetric matrix and  Q
 

max1 ( ) 0na P I Rλ µ− ≤      or  
 

1

max1 1

 -                    
0

P      ( )T
n

Q PA
H

A a P I Rλ µ
⎡ ⎤
⎢
⎢ ⎥⎣ ⎦

=
−

⎥ ≤                                                                                   (4.2.36) 

 
ηθδλ ≥)(min PBBT                                                                                                               (4.2.37) 

 
Proof: Choose a Lyapunov-Krasovskii functional candidate as follows: 
 

( ( ), ( )) ( ) ( ) ( ) ( )
t

T T

t h

V x t x t h x t Px t x Rx dµ θ θ
−

− = + ∫ θ                                                              (4.2.38) 

 
where P and R are some positive definite matrices, µ  is a positive scalar. Then, the time 
derivative of (38) along the trajectory of system (1), (17), (18) can be evaluated similar to the 
proof of Theorem 2 as follows: 
 

1

max1 1

 -                    ( ) ( )
( ) ( )P      ( )

T

T
n

Q PAx t x t
V

x t h x t hA a P I Rλ µ
⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

≤
− −

�
−

[ ] )()(2 min tsP ηθδλ −−                     (4.2.39) 

 
If conditions (35), (36), (37) are satisfied then (39) reduces to: 
 

min
( ) ( )

2 ( ) (
( ) ( )

Tx t x t
V H P

x t h x t h
δλ ηθ

⎡ ⎤ ⎡ ⎤
⎡⎢ ⎥ ⎢ ⎥ ⎣

⎣ ⎦ ⎣ ⎦
≤ − − −

− −
� )s t⎤⎦                                                        (4.2.40) 

 
 min   2 ( ) ( ) 0P s tδλ ηθ⎡ ⎤⎣ ⎦≤ − − <    since   min ( ) 0Hλ =  

 
Therefore, we conclude that perturbed closed-loop system (1), (17), (18) with mismatched 
parameter uncertainties and matched external disturbances is globally asymptotically stable 
with respect to the state coordinates ( )x t . Theorem 3 is proved. 
 
4.2.4.4 β-stability conditions 
 
β -stability conditions are formulated in the following corollary. 
 
Corollary 1: Suppose that Assumption 1 (last equation) and the conditions of Theorem 3 are 
met. Then the time-delay system (1) with mismatched parameter uncertainties and matched 
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external disturbances driven by variable structure controller (17), (18) is globally 
asymptotically delay-dependent stable with the stability degree 0β > , if the following 
conditions are satisfied: 
 
 

1
0 0 1 min

max max0 1

( ) ( )  2 ( )  

2 ( ) ( )

T T T
n n

n n

P A I A I P k B PB PBB P

a P I a P I R Q

β β ω λ

λ λ µ

−

+

+ + + −

+ + 0≡ − ≤

⎥
⎥
≤

             (4.2.41)   

     
where  in general is a non-symmetric matrix, and  Q

 

max1 0βh
ne a λ (P)I Rµ− ≤     or 

 

1

max1 1

       -                    
0

     

βh

βh βhT
n

Q e PA
H

e A P e a λ (P)I Rµ

⎡ ⎤
⎢
⎢
⎣ ⎦

=
−

                                                                   (4.2.42) 

 
ηθδλ ≥)(min PBBT                                                                                                               (4.2.43) 

 
Proof: Utilize (5) to transform (1), (17) and (18) into following equations: 

 

0 1 0 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )h h
nz t A I z t e A z t h A z t e A z t h Bu t Df tβ ββ σ σ= + + − +∆ + ∆ − + +�       (4.2.44) 

where  

( ) 1t t ( )u (t) e u(t) e ( )  
( )

T s tk x t B PB
s t

β β δ
−

⎡ ⎤⎣ ⎦= = − + ( ) 1 ( )( )  
( )

t T s tk z t e B PB
s t

βδ
−

⎡ ⎤⎣ ⎦= − + (4.2.45) 

and  
 

  Pz(t)B x(t)PeB s(t)e(t)s TβtTβt ===                                                                                  (4.2.46) 
 
respectively. 

Now, choose a Lyapunov-Krasovskii functional as 

 

( ( ), ( )) ( ) ( ) ( ) ( )
t

T T

t h

V z t z t h z t Pz t z Rz dµ θ θ
−

− = + ∫ θ                                                             (4.2.47) 

 
where P and R are positive definite matrices, µ  is a positive scalar. Then, the time derivative 
of (47) along the trajectory of transformed system (44), (45), (46) can be evaluated similar to 
the proof of Theorem 3 as follows: 
 

1

max1 1

       -                  ( ) ( )
( ) ( )   

T βh

βh βhT
n

Q e PAz t z t
V

z t h z t he A P e a λ (P)I Rµ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

≤
− −−

� 1
min2 ( ) (T )B PB s tδλ ηθ−⎡ ⎤⎣ ⎦− − (4.2.48) 

 

 170



 

 
If conditions (41), (42), (43) are satisfied then (48) reduces to: 
 

1
min

( ) ( )
2 ( ) ( )s t−

( ) ( )

T
Tz t z t

V H B PB
z t h z t h

δλ ηθ−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦
≤ −

− −
� 1

min 2 ( ) (T )B PB s tδλ ηθ−⎡ ⎤⎣ ⎦≤ − −   

 
since  
 

min ( ) 0Hλ =                                                        (4.2.49) 
 

Therefore, we conclude that perturbed transformed closed-loop system (44), (45), (46) with 
mismatched parameter uncertainties and matched external disturbances is globally 
asymptotically delay-dependent β -stable with respect to the new state coordinates . 
Maximum upper bound 

)(tz

h  of delay size can be determined from condition (42). Corollary 1 is 
proved. 
 
4.2.5 Example: Aircraft control design 
 
Now, consider a numerical design example to illustrate the controller design procedure 
described in section 4.2.4 for lateral control of AV-8A Harrier VTOL aircraft in a hover mode. 
The linearized unstable lateral dynamic model with nominal parameters for this aircraft was 
taken from (Calise and Kramer, 1984 [37]): 
 

0( ) ( ) ( )

( ) ( )

x t A x t Bu t

y t Cx t

= +

=

�
 

where, state vector is represented by [ ]pr        υφψ=Tx ,  

ψ  is the Euler yaw attitude perturbation (rad), 

φ  is the Euler roll attitude perturbation (rad), 

υ  is the velocity perturbation along body y-axis (m/s), 
 r is the body-axis yaw rate (rad/s), 
 p is the body-axis roll rate (rad/s), 
the control inputs are , [ ]RUDLAT

Tu δδ   =

LATδ  is the lateral stick perturbation (cm), 

RUDδ  is the rudder pedal perturbation (cm), 

and the system, control and output matrices are given: 
 

0

0    0       0           1          0
0    0       0           0          1
0    9.8  -0.042    0         0
0    0     -0.007  -0.06  -0.075
0    0     -0.039    0.11  -0.260

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= ,     

     0         0
     0         0
    0       -0.27

0.0055     0.085
0.177     -0.033

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 
For the simulation of system (1), (17) the parameter perturbations are assumed as follows: 
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0 00.2sin( )A t A∆ = 1 0.2cos( )A t, 1A∆ = 1 00.3A A, =  

Aircraft model has really some small time-delay because of pilot’s (or commands) effective 
time delay (Blakelock, 1991 [38]) and transports delays of aircraft mechanical and hydraulic 
servomechanisms. For simulation we select s24.0=τ . 
The design procedure of sliding mode controller (17) can be fulfilled by the following steps: 
• Select a matrix E such that matching condition for external disturbance holds: 
 

    0            0
    0            0

   0    0    0      0.2     0
    0       -0.27

   0    0   0.1      0     0.2
0.0055   0.085
 0.177  -0.033

D B E

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

= =

 0      0         0                0              0
 0      0         0                0              0
 0      0    -0.027            0         - 0.054
 0      0     0.0085       0.0011       0.017
 0  

=

   0   -0.0033       0.0354    -0.0066

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Find the eigenvalues of matrix  0A

 
     ;-0.0798 0.8253- 0.6239i;  0.2715  0;  ) Eig( 0 ±=A

0A   is an unstable matrix. 

• Solve matrix inequality (19) by using special programming in Matlab. 
 
clear 
clc 
a0=1.96; 
a1=0.588; 
A0=[0 0 0 1 0;0 0 0 0 1;0 9.8 -0.042 0 0; 
0 0 -0.007 -0.06 -0.075;0 0 -0.039 0.11 -0.260]; 
B=[0 0;0 0;0 -0.27;0.0055 0.085;0.177 -0.033]; 
k=2.5; 
mu=0.5; 
Q=[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 1 0;0  0 0  0 1]; 
  In=Q; 
X=[0.1667 0 0 0 0;0 0.0942 -0.0470 0 0;0 -0.0470 0.9265 0 0; 
0 0 0 0.2083 0;0 0 0 0 0.1471]; 
for i=1:5 
    for j=1:5 
           if X(i,j)==X(j,i) 
              P(i,j)=X(i,j); 
           else 
              P(i,j)=[ ] 
           end 
    end 
end 
 
if det(P)>0    
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    P_det=det(P)    
else  det(P)<0     
‘change the elements of X to make the determinant of X positive' 
end 
P_line=P*B*B'*P 
lambda=eig(P_line) 
max_eig=max(lambda) 
omega=sqrt(max_eig) 
omega1=1/omega 
MI=P_line*A0+A0'*P_line-(2*k*omega1-
mu)*P_line+2*omega^2*a0*In+omega^2*a1*In+Q 
MI_det=det(MI) 
 
if det(MI) <=0 
    MI_det=det(MI) 
else  
    'change the elements of X to make the inequality satisfied' 
end 

 

 

   0.1667     0.0000   -0.0000    0.0000   -0.0000
   0.0000     0.0942   -0.0470    0.0000   -0.0000
 -0.0000   -0.0470    0.9265   -0.0000   0.0000
   0.0000     0.0000   -0.0000    0.2083   -0.0000

P =

 -0.0000   -0.0000    0.0000   -0.0000   0.1471

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
eig(P) = 0.0915, 0.1471, 0.1667, 0.2083, 0.9292 
 

maxmin ( ) 0.0915,    ( ) 0.9292P Pλ λ= =  

 
  0.0000     0.0000   -0.0000     0.0000   -0.0000
  0.0000     0.0002   -0.0032     0.0002   -0.0001
-0.0000  -0.0032      0.0626   -0.0044   0.0012
  0.0000     0.0002   -0.0044     0.0003   -

TP PBB P= =
0.0001

-0.0000  -0.0001      0.0012   -0.0001    0.0007

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 eig(P)  0.0000, 0.0631, 0.0007, 0.0000, 0.0000=  

 

which is a positive semi-definite matrix, max ( ) 0.0631Pλ = , 2511.00631.0 ==ω , 

9817.31 =ω . 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1         0         0       0        0      
0         1         0       0        0      
0         0         1       0        0      
0         0         0       1        0      
0         0         0       0        1      

Q  

 
Choose k=2.5 
Matrix inequality (19) hold  
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1.2703    0.0014     0.0268-   0.0133       0      
0.0014    1.2782     0.0865     0.0478-     0      
0.0268-   0.0865    0.0645     0.6750       0      
0.0133    0.0478-   0.6750     1.2190       0      
0            0            0              0       1.2843  

MI  

 
because this matrix is negative definite and det(MI)= -0.8126 
• Calculate the following matrix norm from (3): 
 

0a = 0 0max 0.2* 1.96A A
σ

∆ = =  

1a = 1 0max 0.06* 0.588A A
σ

∆ = =  

0.2236η = , 0.0639d = , 0.2θ = . 

 

• Calculate ; 
     0.0046   -0.0008
   -0.0008     0.0692

TB PB ⎡ ⎤
⎢ ⎥
⎣ ⎦

=

 

     ; 1 217.8293    2.5183
( )

    2.5183   14.4800
TB PB − ⎡ ⎤

⎢ ⎥
⎣ ⎦

=

 
 0         0         0              0.0011    0.0260
 0    0.0127   -0.2502    0.0177   -0.0049

TB P ⎡ ⎤
⎢ ⎥
⎣ ⎦

= . 

 
0.0692 0.0046,)( =PBBeig T , which is positive definite matrix with max 0.0692λ = . 

 
• Calculate matrix inequality (20) 
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⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.0001-   0.0001    0.0009-   0.0000    0         
0.0000    0.0000-   0.0001    0.0000-   0         
0.0000-   0.0001    0.0008-   0.0000    0         
0.0036    0.0130-   0.1840    0.0093-   0         
0            0            0             0         0         
1-           0            0             0         0         
0            1 -           0             0         0         
0            0             1-           0         0         
0            0             0             1-       0         
0            0             0             0         1-       

H

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

0.0367    0.0000    0.0006-   0.0000    0         
0.0000    0.0369    0.0022    0.0001-   0         
0.0006-   0.0022    0.0058    0.0016    0         
0.0000    0.0001-   0.0016    0.0370    0         

0            0               0             0     0.0371    
0.0001-   0.0000    0.0000-   0.0036    0         
0.0001    0.0000-   0.0001    0.0130-   0         
0.0009-   0.0001    0.0008-   0.1840    0         
0.0000    0.0000-   0.0000    0.0093-   0         

0         0             0            0         0         

 

 
which is negative definite and det(H)= -2.0144e-008 
 

• Select δ  from (21) 0.0032δ ≥ . 
 

Block diagram of system (1), (17), (18) with VTOL aircraft parameters is shown in Figure 
4.2.1. Simulation results using MATLAB-SIMULINK are shown in Figure 4.2.2, 4.2.3, 4.2.4. 
As seen, unstable lateral dynamics are successfully stabilized by using combined sliding mode 
controller. The control performances are satisfactory. Time responses by designed controller 
are compared with those by Choi type controller. The structure of Choi type controller is 
similar to that of combined controller. Simulation results are presented in Figure 4.2.5, 4.2.6, 
4.2.7. As seen, Choi type controller, in general, can stabilize unstable lateral dynamics model. 
However, Choi type controller has a steady state error. Thus, design procedures and simulation 
results show that our advanced method is useful. And unstable lateral dynamics is successfully 
stabilized by using combined controller. Not that, as seen from Fig. 4.2.4 designed controller 
has some chattering effect, which is undesirable in practical implementations. In order to 
reduce the control chattering, the discontinuous switching function in (17) can be replaced by a 
well known continuous type saturation functions (Slotine and Li, 1991 [39]), (Esfendiari and 
Khalil, 1991 [40]), (Jafarov and Tasaltin, 2000 [41] and 2001 [42]) and (Mahmoud and Al-
Muthairi, 1994 [34]).  
 
4.2.6 Conclusions 
 
Robust delay-dependent stabilization of multivariable single state-delayed systems with 
mismatching parameter uncertainties and matching/mismatching external disturbances is 
considered. To achieve this goal, two types of sliding mode controllers design techniques are 
advanced. The first is an integral sliding mode controller design modification to Shyu and Yan 
type controller design. The mismatching sliding conditions are parametrically obtained by 
using Lyapunov-Razumikhin-Hale method and formulated in terms of some matrix norm 
inequalities. In second contribution, a new combined sliding mode controller design technique 
for the stabilization of multivariable single state-delayed systems with mismatching parameter 
perturbations is advanced. The delay-independent sliding, global stability and delay-dependent 
β -stability conditions are parametrically obtained by using Lyapunov-Krasovskii V-functional 
method and formulated in terms of some matrix inequalities. A sliding mode controller design 
example for AV-8A Harrier VTOL aircraft with lateral unstable dynamic model parameters is 
considered to illustrate the controller design method.  Design procedures and simulation results 
show that our advanced method is useful. And unstable lateral dynamics is successfully 
stabilized by using combined controller. The  results of section 4.2 is published by Jafarov 
(2005) [43]. 
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Figure 4.2.1 Block-diagram of multi-variable time-delay system with combined sliding mode 
controller. 
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                Combined controller                    Choi type controller 
 
 

 
             Figure 4.2.2 State responses                               Figure 4.2.5 State responses 
 

  
              Figure 4.2.3 Switching function                         Figure 4.2.6 Switching function 

 

 
    Figure 4.2.4 Control function             Figure 4.2.7 Control function 
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4.3 New Sliding Mode Controllers Design for Multiple Time-Delay Systems 

 

4.3.1 Introduction 
In this paragraph, the problem of sliding mode controller design methods for both certain and 
uncertain multi-input systems with several fixed state delays is addressed. Two types of sliding 
mode controllers are proposed: 1) Simple sliding mode controller is designed for the 
stabilization of certain time-delay systems and 2) Combined sliding mode controller is designed 
for the stabilization of uncertain time-delay systems with parameter perturbations and external 
disturbances. Delay-independent sufficient conditions are given for the existence of a sliding 
mode and the robust asymptotic stability of the closed-loop systems by using Lyapunov-
Krasovskii functional method combined with matrix inequality techniques. Some new matrix 
inequalities are evaluated for mathematical analysis of time-delay systems. Feasibility of hard 
solvable matrix inequalities by using modified algebraic Riccati equations is discussed.  

Two numerical examples with simulation results are given to illustrate the usefulness of the 
proposed design methods.  

 

4.3.2 Brief analysis of existing controllers 
It is well known that many engineering control systems such as conventional oil-chemical 
industrial processes, nuclear reactors, long transmission lines in pneumatic, hydraulic and 
rolling mill systems, flexible joint robotic manipulators and machine-tool systems, jet engine 
and automobile control, human-autopilot systems, ground controlled satellite and 
communication systems, space autopilot and missile-guidance systems, etc. contain some time-
delay effects, model uncertainties and external disturbances. These processes and plants can be 
modeled by some uncertain dynamical systems with state and input delays. The existence of 
time-delay effects is frequently a source of instability and it degrades the control performances. 
The stabilization of systems with time-delay is not easier than that of systems without time-
delay. Therefore, the problem of robust stabilization of uncertain time-delay systems by various 
types of controllers such as PID controller, Smith predictor, and time-delay controller, recently, 
sliding mode controllers have received considerable attention of researchers. However, in 
contrast to variable structure systems without time-delay, there is no large number of papers 
concerning sliding mode control of time-delay systems. As known from Utkin (1977) [29] and 
Sabanovic, Fridman and Spurgeon (2004) [2] etc. sliding mode control has several useful 
advantages, e.g. fast response, good transient performance, and robustness to the plant 
parameter variations and external disturbances. For this reason, now, sliding mode control is 
considered as an efficient tool to design of robust controllers for stabilization of complex 
systems with parameter perturbations and external disturbances.  

A brief review of the first attempts in this area is given by Jafarov (1998) [14]. Shyu and Yan 
(1993) [7] have established a new sufficient condition to guarantee the robust stability and β -
stability for uncertain systems with single time-delay. By these conditions a variable structure 
controller is designed to stabilize time-delay systems with plant uncertainties. However, a 
variable structural controller is designed only for nominal time-delay system. The sliding 
surface is defined in the linear switching functional form, practice implementation of which is 
not easy. Koshkoei and Zinober (1996) [10] have successfully designed a new sliding mode 
controller for MIMO canonical controllable time-delay systems with matched parameter 
uncertainties and external disturbances by using Lyapunov-Krasovskii functional. A limitation 
of this design is that the matching conditions cannot always be hold especially for external 
disturbances. 
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Robust stabilization of time-delay systems with uncertainties by using sliding mode control has 
been considered by Luo, De La Sen and Rodellar (1997) [9]. However, disadvantage of this 
design approach is that, a variable structure controller is not simple. Moreover, equivalent 
control term depends on unavailable external disturbances. Sliding mode controllers for 
canonical single-input (Jafarov, 1998 [14]) and multi-input (Jafarov, 1990 [45]) time-delay 
systems by using Lyapunov-Krasovskii functional have been designed by Jafarov (1998) [14] 
and (1990) [45]. Variable structure controllers for time-delay systems have been considered by 
Zheng, Cheng and Gao (1993) [46]. Canonical delay-free form transformed variable structure 
system is designed by Hu, Basker and Crisalle (1998) [47]. 

One type of sliding mode control with memory for certain multivariable systems with several 
state delays is considered by Jafarov (2000) [48]. Li and DeCarlo (2001) [16] have proposed a 
new robust memoryless sliding mode control design method for a class of uncertain time-delay 
systems with multiple fixed state delays. The system has both structured matched (possible 
unmatched) parameter uncertainties and norm-bounded matched disturbances. A new combined 
control law is proposed. This control law consists of four terms: 1) Memoryless linear control 
for the stabilization of nominal system without time-delay; 2) The equivalent control including 
all state delays for the stabilization of nominal systems with time-delay. 3) Continuous control 
component depending on some function of switching variable multiplicated by the sum of state 
and state delays norms for the overcome the parameter uncertainties and 4) Discontinuous 
quasi-relay type control plus constant term for rejection of disturbance which used to drive 
system state trajectories on to the defined sliding manifold. Asymptotic stability of time-delay 
systems restricted to the sliding surface is considered by using the Lyapunov-Krasovskii 
functional combined by LMI’s techniques. Reaching condition of the time-delay system driven 
by combined controller also is derived by using sliding mode control theory. A numerical 
example with simulation results illustrates the effectiveness of the design methodology. 
However, disadvantage of such design is that, a combined variable structure controller has four 
terms and their practical implementation is not simple. Moreover, sliding and stability 
conditions are formulated in terms of unknown variables, which may be lead to uniformly 
ultimately boundedness. Advanced results of robust sliding mode control of uncertain time-
delay systems are successfully presented by Li and DeCarlo (2003) [17]. Some new theorems 
for solvability of matrix inequalities are given. 

The behavior and design of sliding mode control systems with state and input delays are 
considered by Perruquetti and Barbot (2002) [18] using Lyapunov-Krasovskii functional. 

Four-term robust sliding mode controllers for matched uncertain systems with single or 
multiple, constant or time varying state delays are designed by Gouaisbaut, Dambrine and 
Richard (2002) [20] by using Lyapunov-Krasovskii functionals and Lyapunov-Razumikhin 
function combined with LMI’s techniques. 

A robust sliding mode control of single state delayed uncertain systems with parameter 
perturbations and external disturbances is designed by Jafarov (2003) [49]. 

In general, an overview of some recent advances and open problems in time-delay systems and 
sliding mode control for systems with input/output delays is given in large survey paper by 
Richard (2003) [23]. Some delay-dependent stability criteria for time-delay systems are 
advanced by Jafarov (2003) [17]. Recent advances in time-delay systems using Lyapunov-
Krasovskii functionals (Krasovski, 1959 [18]) is given by Niculescu and Gu (2004) [50], and 
Gu, Kharitonov and Chen (2003) [51].     

Several new fresh articles are presented in special issue edited by Ulsoy, Misawa and Utkin 
(2000) [52] which address important theoretical problems in variable structure systems. Topics 
that are covered discrete-time systems, infinite dimensional system, optimization, estimation 
and alternative forms of VSS and corresponding design techniques. These techniques were 
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successfully applied in practice such as mobile robots and mechanical manipulators, 
automotive, aircraft, missile and chemical processes. This issue [52] is a great reference for 
further analysis of sliding mode control. Steady modes in relay type control systems with time-
delay and periodic disturbances are considered by Fridman, E., Fridman L. and Shustin (2000) 
[53]. 

In this section, the problem of sliding mode controller design methods for both certain and 
uncertain multi-input systems with several fixed state delays is addressed. Two types of sliding 
mode controllers are proposed: 1) Simple sliding mode controller is designed for the 
stabilization of certain time-delay systems and 2) Combined sliding mode controller is designed 
for the stabilization of uncertain time-delay systems with parameter perturbations and external 
disturbances. Delay-independent sufficient conditions are given for the existence of a sliding 
mode and the robust asymptotic stability of the closed-loop systems by using Lyapunov-
Krasovskii functional method combined with matrix inequality techniques. Some new matrix 
inequalities are evaluated for mathematical analysis of time-delay systems. Feasibility of hard 
solvable matrix inequalities by using modified algebraic Riccati equations is discussed. 

Two numerical examples with simulation results are given to illustrate the usefulness of the 
proposed design methods. 

 

4.3.3 Simple sliding mode control of certain time-delay systems 
First let us consider a memoryless sliding mode control design method for the stabilization of 
certain multivariable time-delay system. Multi-input system with multiple state delays can be 
described by the following equations: 

 

0 1 1( ) ( ) ( ) ... ( ) ( ),     t 0N Nx t A x t A x t h A x t h Bu t= + − + + − + >�    

( ) ( )x t tφ= , 0≤≤− th                                                                                                         (4.3.1) 
 
where is the measurable state vector,  is the control input,  and 
B are known constant matrices of appropriate dimensions, with B of full rank, 

 are the constant time- delays, 

nRtx ∈)( mRtu ∈)( NAAA ,..,, 10

1 20 .. Nh h h h< < < < < )(tφ  is a continuous vector–valued initial 
function in . 0h t− ≤ ≤

Taking known advantages of sliding mode, we want to design a simple suitable sliding mode 
controller for stabilization of certain time-delay system (4.3.1). 

 

4.3.3.1 Control law and sliding conditions 
   To achieve this goal, we form the following type of variable structure controller: 

 
1

1

m

( )           0
( )( ) ( )                        
( )

    0          k ( )

T

k x t
s tu t B PB
s t

x t

−

⎡ ⎤
⎢ ⎥
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

= −

"
# #

"
⎥                                                                    (4.3.2) 
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where  is a feedback gain matrix, KPBBT 1)( − K  is a diagonal design matrix with positive 

elements  to be selected, 1,..., mk k ( ) ( ) ( )Tx t x t x= t  is the Euclidean norm, T is the transpose 
of vector or matrix. 

In according to Young, Utkin and Özgüner (1999) [23] let us define a sliding surface as 
follows: 

( ) ( )Ts t B Px t=                                                                                                                        (4.3.3)  
 
where P is a positive definite symmetric matrix to be selected. The switching gain design 
matrix is a full rank and  is nonsingular because  has rank m and P is a 
symmetric positive definite matrix. Note that,

PBC T= PBBCB T= B
PBBT  is a symmetric positive definite - 

matrix. 
)( mm×

After selecting a simple sliding mode controller (4.3.2) and defining the sliding surface (4.3.3) 
the next step is to choose the design parameters  and P such that on the sliding 
manifold can always be generated a stable sliding mode and then closed-loop time-
delay system is globally asymptotically stable. 

1,..., mk k
( ) 0s t =

Lemma 1: Given the time-delay system (4.3.1) driven by variable structure controller (4.3.2). 
Then a stable sliding mode can always be generated on the sliding surface  (4.3.3), if 
the following conditions are satisfied: 

( ) 0s t =

 

( )0 0 1 2T
NPA A P P k P Qβ β ω+ + + + − ≡− ≤" 0                                                                          

(4.3.4) 

 

N1

1 1

N N

          PA        PA
A      - P         0 0
                               
A         0         - P 

T

T

Q
PH

P

β

β

⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥
⎢ ⎥
⎣ ⎦

−

=

"
"

# # % #
⎥
⎥ ≤                                                                                        (4.3.5) 

 

where 1,..., 0Nβ β >  are given constants, PPBBP T=  is a positive semi-definite ( )nn×  matrix 

and max1 (Pω λ= ) . 

 

Proof: In order to organize a full quadratic form of variables  and )(ts )(θs  let us define a 
Lyapunov-Krasovskii functional candidate as: 
 

1
( ), ( ) ( ) ( ) ( ) ( )

i

tN
T T

i
i t h

V s t s s t s t s s dθ β θ θ
= −

⎡ ⎤⎣ ⎦ = +∑ ∫ θ                                                                (4.3.6) 

 
where 1,..., 0Nβ β >  are given constants. 

The time derivative of (4.3.6) along the state trajectories of system (4.3.1), (4.3.2), (4.3.3) can 
be calculated as follows: 
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1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )T T T T T T
N N NV s t s t s t s t s t s t s t h s t h s t s t s t h s t hβ β β β= + + − − − + + − − −� � � N

 

0 1 1 1

1 1 1

1
0 0 1

2 ( ) ( ) ( ) ... ( ) ( ) ( ... ) ( ) ( )

( ) ( ) ... ( ) ( )

( )( ) ( ... ) ( ) 2 ( ) ( ) ( )
( )

T T T
N N N

T T
N N N

T T T T T T T
N

s t B P A x t A x t h A x t h Bu t s t s t

s t h s t h s t h s t h

s tx t PBB PA A PBB P PBB P x t s t B PB B PB K x t
s t

β β

β β

β β −

⎡ ⎤⎦⎣

⎡ ⎤⎣ ⎦

= + − + + − + + + +

− − − − − − −

= + + + + −

           

1 1

1 1 1

2 ( ) ( ) ... 2 ( ) ( )

( ) ( ) ... ( ) (

T T T T
N N

T T T T )N N N

x t PBB PA x t h x t PBB PA x t h

x t h PBB Px t h x t h PBB Px t hβ β

+ − + + −

− − − − − − −
              (4.3.7) 

 

where 0≥= PPPBBT  is a positive semi-definite ( )nn ×  matrix. Generally, . 0)(min =PPBBTλ

Since 

1
min

( ) ( ) ( )2 ( ) ( ) ( ) 2 ( ) 2 ( ) ( )
( ) ( )

T
T T T s t s t Ks ts t B PB B PB K x t x t k x t s t

s t s t
−− = − ≤ −                   (4.3.8) 

 

Then in according to Schwartz inequality 

 

max( ) ( ) ( ) ( ) ( )T T Ts t B Px t B P x t PBB P x tλ= ≤ =                                                       (4.3.9) 

 

or    

 

 1( ) ( )
max( )T

x t
PBB Pλ

≥ s t                                                                                           (4.3.10) 

Hence 
2( ) ( ) ( ) ( ) ( ) ( ) ( )Tx t s t s t s t s t s t s tω ω ω≥ = =                                                           (4.3.11) 

 

where max1 ( TPBB Pω λ= )  and 

 

min min min2 ( ) ( ) 2 ( ) ( ) 2 ( ) (T Tk x t s t k s t s t k x t PBB Px tω ω− ≤ − = − )T                                (4.3.12) 

where . mink k=
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Therefore, (4.3.7) becomes: 
 

0 0 1

1 1

1 1 1

0 0 1

1 1

( ) ( ... ) ( ) 2 ( ) ( )

2 ( ) ( ) ... 2 ( ) ( )

( ) ( ) ... ( ) ( )

( ) ( ... ) 2 ( )

2 ( ) ( ) ... 2 ( )

T T T
N

T T
N N

T T
N N N

T T
N

T T

V x t PA A P P x t k x t Px t

x t PA x t h x t PA x t h

x t h Px t h x t h Px t h

x t PA A P P k P x t

x t PA x t h x t P

β β ω

β β

β β ω

⎡ ⎤
⎣ ⎦

⎡ ⎤
⎣ ⎦

≤ + + + + −

+ − + + −

− − − − − − −

= + + + + −

+ − + +

�

1 1 1

( )

( ) ( ) ... ( ) ( )

N N

T T
N N N

A x t h

x t h Px t h x t h Px t hβ β

−

− − − − − − −

                 (4.3.13) 

 

If there exists a constant  and a positive semi-definite symmetric matrix 0>k P  such that linear 
for P  matrix inequality (4.3.4) and condition (4.3.5) are satisfied, then rearranging (4.3.13) we 
obtain: 

 

1 1 1 1( ) ( ) 2 ( ) ( ) ... 2 ( ) ( ) ( ) ( )

... ( ) ( )

T T T T
N N

T
N N N

V x t Qx t x t PA x t h x t PA x t h x t h Px t h

x t h Px t h

β

β

≤ − + − + + − − − −

− − − −

�
1

 

 

    

N1

1 1−1 1

N N

         PA      PA( ) ( )
( ) ( )A    - P        0

                             
( ) ( )A        0        - P  

T

T

T
N N

Qx t x t
x t h x t hP

x t h x t hP

β

β

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

−
−

− −

"
"

# ## # % #
=                              (4.3.14) 0)()( ≤= tzHtzT

 

where    T
1( ) ( )  ( )... ( )T T T T

Nz t x t x t h x t h⎡ ⎤⎣ ⎦= − − . 

 

Therefore, we conclude that a stable sliding mode is generated on the switching surface 
 (4.3.3). Lemma 1 is proved. 0)( =ts

We now can analyze the global asymptotic stability of time-delay system  (4.3.1), (4.3.2), 
(4.3.3) with respect to state coordinates in large. 
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4.3.3.2 Stabilization of closed-loop system 
The following theorem summarizes our stability results.  

Theorem 4: Suppose that the conditions (4.3.4) and (4.3.5) of Lemma 1 hold. Then the time-
delay system (4.3.1) driven by sliding mode controller (4.3.2), (4.3.3) is globally asymptotically 
stable, if the following conditions are satisfied: 

1
0 0 1 min2 ( )T T

NA P PA R R k B PB PBB P Qωλ −+ + + + − ≡ − <… 0T

⎥
⎥ <

                                             (4.3.15) 

 

N1

1 1

N

         PA        PA
A      -          0

0
                               
A         0         -

T

T
N

Q
P R

H

P R

⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

−

=

"
"

# # % #
                                                                                  (4.3.16) 

 

where P and  are some positive definite symmetric matrices to be selected. NRR ,...,1

 

Proof: Choose a Lyapunov-Krasovskii functional candidate as follows: 

 

1
( ) ( ) ( ) ( )

i

tN
T T

i i
i t h

V x t Px t x R s dβ θ θ
= −

= +∑ ∫ θ                                                                          (4.3.17) 

 

The time-derivative of (4.3.17) along the state trajectory of system (4.3.1), (4.3.2), (4.3.3) is 
given by 

 

0 0 1 1

1 1 1 1

1

( )( ) ( ) 2 ( ) ( ) ... 2 ( ) ( )

( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )

( )2 ( ) ( ) ( )  
( )

T T T T
N N

T T T T
N N N

T T

V x t A P PA x t x t PA x t h x t PA x t h

Nx t R x t x t h R x t h x t R x t x t h R x t h

s tx t x t PB B PB K
s t

−

= + + − + + −

+ − − − + + − − −

−

�

           (4.3.18) 

Since 
1

1 ( ) ( )( ) ( )2 ( ) ( ) ( ) 2 ( )  
( ) ( )

T T
T T s t s t B PB Kx t x t PB B PB K x t

s t s t

−
−− = − s t  

2
1

min min

( )
2 ( ) ( )   

( )
T s t

k B PB x t
s t

λ −≤ − 1
min min2 ( ) ( ) (Tk B PB x t s tλ −= − )  

k

                 (4.3.19) 

 

where and (4.3.12) holds. mink =
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Therefore 

 
1

0 0 1 min

1 1

1 1 1

( ) ... 2 ( ) ( )

2 ( ) ( ) ... 2 ( ) ( )

( ) ( ) ... ( ) ( )

T T T T
N

T T
N N

T T
N N N

V x t A P PA R R k B PB PBB P x t

x t PA x t h x t PA x t h

x t h R x t h x t h R x t h

ωλ − ⎤⎡⎣ ⎦≤ + + + + −

+ − + + −

− − − − − − −

�

                                 (4.3.20)  

                                     
If there exist a constant and some positive definite symmetric matrices P,  such 
that a quadratic for P matrix inequality (4.3.15) is satisfied, then 

0>k NRR ,...,1
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1 1
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)
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( ) ( )         PA        PA
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−≤
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# # % ## #

⎤

−

⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥

⎦

( ) ( ) 0Tz t Hz t= <                            (4.3.21) 

 

In view of (4.3.21), if condition (4.3.16) is satisfied then (4.3.21) reduces to . Therefore, 
we conclude that time-delay system (4.3.1), (4.3.2), (4.3.3) is globally asymptotically stable 
with respect to state coordinates. The Theorem 4 is proved. Thus, design of variable structure 
controller for stabilization of closed-loop multivariable system with several delays is 
completed. Derived sliding and stability conditions are formulated in terms of some matrix 
inequalities. Note that linear for 

0≤V�

P  matrix inequality (4.3.4) and quadratic for P matrix 
inequality (4.3.15) are similar to conventional linear and quadratic matrix equations and 
inequalities considered in [15], [17] and [54]-[63]. Therefore, in general a positive semi-definite 
solution to (4.3.4) and (4.3.15) can be calculated by using known techniques after reducing to 
standard quadratic Riccati equations. For example, letting 121 =+++ Nβββ …  and 12 =ωk  
condition (4.3.4) is reduced to standard Lyapunov matrix equation QPAAP −=+ 00 . 
Quadratic for P matrix inequality (4.3.15) can be simplified as follows: Let  
and , then condition (4.3.15) reduces to conventional algebraic 
Riccati equation: 

1)(2 1
min =−PBBk Tωλ

0... 121 >=++++ QQRRR N

 

0 0 1 0T TA P PA PBB P Q+ − + = ,  
 

then k can be found as: 
 

1
min

1
2 ( )Tk

B PBωλ −= . 

 
As pointed by Cao and Sun [59] H has its own quadratic structure TTMTH =  where  
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⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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−

=

"
% #

# % %
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Since T is a nonsingular and LMI  1 0M < , then 0H < . Therefore, conditions (4.3.15) and 
(4.3.16) are feasible.  

 

4.3.3.3 Reduced design 
Note that, the stability condition (4.3.16) can be reduced, if we assume in (4.3.17) 

 as in [15], [56], and then the (4.3.16) reduces to 0...21 >==== T
N RRRRR
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0
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=
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# # % #
⎥
⎥ <

0

⎥ <

0

                                                                                  (4.3.22) 

 

where  
1

0 0 min2 ( )  T T TA P PA NR k B PB PBB P Qωλ −+ + − ≡ − <                                                            (4.3.23) 

 

Let us calculate the Schur compliments of (4.3.22): 

 

For ,                                                                                      (4.3.24) 1=N 1 1
1

1
0T

Q PA
H

A P R
⎡ ⎤
⎢
⎢ ⎥⎣ ⎦

−
=

−

Where 

 
1

0 0 1min2 ( )T T TA P PA R k B PB PBB P Qωλ −+ + − ≡ − <                                                   (4.3.25) 

 

Then the Schur compliment for  1H

 
1

1 1 1 1 0TH Q PA R A P−= − + <                                                                                                  (4.3.26) 

 

For , 2N = 1 1
2

1

0T
H PAH

A P R

⎡ ⎤
⎢
⎢ ⎥⎣ ⎦

−
=

−
⎥ <                                                                                     (4.3.27) 
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For which 

 
1

0 0 2min 2 2 ( )T TA P PA R k B PB PBB P Q 0Tωλ −+ + − ≡ <                                                  (4.3.28)  

    

and   1
1 2 1 1 0TH Q PA R A P−= − + <                                                                                      (4.3.29) 

 

Then the Schur compliment for  2H

 
1

2 1 2 2 0TH H PA R A P−= + <                                                                                                (4.3.30) 

 

or                                                                  (4.3.31)      1 1
2 2 1 1 2 2 0T TH Q PA R A P PA R A P− −= − + + <

    

and for the general case the Schur complement is given by 

 
1 1

1 1 ... 0T
N NH Q PA R A P PA R A P− −= − + + + <T

⎤
⎥
⎥⎦

• 

                                                                (4.3.32)     

     

Thus, the stability conditions are reduced. A positive semi-definite solution to (4.3.32) can be 
determined by using known algorithms [15], [54]-[63] after reducing to standard forms. 

 

4.3.3.4 Example 1 
 
Let us consider a numerical example illustrating the design procedures for time-delay system 
(4.3.1), (4.3.2), (4.3.3) with parameters: 
 

0 1 2
1 0.7 0.1 0.1 0.2 0 1 0, , ,0.3 1 0 0.2 0 0.1 0 1A A A B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

−= = = =  

 

1 0.1h = ,  2 0.2h =

 
The design procedure can be performed by the following steps: 

Calculate the eigenvalues of       :0A

  1.11 =λ  , 1.12 −=λ ,  is an unstable matrix 0A
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• Solve the quadratic for P matrix equation (4.3.15) or (4.3.23) by using Matlab programming: 
 

 A0=[-1 0.7;0.3 1]; 

 A1=[0.1 0.1;0 0.2]; 

 A2=[0.2 0;0 0.1]; 

 B=[1 0;0 1]; 

 R1=[0.1 0;0 0.1]; 

 R2=R1 

 Q=[1 0;0 1]; 

 P=[1 0.6;0.6 1] 

 k=2 

 Pline=P*B*B'*P 

 lambda1=min(eig(inv(B'*P*B))) 

 w=1/sqrt(max(eig(Pline))) 

 MI=A0'*P+P*A0+R1+R2-2*k*w*lambda1*Pline+Q 

 H=[-Q P*A1 P*A2; A1'*P -R1 zeros(2:2);A2'*P zeros(2:2) -R2] 

 H_det=det(H) 

 MI_det=det(MI)  

 

where 
 

1 0.6
0.6 1

P ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= ;    ;    
  1     0.6
0.6     1

TB P
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= 1 0.6
0.6 1

TB PB ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=   

 

1 1.5625 0.9375( )
0.9375 1.5625

TB PB − ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

−=
−

 

 

The determinant is 1.5625, and the eigenvalues are 5000.2max =λ  and 6250.0min =λ . 
 

1.36 1.2( )
1.2 1.36

TP PBB P ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= =   

 

The determinant is 0.4096, and the eigenvalues are 56.1max =λ  and 06.1min =λ . 
 

0.625ω = . 1 0.2β =  and 2 0.4β = ; 2k = ; 1 0
0 1

Q ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= . 

 

• Check whether a solution of matrix inequality (4.3.15) hold or not: 
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   -2.5650   -0.8750
   -0.8750     1.9150

MI
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= ; det(MI)= -5.6776 

 
• Check whether matrix inequality (4.3.16) negative semi-definite or not. 

 
 -1.0000         0          0.1000    0.2200    0.2000    0.0600
         0      -1.0000     0.0600    0.2600    0.1200    0.1000
    0.1000    0.0600   -0.1000         0             0             0
  

H =
  0.2200    0.2600         0       -0.1000         0             0

    0.2000    0.1200         0              0      -0.1000         0
    0.0600    0.1000         0              0             0      -0.1000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

The determinant is -8.6950e-005. Therefore, the matrix inequality (4.3.16) is feasible. 

Therefore, designed time-delay system is globally asymptotically stable. 

Certain time delay system (4.3.1), (4.3.2), (4.3.3) are simulated by using MATLAB-Simulink. 
Block diagram is shown in Figure 1. Fragments of simulation results are presented in Fig.2, 3 
and 4. As seen from these figures, the time responses are stabilized rapidly with minor steady-
state errors. Control efforts have some chattering.  
 
4.3.4 Sliding Mode Control of Uncertain Time-Delay Systems with Parameter    
Perturbations and External Disturbances 
 
Now, advanced design results presented in section 4.3.2 can be generalized to design of sliding 
mode controller for robust stabilization of uncertain multiple state delay systems with 
parameter perturbations and external disturbances.  

The uncertain time-delay system can be described by the following state-space equation: 
 

0 0 1 1 1( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( ),  t 0N N Nx t A A x t A A x t h A A x t h Bu t Df t= + ∆ + +∆ − + + +∆ − + + >�  

)()( ttx φ= ,                                                                                                    (4.3.33) 0≤≤− th

 

where in addition to (4.3.1), NAAA ∆∆∆ ,,, 10 …  are the parameter uncertainties,  is a known 
( )-matrix,  is an external disturbances. 

D
nn× )(tf

The following assumptions underline our design approach: 
 
Assumption 3: There exist some bounded matrices )(,),(),( 10 σσσ NEEE … , such that 
 

0 0

1 1

( ) ( )

( ) ( )

( ) ( )N N

A BE

A BE

A BE

σ σ

σ σ

σ σ

∆ =

∆ =

∆ =
#

                                                                                                              (4.3.34) 
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If parameter perturbations are not matched, then we assume that they are norm-bounded 
 

0 0max ( )A
σ

σ α∆ ≤  

1 1max ( )

max ( )N N

A

A

σ

σ

σ α

σ α

∆ ≤

∆ ≤
#                                                                                                              (4.3.35) 

 
where nαα ,...1  are given positive scalars. 
 
Assumption 4: There exists a matrix E  such that 
 

BED =                                                                                                                               (4.3.36) 

with  

α=D                                                                                                                                (4.3.37) 

and an external disturbance is norm-bounded 

0)( ftf ≤                                                                                                                            

(4.3.38) 

where  is a given positive scalar. 0f
 
The control goal is to design a combined variable structure controller for robust stabilization of 
time delay system (4.3.33) with parameter perturbation and external disturbances. 
 
4.3.4.1 Sliding surface and motion 
 
It is clear that the simple sliding mode controller (4.3.2), (4.3.3) is not sufficient for 
stabilization of extended time-delay system (4.3.33). We need for example to introduce an 
equivalent control term for cancellation of nominal regime of uncertain time-delay system 
(4.3.33). For this reason we must determine an equivalent control term for time-delay system 
(4.3.33) and then a sliding mode which can be arisen on the sliding manifold  (4.3.3). 
First, according to equivalent control method [1], from the following equations: 

0)( =ts

 
 

                                              (4.3.39) 
0 0 1( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

T T T

T T T
N N

s t B Px t B P A A x t B P A A

B P A A B PBu t B PDf t

= = +∆ + +∆

+ + +∆ + + =

� �

…

1

0

 

we determine a full equivalent control for the uncertain time-delay system with matched 
uncertainties and external disturbance (4.3.33): 
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1
0 1 1

1
0 1 1

1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) (

( ) ( )

T T T T
eq N N

T T T T
N N

T T

u t u t B PB B PA x t B PA x t h B PA x t h

)B PB B P A x t B P A x t h B P A x t h

B PB B PDf t

−

−

−

⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦

≡ = − + − + + −

− ∆ + ∆ − + + ∆ −

−

…

…      (4.3.40)                              

Note that, the second and the third parts of (4.3.40) are unavailable because of parameter 
uncertainties and unknown external disturbances. But, further we will use only the first 
available part of equivalent control (4.3.40). Therefore, similar to [5], [27] and [30], 
substituting (4.3.40) into (4.3.33) we have 
 

1 1
0 0 1 1 1

1 1
0 0

1 1
1 1 1

( ) ( ) ( ) ( ) ( )

... ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) (

T T T T

T T T T
N N N

T T T T )N N N

x t A B B PB B PA x t A B B PB B PA x t h

A B B PB B PA x t h A B B PB B PBE x t

A B B PB B PBE x t h A B B PB B PBE x t h

σ

σ σ

− −

− −

− −

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡⎣ ⎦ ⎣

= − + − −

+ + − − + ∆ −

+ ∆ − − + + ∆ − −

�

… ⎤⎦

)

 

 
           1( ) (T TD B B PB B PBE f t−⎡⎣+ − ⎤⎦

0

1

0

0

0N

                                                                                    (4.3.41)  

 
If matching conditions (4.3.34), (4.3.36) are satisfied, then 
 

1 1
0 0 0

1 1
1 1 1

( ) ( )

( ) ( )

T T T T

T T T T

A B B PB B P A BE B B PB B PBE

A B B PB B P A BE B B PB B PBE

− −

− −

∆ − ∆ = − =

∆ − ∆ = − =
#

                                               (4.3.42) 

1 1

1 1

( ) ( )

( ) ( ) 0

T T T T
N N N

T T T T

A B B PB B P A BE B B PB B PBE

D B B PB B PD BE B B PB B PBE

− −

− −

∆ − ∆ = − =

− = − =
 

 
and from (4.3.41) we have a sliding time-delay motion as follows 
 

0 1 1( ) ( ) ( ) ( )N Nx t A x t A x t h A x t h= + − + + −� …                                                                    (4.3.43)       
                                             
where 
 

1
0 10 0 1 1( ) , , ...T T

NN NB PB B P G A BGA A A BGA A A BGA A− = − = − = − =                            
(4.3.44)                                  
An equivalent control gain matrix  can be selected such that G 0A , NAA ,,1 …  are stable, but 
this is not necessary for the stability of sliding time-delay system (4.3.43). Stability analysis of 
(4.3.43) is given by the following lemma, which is similar to [15]. 
 
Lemma 2: Suppose that Assumptions 3 and 4 hold. Then, time-delay sliding motion (4.3.43) is 
asymptotically stable, if the following matrix inequalities are satisfied:   
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0 0 1 0T
NA P PA R R Q+ + + ≡ − <…                                                                                     (4.3.45) 

 
1 N

1 1

N

         PA        PA

A        -          0 0
                             

A         0      -

T

T
N

Q

P RH

P R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−

=

"

"
# # % #

…

⎥ <                                                                                    (4.3.46)   

                                  
where  are some positive-definite symmetric matrices to be selected. Note that 
equation (4.3.45) is a standard Lyapunov matrix equation. Matrix inequality (4.3.46) after 
reducing to LMI’s form can be solved by using known techniques, for example given by [17], 
[54], [61]-[63] etc.  
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Proof: Choose a Lyapunov-Krasovskii functional candidate as follows 
 

1
( ) ( ) ( ) ( )

i

tN
T T

i
i t h

V x t Px t x R x dθ θ θ
= −

= +∑ ∫                                                                          (4.3.47) 

 
The time-derivative of (4.3.47) along the state trajectory of (4.3.43) is given by 
 

.
0 0 11 1

1 1 1

( ) ( ) 2 ( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( )

TT T
NN N

T T
N N N

V x t A P PA R R x t x t PA x t h x t PA x t h

x t h R x t h x t h R x t h

⎡ ⎤
⎢ ⎥⎣ ⎦

= + + + + − + +

− − − − − − −

… …

…

T −

 

 

     

1 N

11 1 0)()( <= tzHtzT1

N

          PA       PA( ) ( )
( ) ( )A      -          0

                               
( ) ( )A        0      -

T

T

TN N
N

Qx t x t
x t h x t hP R

x t h x t hP R

⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

−

− −
=

− −

"

"
# ## # % #

…

                          (4.3.48) 

 
where  [ ])()()()( 1 N

TTTT htxhtxtxtz −−= … T.  

In view of (4.3.48) when condition (4.3.46) is satisfied, then (4.3.48) reduces to . 
Therefore, sliding time-delay system (4.3.43) is asymptotically stable. 

0
.
<V

 
4.3.4.2. Combined variable structure controller and sliding conditions  
 
For the robust stabilization of uncertain time-delay system (4.3.33) with unmatched 
uncertainties and external disturbances we form the following combined variable structure 
controller: 
 

1
1 1

( ) 0
( ) ( )( ) ( ) ( ) ( )
( ) ( )0 ( )

T T
eq

m

k x t
s t su t u t B PB B PB t
s t sk x t

δ− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= − −
"

# % #
… t

   (4.3.49)  
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where    
                   

1
0 1( ) ( ) ( ) ( ) ( )T T T T

eq N Nu t B PB B PA x t B PA x t h B PA x t h− ⎡ ⎤⎣ ⎦= − + − + + −…                          (4.3.50)  

 
is an available equivalent control term,  and 1,..., mk k δ  are the scalar gain parameters to be 
selected,     is a feedback gain matrix,  is a relay gain matrix.  KPBBT 1)( − δ1)( −PBBT

 
Note that, constructed sliding mode controller consists of three terms:  
1) Available equivalent control term for the stabilization of nominal time-delay system. 
2) Variable structure control term for the compensation of parameter uncertainties. 
3) Min-max (relay) term for the rejection of external disturbances and together with second 
term to ensure reaching conditions. Structure of these control terms is typical and very simple 
in their practical implementation. The design parameters of the combined controller (4.3.49) 
with switching functions (4.3.3) can be selected from the sliding conditions and stability 
analysis. 
 
Lemma 3: Suppose that conditions (4.3.35) and (4.3.37) hold. Then a robustly stable sliding 
mode can always be generated, on the sliding manifold 0)( =ts  (4.3.3) defined for the 
multivariable time-delay systems (4.3.33) with unmatched parameter uncertainties and external 
disturbances driven by controller (4.3.49), if the following matrix inequalities are satisfied: 
 

max max max0 1 12 (P) (P) ... (P) ( ) 2 0n n nN NI I I P k Pα λ α λ α λ β β ω+ + + + + + − ≡−… Q≤                 (4.3.51) 
 
and, 
 

max max1 1 ( ) 0,...,  ( ) 0n NP I P P I Pα λ β α λ β− ≤ − ≤n N                                                      (4.3.52)           
                                                                                                                                   

max1 1

max

0 0
0 ( ) 0 0

0 0 ( )

n

nN N

Q
P I PH

P I P

αλ β

α λ β

⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥
⎢ ⎥
⎣ ⎦

−

−=

−

…
…

# # # #
…

⎥
⎥ ≤                                                             (4.3.53) 

 
_

max ( )odf Pδ λ≥                                                                                                                     (4.3.54)  
 
where, 1, , 0Nβ β >…  are given constants, PPBBP T=  is a positive semi-definite symmetric 
matrix. Note that matrix inequalities (4.3.51) and (4.3.54) are feasible. 
 
Proof : Let us choose a Lyapunov-Krasovskii functional candidate as: 
 

1
( ) ( ) ( ) ( )

i

tN
T T

i
i t h

V s t s t s s dβ θ θ θ
= −

= +∑ ∫                                                                               (4.3.55) 

 
The time-derivative of (4.3.55) along the state trajectories of time-delay system (4.3.33), 
(4.3.49) can be calculated as follows: 
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β β

δ β β

⎡ ⎤
⎣ ⎦= ∆ + + + + ∆ − + + ∆ −
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α λ δ λ
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…

…

…
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max max1 1

max0 1 1 1
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x t

P x t x t h P x t x t h
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α λ α λ

λ δ β β⎡ ⎤
⎣ ⎦

+ − + + −

+ − − − − − − −

…

… N−

                   (4.3.56) 

 
Since,  where a and b are some scalars, then 222 baab +≤
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max max1 1 1 12 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T TP x t x t h P x t x t x t h x t hα λ α λ 1⎡ ⎤⎣ ⎦− ≤ + − −

max max2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) (T T
N N N N )NP x t x t h P x t x t x t h x t hα λ α λ ⎡ ⎤⎣ ⎦− ≤ + − −

#
                                        (4.3.57)    

                                                                                     
Therefore, (4.3.56) becomes  
 

max max max0 1 1min

max max1 1 1 1
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( ) 2 ( ) ( ... ) 2 ( ) ... ( ) ( )
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α λ β α λ β

δ λ

⎡ ⎤
⎣ ⎦

⎡ ⎤⎣ ⎦

⎡ ⎤
⎣ ⎦

≤ + + + − + + +

+ − − − + + − − −

− −

�

  (4.3.58)        

  
If simple linear for P  matrix inequalities (4.3.51) and (4.3.52) are satisfied, then rearranging 
(4.3.58) we have  
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        max02 ( )df P s tδ λ⎡ ⎤

⎣ ⎦− − ( )  

 
     max0( ) 2 ( ) ( )Tz Hz t df P s tδ λ⎡ ⎤

⎣ ⎦= − − [ ] 0)()(2 max0 <−−≤ tsPdf λδ                                 (4.3.59) 

 
Therefore, Lemma 3 is proved.  

 
4.3.4.3 Robust stabilization of closed-loop system 
 
The final step is to determine the control design parameters such that the uncertain time-delay 
system (4.3.33), (4.3.49), and (4.3.3) with unmatched parameter uncertainties and matched 
external disturbances are globally asymptotically stable with respect to state coordinates. 
 
Theorem 5: Suppose that Assumption 3 (4.3.35) and 4, Lemma 2 and 3 are met. Then the 
uncertain multivariable time-delay system (4.3.33) with unmatched parameter perturbations and 
matched external disturbances driven by combined controller (4.3.49) is robustly globally 
asymptotically stable with respect to the state variables, if the following conditions are 
satisfied: 
 

max max1 1(P) 0,..., (P) 0n NI R I Rn Nα λ α λ− < − <                                                                (4.3.60) 
 

nNnnN
T

IPIPIPRRAPPA )()()(2 maxmax1max0100 λαλαλα +++++++ "…  
 

                                                                                   (4.3.61)                               0)(2 1
min <−≡− − QPPBBPBBk TTωλ
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####                                     (4.3.62) 

 
0

1
min )( efPBBT =−δλ                                                                                                            (4.3.63) 

 
where  are some positive definite symmetric matrices. Note that, conditions 
(4.3.61) and (4.3.62) are simple matrix inequalities, which are feasible. However condition 
(4.3.60) after reducing to standard form can be solved by algebraic Riccati equations 
techniques.    
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Proof: Choose a Lyapunov-Krasovskii functional candidate as follows: 
 

1
( ), ( ) ( ) ( ) ( ) ( )

i

tN
T T

i
i t h

V x t x x t P x t x R x dθ θ θ
= −

⎡ ⎤⎣ ⎦ = + ∑ ∫ θ

1

1

−

                                        (4.3.64)                               

 
The time-derivative of (4.3.64) along the state trajectories of time-delay system (4.3.33), 
(4.3.49), (4.3.3) can be calculated as follows: 
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where NAAA ,, ,10 …  are defined by (44) for example 0
1

00 )( PABPBBBAA TT −−= . 

Using evaluation techniques improved in sections 4.3.2.2 and 4.3.3.2, (4.3.65) can be evaluated 
as follows: 
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  (4.3.66) 

 
If, quadratic for P matrix inequality (4.3.61) and conditions (4.3.62) and (4.3.63) are satisfied, 
then rearranging (4.3.66) we obtain: 
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                                                                                                                   (4.3.67) 0)()( <= tHztzT

 
where 

1( ) ( ) ( ) ( )T T T T
Nz t x t x t h x t h⎡ ⎤

⎣ ⎦= − −… T. 

 
Therefore, time-delay system (4.3.33), (4.3.49), (4.3.3) is robustly globally asymptotically 
stable. Theorem 5 is proved. 
 
4.3.4.4 Example 2 
 
Consider time-delay system (4.3.33), (4.3.49), (4.3.3) with the nominal parameters given in 
design example 1 and by the following parameter perturbations: 
 

0 1 2
0.2sin( ) 0 0.1cos( ) 0 0.2cos( ) 0

, ,
0 0.1sin( ) 0 0.2cos( ) 0 0.1cos( )

t t t
A A A

t t
⎡ ⎤ ⎡ ⎤ ⎡
⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣

∆ = ∆ = ∆ = .
t
⎤
⎥
⎦

 
 

Matching condition for external disturbances is given by: 
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    1            0    0.2cos t      0B 
    0            1           0          0.2

D E
⎡ ⎤ ⎡ ⎤

⎥
⎥⎦

 0.2 cos t       0
        0          0.2 ⎢ ⎥ ⎢

⎢ ⎥ ⎢⎣ ⎦ ⎣
= =

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= ;  0.2sin( )
     0.2

tf t
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=

 
Design procedures can be fulfilled by the following steps: 
 
• Solve the matrix inequalities (4.3.60)-( 4.3.62) by using Matlab programming: 
 
clear 
clc 
A0=[-1 0.7;0.3 1]; 
A1=[0.1 0.1;0 0.2]; 
A2=[0.2 0;0 0.1]; 
B=[1 0;0 1]; 
R1=[1 0;0 1]; 
R2=R1; 
Q=[1 0;0 1]; 
P=[1 0.6;0.6 1]; 
Pline=P*B*B'*P; 
lambdamax_Pline=max(eig(Pline)); 
lambda1=min(eig(inv(B'*P*B))); 
w=1/sqrt(max(eig(Pline))); 
d=norm([0.2 0;0 0.2]); 
f0=norm([0.2;0.2]); 
In=Q; 
k1=2; 
alfa0=max(eig([0.2 0;0 0.1])) 
alfa1=max(eig([0.1 0;0 0.2])) 
alfa2=max(eig([0.2 0;0 0.1])) 
lambdamax_P=max(eig(P)) 
A0line=A0-B*inv(B'*P*B)*B'*P 
MI1=A0line'*P+P*A0line+R1+R2 
+2*alfa0*lambdamax_P*In+alfa1*lambdamax_P*In 
+alfa2*lambdamax_P*In-2*k1*w*lambda1*Pline+Q 
MI1_det=det(MI1) 
det(-alfa1*lambdamax_P*In+R1) 
det(-alfa2*lambdamax_P*In+R2) 
H2=[Q zeros(2:2) zeros(2:2); 
 zeros(2:2) -alfa1*lambdamax_P*In+R1 zeros(2:2); 
 zeros(2:2) zeros(2:2) -alfa2*lambdamax_P*In+R2 ] 
H2_det=det(H2) 
H1=-H2 
delta=d*f0*lambdamax_Pline 
 
where 
 

0 1 20.2;  0.2;    0.2α α α= = = ;  0.6250ω =  
 

1 2
1 0
0 1nQ I R R ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= = = = ;  2k =

 
 1.0000    0.6000
 0.6000    1.0000

P
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= ; 
1.3600    1.2000
1.2000    1.3600

P ⎡ ⎤
⎢ ⎥
⎣ ⎦

=  
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   -1.6400   -0.2000
   -0.2000    2.8400

MI ⎡
⎢
⎣ ⎦

=
⎤
⎥ ; det(MI)= -4.6976 

 
max ( ) 1.600Pλ = ; max ( ) 2.5600Pλ =  

 

max1 1
 0.6800         0( )
       0       0.6800nR P Iα λ
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

− =  

 

max2 2
 0.6800         0( )
       0       0.6800nR P Iα λ
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

− =  

 
    1.0000     0         0           0          0            0
         0   1.0000      0           0          0            0
         0         0    0.6800       0          0            0
         0  

H =
       0           0    0.6800      0            0  

         0         0           0           0    0.6800       0
         0         0           0           0         0     0.6800

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

> 0  

 
det(H)= 0.2138 
 

2.0max == Dd ; 2828.0)(max0 == tff ; max ( ) 2.56Pλ = ; 0.1448δ =  
 
Notice that the conditions (4.3.60)-( 4.3.63) hold and we have designed all the parameters of the 
combined sliding mode controller. 
The uncertain time-delay system (4.3.33), (4.3.49) and (4.3.3) with given parameters are 
simulated by using MATLAB-SIMULINK. Block diagram is shown in Fig.4.3.5. Simulation 
results are given in Fig.4.3.6-4.3.8. As seen from these figures, system time responses are 
stabilized satisfactorily with some oscillations and minor steady state errors. Design example 
shows the usefulness of the proposed design approaches. 

4.3.5 Conclusion 
 
The problem of sliding mode controller design methods for both certain and uncertain multi-
input systems with several fixed state delays is addressed. Two types of sliding mode 
controllers are proposed: 1) Simple sliding mode controller is designed for the stabilization of 
certain time-delay systems and 2) Combined sliding mode controller is designed for the 
stabilization of uncertain time-delay systems with parameter perturbations and external 
disturbances. Delay-independent sufficient conditions are given for the existence of a sliding 
mode and the robust asymptotic stability of the closed-loop systems by using Lyapunov-
Krasovskii functional method combined with matrix inequality techniques. Some new matrix 
inequalities are evaluated for mathematical analysis of time-delay systems. Feasibility of hard 
solvable matrix inequalities by using modified algebraic Riccati equations is discussed.  
Two numerical examples with simulation results are given to illustrate the usefulness of the 
proposed design methods. 
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Figure 4.3.1 Block diagram of certain time-delay system with simple sliding mode control 

system 
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Figure 4.3.2 State responses 
 

 
 

Figure 4.3.3 Switching functions 
 

 
 

Figure 4.3.4 Control function 
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Figure 4.3.5 Block diagram of Uncertain Time-Delay System with Combined Sliding Mode Control 
 
 
 
 
 
 
 
 
 

 202



 

 
 
 
 
 
 
 

    
         

Figure 4.3.6 State responses 
 
 
 

  
 

Figure 4.3.7 Control functions 
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Figure 4.3.8 Switching functions 
 
 
 

        
   

Figure 4.3.9 State responses      
 
 
 
 
 
 
 
 
   

 204



 

 
 
 
 
 
 
 

 
 

Figure 4.3.10 Control functions 
 
 
 

 
 

Figure 4.3.11 Switching functions 
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CHAPTER 5 
 
 

Sliding Mode Observers Design 
 
In this chapter robust linear state observer, reduced-order sliding mode observer and time-delay 
observers for multivariable uncertain systems are systematically presented. 
 
5.1 Robust improved state observer coupling schema design  
 
In this section a robust improved state observer coupling schema is designed.  
 
5.1.1 Introduction 
 
In this section [1] a new robust decoupling state observer including an extra non-linear term has 
been proposed. This extra term is used to overcome the difficulty due to the unstructured 
parameter perturbation. It was highlighted that the nonlinear observer scheme requires the 
solution of a quadratic matrix inequality which is not straightforward. This inequality was 
rewritten as a quadratic Riccati equation by introducing a parameter ε  which was successfully 
solved by proposed algorithms. However, the proposed observer possesses some shortages, for 
example, strictly speaking, the observer error dynamics is function of error, plant state and 
extra term and origin e=0 is not equilibrium point because plant state and extra term can 
increase unboundedly. Therefore, selected Lyapunov function is not a good candidate and 
observer state error does not go to zero. 
In these comments, an improved simple linear Luenberger robust state observer for the linear 
MIMO systems with unstructured parameter perturbation is considered in light of design of 
coupling controller-observer scheme. The same observer problem mentioned above is solved 
only by using a simple linear Luenberger scheme without including any extra non-linear term. 
The simple linear Luenberger scheme is considered as a completely dual form to the linear 
multivariable controller and investigated together with controller. Then the design parameters 
of coupling closed-loop observer controller system are selected such that the observer error 
dynamics and plant state equations are globally asymptotically stable. The stability conditions 
are formulated in terms of two quadratic Riccati equations and one matrix inequality. 
Therefore, the coupling observer–controller laws can be constructed from the positive definite 
solutions of these algebraic Riccati equations and matrix inequality. Also the elegant reduced 
design methodology of completely symmetric dual coupling closed loop observer-controller 
system is presented.  
 
5.1.2 Brief analysis of existing linear observers 
 
In paper [1], a new robust decoupling state observer scheme including an extra non-linear term 
has been proposed. The purpose of a proposed non-linear state observer is to estimate the 
unavailable state variables of the linear MIMO systems with unstructured parameter 
perturbations. The main results of this paper which determines the construction of a Luenberger 
observer combined with extra non-linear term are given in the following theorem [1]. 
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Theorem 1: Given a linear uncertain MIMO system with unstructured parameter perturbation 
.
( ) ( ) ( ) ( )x t A A x t Bu tσ⎡ ⎤⎣ ⎦= + ∆ +  

 
( ) ( ) ( )y t Cx t Du t= +                                                                                                               (5.1.1) 

 
where  is a state n-vector,  is a control m-vector,  is an output p-vector and )(tx )(tu )(ty

2( )A σ δ∆ < , δ  is constant, then the robust non-linear state observer: 
 

[ ] ))(),(ˆ()(ˆ)()()(ˆ)(ˆ trtxtytyHtButxAtx α+−++=�  
 
ˆ ˆ( ) ( ) ( )y t Cx t Du t= +                                                                                                               (5.1.2) 

 
where is the residual defined as follows )(tr

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )r t y t y t C x t x t Ce t⎡ ⎤⎣ ⎦= − = − =                                                                               
(5.1.3) 
 
estimates the unavailable state variables , or the observer state error equation: )(tx

)(),(ˆ()()()()()(ˆ)()( trtxtxAteHCAtxtxte ασ −∆+−=−= ���                                        (5.1.4) 
 
converges to zero, if the following extra non-linear term using to overcome the difficulty due to 
unstructured parameter perturbations ( )A σ∆  is satisfied: 
 

2
1ˆ ˆ( ) ( )ˆ( ( ), ( )) ( )

2 ( ) ( )

T
T

T
x t x tx t r t P C r t
r t r t

δα −=                                                                                     (5.1.5) 

 
where  is the symmetric positive-definite matrix of Lyapunov V-function P
 

1( ( )) ( ) ( )
2

TV e t e t Pe t=                                                                                                            (5.1.6) 

 
and satisfies the following quadratic matrix inequality: 
 

02)()( 22 <++−+− IPHCAPPHCA T δ                                                                                    (5.1.7) 
 
where H  is such that  is stable. It was highlighted that the nonlinear observer scheme 
requires the solution of a quadratic matrix inequality which is not straightforward. This 
inequality was rewritten as a quadratic Riccati equation by introducing a parameter 

HCA −

ε  which 
was successfully solved by proposed algorithms. For using design procedure of [2] to solving 
ARE in [1] has been assumed that [1] an unique positive definite solution P of quadratic Riccati 

equation exists if and only if the system matrix 
0 2

0

A HC I
I
I

δ
ε

⎡ ⎤
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦

−
 is observable and 

controllable; norm of this matrix transfer function is less then or equal to H ∞ γ  where 1
2

γ = . 
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However, the proposed observer possesses some shortages: 
1) Observer (2) involves an extra non-linear term (5) depending on estimated state variables, 

residual and their non-linear functions. Practical implementation of this non-linear term is 
difficult too. 

2) Strictly speaking, the observer state variable ˆ( )x t  can not be considered as the estimate of 
plant state variable ( )x t  in (1) since as seen from (4) observer state error dynamics is 
function of , ( )e t ( )x t  and ( )tα , then origin 0e =  is not equilibrium point for (4), because 
of plant state variables ( )x t , if they are unstable and extra term ( )tα  (5) can increase 
unboundedly as pointed in [1] also. Consequently,  does not go to zero as . For 
this reason we can conclude that the selected Lyapunov function (6) is not a good 
candidate. Therefore, the proposed non-linear robust state observer [1] needs to be 
improved. Moreover, observer for uncertain systems should be designed together with state 
controller because observer error equation (4) is dependent of 

( )e t ∞→t

( )x t , too. It should be noted 
that various coupling observer controller design for linear multivariable systems without 
parameter perturbations and closed-loop stability analysis are considered by several authors 
and presented for example in [3]. Recently, the new observer and coupling observer based 
controller are designed in the behavioral context by [4]. 

 
In this comments, a modification of improved simple linear Luenberger robust state observer 
design for the linear MIMO systems with parameter perturbation is considered. The same 
decoupling observer problem mentioned above is solved only by using a simple linear 
Luenberger scheme without including any extra non-linear term. The simple linear Luenberger 
scheme is considered as a completely dual form to the linear multivariable controller based on 
dual time-invariant observer concept [5] and investigated together with controller. Then the 
design parameters of coupling closed-loop observer controller system are selected such that the 
observer error dynamics and plant state equations are globally asymptotically stable. The 
stability conditions are formulated in terms of two quadratic Riccati equations and one matrix 
inequality, which can be successfully solved by using very well known algorithms [1], [2]. An 
elegant reduced design methodology of completely symmetric dual coupling closed loop 
observer-controller system is presented also. 
 
5.1.3 Robust linear observer design method    
 
Consider a linear uncertain MIMO system with parameter perturbation described by (1). Let us 
form a simple linear Luenberger observer as follows: 
 

ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

x t Ax t Bu t Bv t

y t Cx t Du t

= + −

= +

�

                                                                                      (5.1.8) 

 
where  is linear Luenberger compensative term which can be selected as follows: )(tv
 

ˆ( ) ( ( ) ( )) ( )
      

( ) ( )T
OBS

v t L y t y t Lr t

LCe t k B Re t

= − − = −

≡ − = −
                                                                                            (5.1.9) 

 
where L is observer gain ( ) matrix in term of ,  is constant gain parameter, R is 
the positive-definite matrix to be selected. Here we assumed that there exist a matrix R such 

pp× ( )r t OBSk
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that the structural constraint similar to [6], [7] is satisfied, , where  
is observer gain (

OBS
T

OBS KRBkLC == OBSK
np× ) matrix in term of . Note that this coupling observer scheme uses 

only the residual as input signal. 
( )r t

 
The dual linear control law is defined as: 

)(ˆ)(ˆ)( txPBktxGt T
CON−=−=                                                                   u                             (5.1.10) 

x t Ax t A x

A

 
where  the control gain matrix, Nk  is constant gain parameter and P is a 
positive definite matrix to be selected. 

GPBkG T
CON ,= CO

 
Then the observer error dynamics can be obtained as 

ˆ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )T
OBS

e t x t x t

Ae t A x t Bv t

A k BB R e t A x t

σ

σ⎡ ⎤⎣ ⎦

= −

= +∆ +

= − + ∆

�� �

                                                                              (5.1.11) 

 
and closed-loop system state equation (1) become 

ˆ) ( )T
CONt k BB Px t( ) ( ) ( ) (σ

( ) ( ) ( ) ( ) ( )T
CONAx t A x t k BB P x t e t

( ) ( ) ( )T
CONk BB P x t A x t

σ ⎡ ⎤⎣ ⎦= +∆ − − )(tPeBBk T
CON+                                      (5.1.12) 

σ⎤⎦− +∆⎡⎣

= +∆

=

�

 
hus, the dual coupling closed-loop observer control system equations are presented as follows 

−

T
 

( )( )

( ) ( )

T
OBS

T T
CON CON

A k BB R Ae t

x t k BB P A k BB P A

σ

σ

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎢ ⎥⎣ ⎦

− ∆
=

− +∆

�

�

( )

( )

e t

x t

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                                              (5.1.13) 

 
We assume that the pairs (A,B) and (C,A) are completely controllable and observable 
respectively. This implies that we can find the design parameters such that all eigenvalues of 

e matrices PBBkA T  and CON− RBBkA T
OBS−th    have a desired location in the left-half of s-

arameters of the coupling observer-control 
onstruction are given in following theorem. 

 
trol law (10) and simple  linear 

e  (9), then the dual coupling  closed-
(13) is globally 

plane. Moreover, we need some additional system structure conditions similar to in page 2 for 
solving algebraic Riccati equations. 
 
The main results which determine the design p
c

Theorem 2: Given a linear uncertain MIMO system wi
uenberger observ r (8) with the dual compensative term

th con
L
loop observer-control error system with unstructured parameter perturbation 
asymptotically stable, if the following conditions: 
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2)()(max2 PAAPAPA TT +∆∆++ σσ
σ

CONCON QPPBB −=                                             (5.1.14) Tk− 2

                                                                          (5.1.15) 

y 

OBS CON
T

CONBB P Q ⎥⎦
= >                                                                           (5.1.16a) 

                                                                          (5.1.16b) 
 
are satisfied. 

OBS
T

OBS
T QRRBBkRRARA −=−++ 22

 
where CONQ  and OBSQ  are positive definite matrices and matrix inequalit
 

0
TQ k PBB P⎡ ⎤−H

CONk P⎢ ⎥
⎢⎣−

 
or Schur complement  
 

2 1 0
CON

T T
OBS CONH Q k PBB PQ PBB P−= − >

 
Proof: To examine the stability of dual coupling closed-loop observer-control system (13), we 
define a Lyapunov V-function candidate as a full quadratic form of e(t) and x(t): 
 

( ) ( )0( ( ), ( ))
( ) ( )0

Te t e tRV x t e t
x t x t

⎤
⎥
⎥⎦

( ) ( ) ( ) ( )T T
P

⎡ ⎤ ⎡⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢⎣ ⎦⎣ ⎦ ⎣
= x t Px t e t Re t= +                                     (5.1.17) 

 
where P and R are positive-definite matrices. The time-derivative of (17) along the closed-loop 
trajectories of (13) is given by: 

T T T
CON

T
CON

T

e t x t P A k BB P x t x t P A x t

k x t

σ= − + ∆

+

 
( ( )V x t� , ( )) 2 ( ) ( ) ( ) 2 ( ) ( ) ( )

2 ( ) ( ) 2 ( ) ( ) ( )T T T
OBSPBB Pe t e t R A k BB R e t+ −                                 (5.1.18) 

2 ( )e t R A+ ∆ ( ) ( )x tσ
 

ince S
 
2 ( ) ( ) ( ) ( ) ( )T T Tx t P A x t x t PP x tσ∆ ≤ ( ) ( ) ( ) ( )T Tx t A A x tσ σ+ ∆ ∆                                             (5.1.19)                               

e t R A x t e t RR e tσ∆ ≤2 ( ) ( ) ( ) ( ) ( )T T T ( ) ( ) ( ) ( )T Tx t A A x tσ σ+ ∆ ∆                                              (5.1.20)        
                                                                                        
Then 
 

( ) ( ) ( ) ( )

T T T T T T
CON

T T T T
CON OBS

T T

x t PBB Px t x t PP x t x t A A x t

k x t PBB Pe t e t RA A

x t A A x t

σ σ

σ σ

+ + ∆ ∆

+ + +

+ ∆ ∆

( ( ), ( )) ( )( ) ( )T TV x t e t x t PA A P x t≤ +�  
 

2k− ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( )( ) ( ) 2 ( ) ( ) ( ) ( )T T T TR e t k e t RBB Re t e t RR e t− +  
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[ ] )()(2)(max2)( tPePBBtxktPAPAtx TT
CON

TT +∆++=
σ

      

 

2)()( 2 xPPBBkPAA T
CON

T −+∆ σσ

 [ ] )(2)( 2 teRRBBkRRARAte TTT −+++                                OBS                                            (5.1.21) 

 
Letting  

−                                          (5.1.22) 

 

,
( ) ( )

T T
OBS CONQ k PBB Pe t e t

 
 

22max ( ) ( )T TPA A P A A P
σ

σ σ+ + ∆ ∆ + 2 T
CON CONk PBB P Q− =

OBS
T

OBS
T QRRBBkRRARA −=−++ 22                                                                                (5.1.23) 

Then (21) leads to  

( ) ( )
( ( ) ( ))  

T

V x t e t

CONCONx t xQk PBB P

⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥⎢ ⎥ ⎢

−

−

( ) ( )

( ) ( )

Te t e t
H

t

⎤
⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

≤ −�

⎣ ⎦ ⎣ ⎦⎣ ⎦ x t x t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

= −

⎣ ⎦ ⎣ ⎦
 
In view of (24) if the conditions of (14), (15) and (16) are satisfied, then (24) reduces to 

0))(),(( ≤tetxV� . Therefore, the coupling closed-loop ob

         (5.1.24) 

server-control system with parameter 
perturbation is globally asymptotically stable, that is ( )x t  and e(t) converge to zero. Theorem 2 
is proved. 

olving algorithms for quadratic Riccati equations [1], [2]; our 
ty 

CON−  and  are stable. Initialize 

 
5.1.4 Solution of the quadratic Riccati equations algorithm  
 
By using very well known s
completely identical to [2], [1], [8] algebraic Riccati equations (22), (23) and matrix inequali
can be solved as follows: 

Step 1: Choose any positive definite matrices P, R and gain constants ,k k  such that 
T

CON OBS

PBBKA RBBKA T
OBS− ε  to some starting value, e.g. 1ε = . 

Step 2: Determine whether the transformed similar to [1],[2]. Riccati equations (22), (23) have 
(for OBSCON QQ εε , ) some positive definite solutions for given  and . If positive 

i  whether the already linear matrix inequality (16) for determined 
nd  has a positive definite solution. If the solution exists go to Step 4. Otherwise, stop 

CONQ OBSQ
definite solutions exist, the algorithm succeeds. 

Step 3: Determ ne CONQRP ,,  
a  OBSQ
and the algorithm fails. 

Step 4: 
2
εε =  if ε  is less then some computational accuracy 0ε  then stop, the algorithm fails. 

Otherwise go to Step 3. 

Step 5: the algorithm effectivel o compute observer and controller 
gain matrices 

5.

y succeeds and use (9), (10) t
and OBSK G . 

 
1.5  Reduced design 
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Letting in (17) P=R and in (9), (10) kOBS CONk k= =  ,
controller system is completely symmetric and dual form, then the stability conditions (14), 

0

 that is considered coupling observer-

(15) and (16) are reduced to: 
22max ( ) ( )T TPA A P A A P

σ
σ σ+ + ∆ ∆ + 2 ,T TkPBB P Q Q Q− = − = >                                 (5.1.25) 

Q Q ∆A (σ ∆A(σ)= +  

                           

. 

 

le state and output variable transformations based method to design a new 

where  then  CONQ Q= 2max )T
OBS σ

2max )T T
σ

T

Q ∆A (σ ∆A(σ) kPBB P
H

kPBB P Q

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

+ −
=

−
>0                                                                  (5.1.26a) 

 
or Schur complement 

0)()(max2 12 >−∆∆+= − PPBBPQPBBkAAQH TTT σσ
σ

                                               (5.1.26b)    

herefore, the design procedure is simplified considerablyT

 

 Conclusion 5.1.6
 
We have considered a modification of improved simple linear Luenberger robust coupling state 
observer for the linear MIMO systems with parameter perturbation. Observer scheme is 
considered as a completely dual form to the linear multivariable controller and investigated 
together with controller. Then the design parameters of coupling closed-loop observer-
controller system are selected such that the observer error dynamics and plant state equations 
are globally asymptotically stable. The stability conditions are formulated in terms of two 
quadratic Riccati equations and one matrix inequality, which can be solved by using effectively 
algorithms [1], [2]. Reduced design methodology of completely symmetric dual coupling 
closed loop observer-controller system is presented also. 
 
5.2 A new reduced-order sliding mode observer design method: A triple 

transformations approach 
 
In this section, a trip
reduced-order sliding mode observer for perturbed MIMO systems is developed. The state and 
output variables of original system is triple transformed in to suitable canonical form 
coordinates where the dynamical reduced order observer can be successfully designed. Existing 
reduced-order observer design techniques and state-output variables transformations are 
summarized in this study and presented systematically. A new combined observer configuration 
is proposed. Some new adequate evolution of matrix inequalities is adopted. Global sufficient 
asymptotical stability and sliding conditions for the coupled observer error system are 
established by using Lyapunov full quadratic form and formulated in terms of Lyapunov matrix 
equations and matrix inequalities. Reduced analysis of separated reaching and sliding modes of 
motion of decoupled observer error system is discussed also. Two numerical examples are 
given to illustrate the usefulness of proposed design method. 
 
5.2.1 Introduction 
 
The observer for linear systems was first proposed and developed by Luenberger [9]. An 
observer that estimates all of the state variables is called a full-order observer. But, an observer, 
that estimates a part of the state variables referred to be a reduced-order observer.  

 216



 

In recent years, the state observation problem of uncertain dynamical systems subject to 
external disturbances has been a topic of considerable interest. Variable structure control with a 
sliding mode is an established method for control and observation of uncertain dynamical 
systems. There are several modification of discontinuous state observers which were 
successfully designed by Utkin [10]; Hashimoto, Utkin, Xu, Susuki and Harashima [11]; 
Walcott and Zak [12]; Edwards and Spurgeon [13]; Sira-Ramizer, Spurgeon and Zinober [14]; 

hoi [57]; Yeh, Chien and Fu [58]; 
, Fridman and Spurgeon [60]; and special journal 

[6
ariable transf

ate and 
inal  triple transformed in to suitable canonical form 

er 
 this study and presented systematically. A new combined observer configuration 

atrix inequalities is adopted. Global sufficient 
for the coupled observer error system are 

 and formulated in terms of Lyapunov matrix 
sis of separated reaching and sliding modes of 

Further, we will use the following notation: 

║x║

Young, Utkin and Özgüner [15]; Watanabe, Fukuda and Tzateftas [16]; Slotine, Hedrick and 
Misawa [17]; Mielczarski [18]; Jafarov [19] etc. 
Moreover, some new configuration of Utkin reduced-order observer for canonical systems 
without external disturbances, Walcott-Zak full-order observer for MIMO systems with 
external disturbances and Edwards and Spurgeon reduced order observer for canonical MIMO 
systems with external disturbance have been successfully designed by Edwards and Spurgeon 
[20]. The min-max observer control term with non-linear gain parameters is used for 
stabilization of observer error systems. These types of observers are designed by Lyapunov V-
function method such that observer state error dynamics is globally asymptotically stable or 
globally uniformly ultimately bounded because some times the sliding and stability regions are 
restricted by some small ball [12]. Recent advances in design of sliding mode controllers and 
observers are presented by Jafarov and Tasaltin [55], [56]; C
Singh, Steinberg and Page [59]; Sabanovic
issues 1] and [62]. 
In this paper, a triple state and output v ormations based method to design a new 
reduced-order sliding mode observer for perturbed MIMO systems is developed. The st
output variables of orig  system is
coordinates where the dynamical reduced order observer can be successfully designed. Existing 
reduced-order observ design techniques and state-output variables transformations are 
summarized in
is proposed. Some new adequate evolution of m
asymptotical stability and sliding conditions 
established by using Lyapunov full quadratic form
equations and matrix inequalities. Reduced analy
motion of decoupled observer error system is discussed also. Two numerical examples are 
given to illustrate the usefulness of proposed design method. 

= x x T  )(max AATλ  is matrix norm; T is the transpose is the Euclidean norm; ║A║=
of a vector or matrix; Rayleigh’s min-max matrix inequality for a positive definite matrix P: 
0 < minλ )║x║² ≤ x(P TPx ≤  maxλ  (P)║x║²; 

where minλ  (P) and maxλ (P) are minimum and m x m eigenvalues of the matrix P, 
spectiv  

a imu
ely.

scription and Assumptions 

Consider the original uncertain MIMO system described by the following state space equations: 

re
 
5.2.2. Reduced-order observer configuration 
 
5.2.2.1. System De
 

),()()()(�  

)()( txCty o=                                                                                                            (5.2.1) 

xtftuBtx oo ++= Atx
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∈ pRwhere x Rⁿ is an unmeasured state vector, u∈ ∈R  is a control input and ym is a measured
output vector

 
 with m ≤ p < n. Nominal linear system ( oA , oB , oC ) is known and input and 

output matrices oB and  are both of full  and p = m

to mak llowing conventional assu

oC  rank . 
 

e need e the fo mptions used in sliding mode control theory W

a) The pair ( A , oo B ) is completely state controllable, that  is    

  rank[ oB # oA oB # 2oA oB #…# )1(A −no oB ]=n                                                                 (5.2.2)          

s tively. 

 

                                                                         (5.2.3)   
        

ξ(t,x)║ +

and pair  oA , ) is ob ervable, respec( oC
b) f(t,x) is the unknown n-vector function, which represents the system nonlinearities plus any 

, satisfies the conventional matching conditionmodel uncertainties and external disturbances
[12]: 

 f(t,x)= oB ξ(t,x)                                            
  
where the function ξ(t,x): R+ xRⁿ →Rm is unknown lumped function, but norm-
bounded: 

≤ρ µ ║y(t)║ )()( 00
max txCC Tλµρ +≤║                                                               (5.2.4) 

 
where ρ  and µ  are given positive scalars.  

A

 
Thus, the system (1) can be rewritten as 

              (t) o x(t)+ oB [u(t)+ ξ (t,x)] x� =

               y(t)= oC x(t)                                                                                                            (5.2.5) 
                                                                  

T iables x(t) using 
onl  m
 
First we consider the sy

        
he problem to be considered is that of reconstructing the unknown state var

y easured output information y(t). 

stem described by (5) under above mentioned assumptions that the pair 
oA , oB( ) is controllable. As the outputs are to

ates so that the outputs appear as components of the state coordinates. 

 
5.2.2.2 Tr ansformations 
 

irst transformation: Original system (5) can be transformed by the following similarity 
transformation [21]-[23]: 

        z= =                                                                                                               (5.2.6)               

 followin nal controllabl : 

zz =                                                                                                        (5.2.7) 

+ (u+ξ)                                                                                                (5.2.8) 

 be considered, it is logical to effect a change of 
coordin
 

iple State Tr

F

⎥
⎦

⎤
⎢
⎣

⎡

2

1

z
z

xT1  

in
 

to g conventio e canonical form

2
1
121

1
1 zAA +         1

.

1
.

2z = 1
1
21zA 2

1
22 zA + 1

2B
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211 zzCy =                       2
1 CFy +=                                                                                     (5.2.9) 

 
wh

⎡

VWAUA
VMAU

oo

o oMA  = = ;                      

ere  

⎥
⎦

⎤
⎥
⎦

⎤
⎢
⎣

⎡
1
22

1
21

1
12

1
11

AA
AA 1A11 −o ⎤⎡M

1TAT = ⎥
⎦

⎢
⎣W

oA [ U   V ] = ⎢
⎣W

 

oBT1 = ⎥
⎤

⎢
⎡M o

⎦⎣W
B = ⎢

⎡
⎥
⎦⎣

0WB ⎥
⎦⎣

1
2B

⎤o

=
⎡ 0

=
⎤

⎢
1BMB ;                                                                               (5.2.10) 

 

 

⎢
⎣W

⎢ ⎢

=[ U V ] ⎢W
=UM+VW=

 is a p-vector 
M is a (n-p)×n o u
W is a p×n-matrix 

×

 is a design p×(n-p)-matrix 
s design ×

 is a n×n-identity matrix. 
m×m-output design matrix satisfying structural constraint [12]: 

                                                                                                          (5.2.11) 

where  is a positive definite ( )-matrix to be selected.  

Second Transformation: This state transformation is given by similar to [
 

T
⎡ 1z

=
⎡ 1x

                                                                                                     (5.2.12) 

mation leads system  (7) – (9) to the 
following controllable canonical form in space ] : 
 

3) 

1
1

0 −T = oFC [ U  V ]=[  0FC U 0FC V ] =[ 1C  2C ]; FC

1−T =
⎤⎡M

[ U V ]= 
⎤⎡ MVMU

=
⎤⎡ −pn 0I

; 1T 1 ⎥
⎦

⎥
⎦⎣ WVWU ⎦⎣ pI0

 

⎥

1− ⎤⎡M
1T 1T ⎥

⎦
nI  

⎣
z is a (n-p)-vector 1

2z
f f ll rank matrix 

U is a n (n-p)-matrix 
V is a n×p-matrix 

1  is a p×p-matrix because p = m 2B

1C
C2  i  a  p p matrix of full rank and non-singular 

nI
F is an 

 2
1
22 PBVFCC

To ==

2P pp×
 

24]: 

 2 ⎥
⎦⎣ 2z ⎥

⎦⎣
1y

⎤
⎢

⎤
⎢

where  is an unmeasured state (n-p) vector. This transfor1x
[ 1x , y

12
121

2
111 yAxAx +=�  

1y� = 1xA + 2
22 yA + B (u+ξ)                                                                                              (5.2.12

21
1 2

2
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TAT ⎢
⎣

2
22

2
21 AA

= =
21

p

CC
0

,  

 
⎡ −

21

pn

C
0I

=

where 
 

1− ⎤⎡ 2
12

2
11 AA 2 ⎡ −nI

2
1

2 = ⎥
⎦

A ; 2T ⎥
⎦

⎤
⎢
⎣

⎥
⎦

⎤
⎢
⎣

⎡
1
2B

0
⎥
⎦

⎤
⎢
⎣

⎡
1
22BC

0
= ⎥

⎦

⎤
⎢
⎣

⎡
2
2B

0
= 2B= ⎥

⎦

⎤
⎢

1
2 BT

⎣ C
;                                                               (5.2.14) 

here  is a (p×p)-matrix. 
Note that,  is non-singular, because  is a non-singular. 

⎤
⎢
⎡ −

1-
pn

C
0I

, 
⎤

⎢
⎡ −pn 0I

                                                                        (5.2.15) 

  ] −T =[         ]                                                                                             (5.2.16) 

t.  

culate 

C 1 AA 1-C- CC
     

⎤

⎣ ++ 1
121212111 CC AACA

⎤
⎢
⎡

−11-
p-n 0I  

⎤

⎢⎣

−
1-

1(C A
 

11 AA

ence 

                                                                                               (5.2.18) 

n matrices  or can be selected such that the matrix  always has stable 
ble eigenvalues. 

 other words, in terms of the structural conditions the second transformation means that the 
following conversion is true. Indeed, from (9) we have  

                                                                                                      (5.2.19) 

 
 2

2Bw

2T 2C
 

1
2
−T = ⎥

⎦⎣
1-

212 CC- ⎦⎣ pI02T 1
2
−T = ⎥

 
[ C   C2 2 p

 

1 0 I1

which are therefore correc
 
Therefore, from (14)-(16) we cal

1
2

1
2

−TA = ⎥
⎤

⎢
⎡ p-n 0I

⎥
⎤

⎢
⎡ 1

12
1
11 AA

⎥
⎤

⎢
⎡ p-n 0I        T

⎦⎣ 21 ⎦⎣ 2221 ⎦⎣ 212C 1 −1

  

              = ⎢
⎡

111

1
12p-n

1
11p-n AIAI

⎥
⎦222 AC ⎦⎣ 212C- CC

⎥

 

              = ⎢
⎡

1111

-1
2

1
12p-n1

-1
2

1
12p-np-n

1
11p-n CC AICAIIAI

⎥⎦++ 2222121p-n21211 C)(C) ACAIAC
⎥

 
⎤⎡ 22

              = ⎥
⎦

⎢
⎣

2
22

2
21 AA

=                                                                                                 (5.2.17) 12 2A

H

 1
-1
2

1
12

1
11

2
11 C CAAA −=

and the desig 2

desira
1C C 2

11A

In

 
11

211
1

22 yCzCCz −− +−=
 

 220



 

which acts in (7) as control hen  
111

.
−

input. T

111 )( yCAzCCAAz − +−=                                                                                   (5.2.20) 

): 

 
In order to verify the first and second transformations in terms of output equation let us 
evaluate the output variables in various 
 

F

⎣ 2z

2
1
1211

1
2

1
12

 
Therefore in terms of ][ yx1  we have the same results (13

12
121

2
111

.
yAxAx +=                                                                                                               (5.2.21) 

here 2A  always has stable desirable eigenvalues. w 11

state coordinates : 

2211
1 )()()( zCzCtxCtyty o +===  

 
F

         ≡ [ ] ⎥
⎤

⎢
⎡ 1

21
z

 CC ≡ [ 1C   2C  ] 1
2
−T ⎥

⎤
⎢
⎡

1
1x

 
⎦ ⎣y

 

        = [ ] ⎢ ⎢  

      =[

⎦

  1C   2C   ⎥  
⎦⎣

1-
21

1-
2 CCC- ⎦⎣

1y
⎤⎡ −pn 0I ⎤⎡ 1x

⎥

 

 0   pI  ] ⎥
⎦

⎤
⎢
⎣

⎡
1
1

y
x

≡ )(1 ty                                                                                                (5.2.22)    

 
, the first and second transformations are true.  

                                                                             (5.2.23) 
 

here  and  are the new state estimates vector of the observer;  is the observer control 

 the error between the estimates and the true states are written as   and observer 

                                                                                  (5.2.24) 

  

22 Br + 2B                                                                                            (5.2.25) 

control term such that on the formed sliding surface 
defined for the error system (25) at the finite time generated is asymptotically stable sliding 

Therefore
 
Observer Configuration: Now, let us form a simple reduced order observer, structure of 
which is similar to the twice transformed system (13) but is different from [12] : 
 

12
121

2
111 ˆˆˆ yAxAx +=�  

vu-BByAxAy 2
2

2
2

12
221

2
21

1 ˆˆˆ ++=�

 1x̂ 1ŷ vw
vector term to be selected. 

1e = 11 x̂-xIf
residual: 

11 ˆ)( yyt −=                                    r
 
then the following observer error system can be obtained from (13) and (13) as follows:
 

rAeAe 2
121

2
111 +=�  

 
22

1
2
21 AeAr +=� 2+2 v ξ

 
Now, our goal is to construct an observer 
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mot . maining 
part x (t) or z (t) will be calculated from (19). 

 

 

ion  Then the unmeasured reduced state x1(t) will be corrected by the observer. A re
2 2

 

 

5.2.2.3   Observer control term 

Let us select observer control term of the form: 
 

1 2 2 1 ( )T
2 2 2( ) ( ) ( ) ( ) ( ) ( )

( )vsclin
s tv t v t v t Ls t k y t B P B
s t

δ⎣ ⎦= + = − − +                                          (5.2.26) 

 
where 

−⎡ ⎤

L  is an observer gain ( )-matrix, pp× δ  and k are some scalars to be designed;  is 
itching function to be defined. The observer combined control term (26) consists of two 
) linear Luenberger control term for compensation of linear perturbation portion 

of r n of lumped 
xternal disturbance. 

                                                                                                                 (5.2.27) 

where  is a (p×p)-positive definite design matrix to be determined; from (14), (10)  

 is a positive definite (p×p)-matrix. 

Third Transformation: Thus, we have constructed a reduced-order observer and control term 
(26) with the sli n rfac = 0 (27) defin  for the obs v er  (25) in space of 

)(ts
the sw

arts: 1  )(tvlin  p

 er or system (25); 2) variable structure control term )(tvvsc  for compensatio
e

The switching function can be defined as: 
T

)(ts = )(2
2
2 trPB

2P

1
22

1
2

1
22

2
2 BPBBCB T

== 02
2 >=

TB
 

di g su e ed er er ror system)(ts
[ ]re   1 . Now, on the formed sliding surface = 0 can be organized the stable sliding mode. 
For this reaso  i rver error system (25) into  state-space 
form [25  the third chan
 

⎡e ⎡e
                                                                              (5.2.28) 

where 
 

⎡ −

2
2
2

pn 0
PB

I
T .                                                                                                          (5.2.29) 

 
hen, at last after triple coordinate transformations we obtain an observer error system in 

f  

)(ts
[ ]se   1n, t is rational to transform the obse

] by ge of state and residual coordinates: 

3T ⎥
⎦

⎢
⎣ r

1 = ⎥
⎦

⎢
⎣ s

1                                         
⎤ ⎤

 

3
⎣ 0

T = ⎥
⎦

⎤
⎢

T
suitable canonical state-space form o [ se   1 ] :  

sAA 121111 ee +=�  
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ξ2222121 BvBsAeAs +++=                             
.

                                                               (5.2.30) 
 

where  

1
3

2
3

−TAT = ⎥⎢
⎣

⎡

2221

1211

A A
AA = A ;   3T 2

⎦

⎤
B = ⎥⎢

−

2
pn

0 PB T ⎥
⎦

⎤
⎢
⎣

⎡
2B

= ⎥⎢ 22 BPB T = ⎥
⎦

⎤
⎢
⎣

⎡
B

=
⎦

⎤

⎣

⎡

22

0I

⎣

⎡

222

0

2

0

⎦

⎤

2

0
B   (5.2.31) 

T
2 = 222 BPB = B2 >0 is a positive definite matrix. B 22

,                                                      (5.2.32) 

T n, fr
 

⎡

22

0I
⎢
⎣

2
22

2
21A A ⎢

⎢
⎣

−1

2
2
20 PB T  

T

=−1
3T ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
1

2
2
2

pn

0

0

PB

I
T =−1

33TT ⎥
⎦

⎤
⎢
⎣

⎡ −

p

pn

I
I

0
0

        

 
he om (28) and (31) we calculate 

1
3

2
3

−TAT =
⎤

⎢
⎣

−

2
pn

0 PB T
⎤⎡ 2

12
2

11 AA ⎤⎡ −pn 0I
⎥
⎦

⎥
⎦ ( ) ⎥

⎥
⎦

( ) ⎥
⎤

⎢
⎡ −1

2
2
2

2
12

2
11 PBAA T ⎡ 11A               = ( )

12A

  

 
    and                                                                                            (5.2.35) 

 
Thus, th ) can be presented in the canonical 
state-spa

                                                                                               (5.2.36) 

⎥⎦⎢⎣
−1

2
2
2

2
222

2
2

2
212

2
2 A PBAPBPB TTT

= ⎥
⎦

⎢
⎣ 2221A A

= A                                     (5.2.33) 

 
Hence we see that 2

1111 AA =  and therefore 11A  has always stable desirable eigenvalues because 

⎤

of (17) and (18). Moreover  

)( 1
212

1
1112

2
2

2
212

2
221 ACACPBAPBA

TT
+==                                                                                (5.2.34) 

 
In particular, C2 or C1 can be selected such that 

1
111

1
2

1
21 ACCA −−=  021 =A

e reduced-order observer error system (30), (26
ce form of [ se    ]: 1

= +�         1 11 1 12( ) ( ) ( )e t A e t A s t

1 2 2 1
2221 1 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( , )

( )
( )s tTs t A e t A s t k y t B B P B B t x

s t
δ ξ⎣ ⎦= + − + +  −⎡ ⎤�

with sliding surface 

                                                                                                                  (5.2.37) 

here 

( ) 0s t =   

 LBA −  is st e mw A22 = abl atrix. Desirable eigenvalues of which can be assigned by 

 

5.2.3. Stability analysis of observer error system 

222

pole placement method.  
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The sufficient conditions for global asymptotical stability of the observer error system (36) at 

the point 
⎤⎡e1 =0 with a stable sliding mode on 0)( =ts  (37) are established by using ⎢

⎣s
⎥
⎦

L ion method and formulated in terms of Lyapunov matrix equations and 
inequality. The following theorem summarizes our stability and sliding results. 

Theorem 3: T
n the formed sliding surface

yapunov V-funct
matrix 

he coupling observer error system (36) is globally asymptotically stable and in 
general o  0)( =ts  (37) always is generated a stable sliding mode, 

henever there exist a family of symmetric positive definite design matrices P1, P2 and Q1, Q2, 
Q         

PA T                             (5.2.38) 

w
 such that the following conditions are satisfied:  

1111 QAP −=+ ;  01 >Q                                                                111

2222222 QPAAP −=+ ; QT 0>2                                                                                           (5.2.39) 

1 12 21 2 2

(
( )T T

Q P A A
P A A P Q

⎡
⎢ ⎥
⎢ ⎥⎣ ⎦

− +
− +

c

0TP A A P Q P A A P−= − + + >                                                               (5.2.40b) 

2B

21 2 ) 0
T P ⎤

>                                                               (5.2.40a) Q = 1 1 12

or its S hur complement : 
1

1 1 12 21 2 2 1 12 21 2 ( ) ( )T TQ Q

max2 2min ( ) ( )P Pδλ ρλ=                                                              (5.2.40c)                                        

 1
max max2 2min 2) ( ) ( )TF F P Bµ λ λ− −=                                                                             

(5.2.41) 

                        

dratic form of coordinates of  [  as follows: 

ePe
se TT

T

2111
111

1

0
),( +=⎥

⎤
⎢
⎡
⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡

=                                              (5.2.42) 

 is a(n-p)×(n-p)-matrix,  is p×p-matrix, which are positive definite. Then, the time 
erivative of  (42) along the trajectory of the observer error system (36) can be calculated as 

follows: 

(Pλk

 

se   1 ]Proof:  Choose a Lyapunov full qua

sPsePeV
sPs 20 ⎦⎣⎦⎣⎦⎣

1P 1Pwhere 
d

1 1 1 1 1 1 2 2 1 2 1 2

1 2 2 1
2 2 2 2 2 2 22 ( , )T

2 2

( )2 ( ) ( )
( )

T T T T T

T T

Q e e P A s s Q s e A P s

s t

V e

s P k y t B B P B
s t

δ ξ−⎡ ⎤
⎣ ⎦

= − + − +

− +

�
             (5.2.43) 

Since  
2 BPB T

=  is a positive definite matrix, then we can present a feedback gain matrix in (26) 

s P B t x+

2
2222

also as: 
B

 

1 1
1 2 2

2 2 2

  0   0kδ
1        ( ) ( )

0     0     

T

m m

y t B P B
kδ

      −

⎡ ⎤
⎢ ⎥

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎥⎢ ⎥⎥
⎥⎢ ⎥

" "
⎢⎢
⎢
⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦ ⎣ ⎦

+# # %
" "

                                                                 (5.2.44) 
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where 1,..., mδ δ  and k1,…,km  are some gain constants to be selected.  
Since, in space of  [ 1

1, ye ] :            
   

 1 1
max(t,x) ( ) ( )TF F y tξ ρ µ λ − −≤ +                                                                                 (5.2.45) 

 

and    s
s

s
s
ssssigns

T
T ===

2

)(                                                                                  (5.2.46) 

Then  
 

1 2 2 1
2 2 2 2 2

( )2 ( ) ( )T T

( )
s ts P k y t B B P B 1

2min2 ( ) (k )y t Pδ λ⎡ ⎤
s t⎣ ⎦δ −⎡ ⎤− + s⎦≤ − +                        (5.2.47) 

ecause 

⎣

b
 
[ ] [ ] [ ] 2

2max
1121 )()()()()( sPtykstykPssPtyk T λδδλδ +≤+≤+            (5.2.48) 22min

 
Therefore (43) can be evaluated as: 
 

( ) 1
max1 1 1 1 1 12 21 2 2 2 2 2min

 1 1
max max 2 2

2 2 ( ) ( ) 2

2 ( ) ( ) ( )

T T T T

T

V e Q e e P A A P s s Q s k y t P s P B s

F F P B s y t

δ λ ρλ

µ λ λ− −

⎡ ⎤
⎣ ⎦≤ − + + − − + +

+

� ( )

(5.2.49) 

 

 
where 22 BP  is a positive definite matrix. 

ence H

T
1V

e
s
⎡ ⎤
⎢ ⎥
⎣ ⎦

≤ −
( )TQ P A⎡ ⎤− + e� 1 1 12 21 2

1 1 1 2 2( )T TP A A P Q⎢ ⎥
⎢ ⎥⎣ ⎦− +

1
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A P ⎡ ⎤
s⎢ ⎥
⎣ ⎦

 

 

       
max2 2 2min

 1 1
max max2 2 2min

( ) ( )  

2 ( ) ( ) ( ) ( )T

P P B s

k P F F P B s y t

δλ ρλ

λ µ λ λ− −

⎤⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

−

− −

                                               (5.2.50) 

 
In view of (50), if the sufficient conditions (38) - (41) are satisfied , then (50) reduces to 
 

T

2 ⎡−

              
e e

V ⎡ ⎤ ⎡ ⎤
≤ −  

.
1 1 0Q
s s⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
≤                                                                                            (5.2.51) 

 
for all 1( ) 0, ( ) 0t s t≠ ≠ . 
 
Therefore, we conclude that the reduced-order observer error system (36) is globally 
asymptotically stable and in general on the sliding surface 0)(

e

=ts  (37) always is generated a 
ing mode. The Theorem 3 is proved. 

 
stable slid
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5.2.4. Reduced analysis of reaching and sliding modes of motion 

elected such that . Then observer error system can be separated into two decoupled 
reaching and sliding modes. First, let us consider the sliding conditions for the separated 

Corollary 1: Suppose that =A  in (36) and conditions (38)-(41) of Theorem 3. Then sliding 
ng surface always is generated an 

m

                  (5.2.52) 

hen the time derivative of (52) along the trajectory of the second separated equation of 
stem (36 a

 

In section 2.3 we have pointed that in particular the design parameters C  and C  can be 1 2

021 =As

observer error system. 
021

surface 0)( =ts  (37) is reached in finite time and on the slidi
asy ptotically stable sliding mode. 
Proof: Choose Lyapunov V-function candidate as 
 
                          sPssV 21 )( =                                                                       T

 
where 2P  is a positive definite matrix.  
T
observer error sy ) c n be calculated as: 

.
1 2 2 1

1 2 2 2 2 2 22 ( ) ( )
( )

V s s s P k y t B B P B
s t

max2 2 2 2 2min2 ( , ) 2 ( ) (T T
2

( )

)  

T T T s tQ

s P B t x s Q s P P Bξ δλ ρλ⎡⎣+ ≤ − − − s

−⎡ ⎤

⎤⎦

δ⎣ ⎦= − − +

 

 
 1 1

max max2 2min2 ( ) ( ) ( ) (Tk P F F P B s y tλ µ λ λ− −⎡ ⎤
⎢ ⎥⎣ ⎦

          2 )−                                               

 
 view of (53), if conditions (39), (40c) and (41) are satisfied then (53) reduces to: 

herefore, we conclude that an asymptotically stable sliding mode always is generated on the 

−

(5.2.53) 

In
 

1 2 22 ( ) ( ) 0T TV s t P s t s Q s= ≤ − <� �                                                                                             (5.2.54) 
 
T
sliding surface 0)( =ts  (37) defined for separated observer error system. The corollary is 
proved.  
Now let us shortly analyze the separated modes. Since in sliding mode  and 

ever, s(t) as control input is going to the first equation of observer error system (36). 
the reaching phase

0)( =ts 0<ssT � . 
How
Therefore, at  stt ≤≤0  this state error equation is affected by . In that 

e  is acted as first order dynamic regulator. But, when the sliding surface is 
ore slowly state error 

dynamical process so-call ently, from the first equation 
ding mode motion as follows       

                                                                                                                    (5.2.55) 

where  is a stable matrix, desirable eigenvalues of which each can be assigned by pole 
placement method. Sliding m ode of motion. It should be noted that a stronger 
ondition, guaranteeing an ideal sliding motion is the η-reachability condition [12], [26]. For 

o         
            

 )(ts
r
reached the effect of dynam

)(tseaching phas  
ic regulator is disappeared and then m

ed a sliding mode is beginning. Consequ
of separated observer error system (36) we can obtain a sli
     

)(e)(e 1111 tA=� t
 

11A
ode is a slowly m

c
ur multivariable case a η-reachability condition can be rewritten as
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2sssT η−≤�                                                                                                                        (5.2.56) 

here

 

w  2min

max

( )
( )
Q
P

λη
λ

=  is a positive constant. Then the sliding surface is rapidly reached at very 

small time, therefore the reaching time n be evaluated as: 
 

ca

η

2)0(s
ts ≤                                                                                                                          (5.2.57) 

Thus, there are two time-scale behavior [27] of motion: 

 reaching mode of motion and  2) sliding mode of motion. 
Reaching mode is a fast mode of motion and can be determined by second equation of observer 
error system (36).  Nominal part of reaching mode is described by equation: 

ts                                                                                                         (5.2.58) 

red char  equation of the closed-loop system (58) is given by 

1)

  
()( 222 LBAts −=� )()

 
Desi acteristic
 

LBAsIs p 222( +−=φ  = 1
1+ −
−α ss p

p
p) =+++ αα s                                             (5.2.59) 

 
where 

0... 01

22A  is a stable matrix which can be selected by pole placement method for example by 
Ackerman’s formula [28]. Pole place dure can be adopted to our problem as follows. 
 

A                                                                           (5.2.60) 

here 
 

p IAAAA 0...)( ααα ++++=                                                                        (5.2.61) 

.  Design Examples 

et us consider observer design examples to illustrate the usefulness of the developed reduced-
bserver design method. 

5.2.5.1. Numerical example: onsider a simple numerical example illustrating the design 
procedure. The second order system is given by  

ment proce

11
2 22 2 22 2 220...1   ... ( )pL B A B A B φ−−⎡⎡ ⎤ ⎤⎣ ⎦ ⎦⎣=

 
w

φ p 2212212222 − p

 
5 5..2

L
order o
 

C

 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−
−

=
3
1

1013
69 00 B, , ][ 25.025.00 −=C , A

 
2.0,2.0 == ρµ  Suppose that 

 
01220 =−−=− λλ . 0AλI A  then , 341 =λ 2 −=λ  is unstable matrix. 

s n procedure can be fulfilled by the following steps: 

Calculate 

De ig

• 
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⎥
⎦

⎤⎡
=
⎤⎡⎤⎡−

=
916900 B  A ⎢
⎣

⎥⎢⎥⎢ 17⎦⎣⎦⎣ 31013-
 

[ ] ⎥
⎦

⎤
⎢
⎣ 173

9⎡
=  determinant of which is different from zero, therefore, system is 

n

⎡ −13
en

011
11TT

•
 

2 10
2 3 5 2 23 1 1

A⎡ ⎤
⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
= = =

− −
 

 
From (10), (11): 

]25.2.01 CCTFC ==⎥
⎦

⎢
⎣

−×=−  

L
 
•

T B

⎣
    

1 1
2 2

2

1 0 2 10 1 0
0.25 0.5 1 1 -0.5 2

2 10 1 0 3 20
1 2 -0.5 2 0 4

T A T

A

− ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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=
−

−

1000 BAB

 
 co trollable. 
 
• Suppose 
 

⎥
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⎣

=
12-1T  th ⎥
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⎤
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⎦

⎤
⎢
⎣

⎡
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1T , 
⎤

⎢
⎣

⎡
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 Calculate the first transformation 

1
1 0 1 -2 1 -13 10

T A T −
⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦

=
3 1 9 6 1 1 14 8 11⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − − 1
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1 1
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⎡
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T
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 Calculate the second transformation 
•  

1
2 2

1 0 1 0
, ,

-0.5 2
T T −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥= =
0.25 0.5⎣ ⎦ ⎦

1 21 0 0 0⎡ ⎤⎡ ⎤ ⎡ ⎤
0.25 0.5 1 0.5
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 is stable. 
 
• Calculate the third transformation 
•  

 

=
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eig(A)= -3, 4 
 

• Calculate the sliding and stability conditions 
•  
Let then from (38) using MATLAB command = Lyap(-3,1) =0.1667. 
 
Using pole placement MATLAB command 
 
L = Place(4,2,-2) = 3 
 
Then from (36) 

A=⎥
⎦

⎤
⎢
⎣

⎡−
40
53
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BBT =⎥
⎦
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⎥
⎦

⎤
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⎡
=

2
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5,0
0

40
012

3  

 

011 >=Q 1P

02643242 <−=−=×−A 2 = . 

• From (39) 

• 

012 >=Q . 

8335.050.1667121 =×=AP , 05.00221 =×=PA T  

125.022 =×=BP ; 1.0=µ         

1 0.8335
0

0.8335 1
Q ⎡ ⎤

⎢ ⎥
⎣ ⎦

−
= >

−
Then from  (40)  because determinant of which is  0.3053.   

 
• Let 2.0=ρ  then from (41) gain parameter 4,0=k . 

Thus we have determined all the design parameters   
of the second order observer. 
 
5.2.5.2 Observer design example for AV-8A aircraft: Now, let us consider more complex 
observer design example for lateral dynamics of the AV-8A Harrier aircraft in hovering flight. 
The nominal parameters of this aircraft are taken from [29]: 

0 0

0

( ) ( ) ( )
( ) ( )

x t A x t B u t
y t C x t

= +
=

�  

where the state vector is represented by 
,  [ ]pr        υφψ=Tx

ψ  is the Euler yaw attitude perturbation (rad) 

φ  is the Euler roll attitude perturbation (rad) 

υ  is the velocity perturbation along body y axis(m/s) 
 r   is the body-axis yaw rate (rad/s) 
 p  is the body-axis roll rate (rad/s); 
The control inputs are [ ]RUDLAT

Tu δδ   = , 
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LATδ  is the lateral stick perturbation (cm) 

 iRUDδ s the rudder pedal perturbation (cm) 

The system, control and output matrices are 

     0          0         1
0       9.8   -0.042       0         0
0         0    -0.007  -0.06  -0.075
0         0    -0.039    0.11  -0.260

A

⎡ ⎤

⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.033-    0.177
0.085    0.0055
0.270-       0    

0            0    
0            0    

0B

For the simulation, the parameter perturbations are accepted as follows: 

0         0          0          1         0
0         0     ⎢
⎢

⎥
, ⎥

⎦

⎤
⎢
⎣

⎡
=

1   0   1   1    1
1   1   0   1    10C   0 =

00 )sin(2.0 AtA =∆ . 

Design procedure of sliding mode observer can be carried out by the following steps: 

• Eig( ):0A =1λ 0, 0.6239i  0.27153,2 ∓=λ , 4 -0.8253λ = , 5 -0.0798   λ = ; 0A is unstable. 

     -0.2700         0         0.0113     1.7346  
 0.0055    0.0850  

-0.0007    0.0042   -0.0022   -0.0132    0.0030
 0.0285    0.0103   -0.0079   -0.0699    0.0145
-0.3239   -0.5

 -0.0136   -0.0007     0.0042  
 0.1770  -0.0330   -0.0454    0.0285     0.0103   

⎡
⎢

⎢
⎢
⎢⎣

179    0.2925     0.1228   -0.0899
-0.0022   -0.0132    0.0030     0.0097  -0.0033
-0.0079   -0.0699    0.0145     0.0369  -0.0148

⎤

• CONM         0   =
⎢
⎢

     0            0         0.0055     0.0850    -0.0136 
     0            0         0.1770   -0.0330    -0.0454   

  

⎥
⎥
⎥
⎥
⎥
⎥⎦

 
rank CONM=5 
 

=

0.4464     0.4226-   0.1358    3.6275-   0    
0.2047-   0.0408-   0.0148    0.1084    0    
3.2712-   1.0468    0.3702-   0.3256-   0    
0.3861-   0.0283-   0.0111    0.3073-   0    
9.5244    0.0148    0.0332-   0.7938-   0    
0.2517-   0.0102    0.0314-   0.4508-   0    
0.7400      1.1100    0.0810-   9.8000    0    
0.6650      1.0500    0-       0         0    

1               0              1              1          1    
1               1               0          

   

rank(OBSM)=5 

•  is selected such that 

0  10.0000    0.8000 
T =

 -9.0000
   -0.4000    0.5000    0.6000    0.4000     1.0000

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎥
⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

,  

.3124    0.9805   -0.0305
  0.1000    0.3000    0.1650    0.5179  -0.0161

4000    0.2650    0.8317  -0.0258
M

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎥⎦

=  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡       1       1    

0. 460

• OBSM

 

1T

1
   -0.6000    0.70 0  
⎢
⎢

    0.2000        0        0.3124     0.9805   -0.0305
    0.1000    0.3000    0.1650     0.5179   -0.0161
    0.2000    0.4000    0.2650     0.8317   -0.0258

  0.2000         0       0

  0.2000    0.⎢⎣
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 -0.6000    0.7000   10.0000    0.8000  -9.0000
 -0.4000    000    0.6000    0.4⎣ 0.5 000   1.0000

W ⎡ ⎤
⎢ ⎥

⎦
,  

   -1.0156  -13.6897      9.3471      0.0718     0.6357
     2.0927     11.1749   -8.11

T − =
   -0.0239   -0.1808

   -0.8316  -11.6643     7.9439    -0.0335     0.6903

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

U
⎢ ⎥
⎢ ⎥

⎢ ⎥
808

  -0.0335     0.6903

V

=

   -3.7997  -35.1805    26.3872    0.0000    -0.0014
   -1.8321     2.6719       0.4961      0.0000   -0.0000
⎡ ⎤
⎢ ⎥

1
1

34

   -3.7997  -35.1805   26.3872⎡ ⎤
⎢ ⎥   -1.8321    2.6719      0.4961
   -1.0156  -13.6897    9.3471
    2.0927    11.1749   -8.1134⎢ ⎥
⎢ ⎥   -0.0239   -0.1

, 

   0.0000   -0.0014
   0.0000   -0.0000
   0.0718     0.6357

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=

   -0.8316  -11.6643    7.9439⎣ ⎦

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

• 
8

   16.5545   -6.94 0
F ⎡ ⎤

⎢ ⎥
⎣ ⎦

=
   10.1189   -4.173

0
, 2

 0.6250   -0.0000
-0.0000    0.6250

P ⎡ ⎤
⎢ ⎥
⎣ ⎦

=  

• 0
1

   -13.0114  -92.3955 
C FC U ⎡

⎢
  85.9390

  -20.4517 -144.6984  135.66399
⎤
⎥

⎣ ⎦
= =  

⎤
⎥

⎣ ⎦
 

• 
6 2.3350

    0.1792   -0.1610
B ⎡ ⎤

⎢ ⎥
⎣ ⎦

=  

0.0000
   -1.5886   -2.3350

T B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ,    

• 0 1
2 2 2

   -0.740TC FC V B P ⎡
⎢= = =

5   -0.3870
   -1.2158   -0.7810

1
2

  -1.588    -

0 .0000   -1

   -0.0000    0.0000
   -0.0000    0.0000
    0

    0.1792   -0.1610⎢ ⎥⎣ ⎦

1 0 1
1 1

  -5.2470    10.7427   -0.2962    -0.0024   -0.0822
   -3.0326    2.1118      2.2724    -0.0112     0.1647
   -4.7200    4.7864      2.6799    -0.0162     0.2009
 -185.3765  209.8028   84.884

A T A T −= =
1   -0.0657    2.3030

   -11.5365   10.6695     6.5067    -0.0043    0.1590

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

       

rom (14)  

,  

             0             0
  0             0             0

00         0             0T − =
.5236   -7.2401     3.5874

      6. 6   48.0158  -37.2672    11.2708   -6.8650

⎥
⎥

⎥
⎥

⎢ ⎥⎣ ⎦

 

  -    2.4388   -0.9093    0.5559
  - 74   -5.3826    1.9372   -1.1707
   -3.1275   16.8576   -7.0000    2.3812   -1.4371
   98.7361   22.9175 -128.6972   17.20

A T A T −= =
54  -10.2540

  163.0244   31.6832 -208.7187   27.7767  -16.5546

⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,  2
11

  -5.7101    7.1587    2.4388  
  -1.7702   11.6974   -5.3826  
  -3.1275   16.8576   -7.0000   

A

• F

2

     1.0000         0            0             0             0
         0        1.0000         0             0             0

          0             0        1.0000         0             0
  -13.0114

T =
  -92.3955   85.9390   -0.7405   -0.3870

  -20.4517 -144.6984  135.6639   -1.2158   -0.7810

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1
2          0            0         1.00

  -20.8355 -149.8591  135
⎢ ⎥
⎢
⎢

    1.0000          0            0
         0        1.0000       
⎡ ⎤
⎢
⎢

248

 5.7101    7.1587 
 1.7702   11.69
⎡
⎢

⎤
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  2 1 1
2 2
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• Eigenvalues of 

 -0.9992          
 -0.0068 + 1.5225i

  2
11A

1

1

λ
λ =  
=

3  -0.0068 - 1.5225iλ =

2 1
2 2 2

   1.1071    1.7915
 

   1.7915    2.9646
B C B ⎡ ⎤

⎢ ⎥
⎣ ⎦

= =  

• Eigenvalues of  2P :  1 20.2  0.8λ λ= =  

2
2 2     1.7851  

B P ⎢
⎣

    1.0910    1.2279
  2.0198

T ⎡ ⎤

⎦
= , 2 2

2 2 2 2
   3.4075    5.5946

 
   5.5946    9.1858

TB B P B⎥
⎡ ⎤
⎢ ⎥
⎣ ⎦

= = , 

⎢ ⎥⎣ ⎦

•  

• ,    

1
2

  10855   -6611
 -6611     4026

B − ⎡ ⎤
⎢ ⎥
⎣ ⎦

=  

• 3

    1.0000         0         0         0          0
         0       1.0000      0         0          0
         0            0     1.0000     0          0
         0            0         0    1.0910 

T =
  1.2279

         0            0         0    1.7851    2.0198

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

•  

• 1
3

    1.0000        0         0         0             0
         0      1.0000      0         0             0
         0           0     1.0000     0             0
         0           0         0  17

T − =
3.5745 -105.5198

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

 

         0           0         0 -153.4105   93.7567

2 1
3 2 3

   -5.7    7168       2.4       -243         148
    -1.8      11.6     5.38       516       -314
  -3.1      16.85      -7          634       -386
    307.8   63.9     396.7     14012    

A T A T −= =
-8534

   505.5      105    -651      23007  -14012

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

11

   -5.7    7168     2.4    
   -1.8      11.6    5.38    
 -3.1    16.85      -7     

A
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

• Eigenvalues of  11A : 

1

1

3

 -0.9992          
 -0.0068 + 1.5225i

  -0.0068 - 1.5225i

λ
λ
λ

=
=
=

  

which are stable. 

Eigenvalues of  

22
   14012   -8534
    23007   -14012

A ⎡ ⎤
⎢ ⎥
⎣ ⎦

=  

22A   1,2  0.6605,   -0.0097λ =  are unstable. 

• Solving Lyapunov equation (38) by Matlab Lyap(a11,Q1) command 
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1

 3114    32471    52463
 32471    18119   28699
 52463   28699   45673

P
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=   

where  determinant is   1.1031e+008. 

• Using pole placement for (37) with desired poles  then  

• L=place(A22,B2,desired_poles)=

1

  1   0   0
  0   1   0
  0   0   1

Q
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=   

0.1i-0.8∓

 13886   -6969
-5953      2719
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

22
  -0.8000   -0.1000
    0.1000   -0.8000

A ⎡ ⎤
⎢ ⎥
⎣ ⎦

=  

• Solving Lyapunov equation (39) 

where the determinant is     0.3906. 

2
     0.6250   -0.0000
   -0.0000    0.6250

P ⎡ ⎤
⎢ ⎥
⎣ ⎦

=  

2
   1        0
   0        1

Q ⎡ ⎤
⎢ ⎥
⎣ ⎦

= , 12

 -243.1087    148.0664
  515.8387   -314.1695
  633.7755   -385.9977

A
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= , 

21
   307.8891   63.9048 -396.6819
  505.5256  104.9028 -651.3012

A ⎡ ⎤
⎢ ⎥
⎣ ⎦

=  

max 2 2( ) 7.8708P Bλ = , 2.0=µ  

• Calculate  from (40a) : 

•  

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

which is positive definite. 

• Calculate 

Q

         1                 0                0       -34655984  21106489
         0                 1                0       -19641359  11962315
         0                 1                0       -309Q = 95700  18878225
 -34655984  -19641359 -30995700      1                0
   21106489    11962315    18878225      0                1

 from (40c) δ

1.5742δ =  

• Calculate  from (41) k
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1     6.1423    -3.6941
   14.6517   -8.9558

F − ⎡ ⎤
⎢ ⎥
⎣ ⎦

=  

1 1
max ( )  346.2510TF Fλ − − = ,  max 2 2( )  7.8708P Bλ =  

 146.4576k =  
 
5.2.5.3. Simulation results 
 
A new configuration of a reduced sliding mode observer (23), (26) for perturbed system (5) 
with parameters of Example 2 is shown in Fig. 5.2.1. This system is simulated by using 
MATLAB-SIMULINK program. Simulation results are presented in Fig. 5.2.2, 5.2.3, 5.2.4, and 
5.2.5. The sliding mode observer estimates the state vector satisfactorily. 
 

5.2.6 Conclusions 

In this section, a triple state and output variable transformations based method to design a new 
reduced-order sliding mode observer for perturbed MIMO systems is developed. The state and 
output variables of original system is triple transformed in to suitable canonical form 
coordinates where the dynamical reduced order observer can be successfully designed. Existing 
reduced-order observer design techniques and state-output variables transformations are 
summarized in this study and pr  c mbined observer configuration 

 proposed. Some new adequate s adopted. Global sufficient 
symptotical stability and sliding conditions for the coupled observer error system are 

established by using Lyapunov full quadratic form and formulated in terms of Lyapunov matrix 
equations and matrix inequalities. Reduced analysis of separated reaching and sliding modes of 
motion of decoupled observer error system is discussed also. Two numerical examples are 
given to illustrate the usefulness of proposed design method. 

esented systematically. A new o
evolution of matrix inequalities iis

a
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Figure 5.2.1. A new configuration of reduced order observer system 
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Figure 5.2.2 Output variable )(1 ty  
 

Figure 5.2.3 Estimated output variable )(ˆ1 ty  
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)(ts  Figure 5.2.4 Switching function 

 
 
 

 
 

Figure 5.2.5 Control term )(tν  
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5.3 Design modification of sliding mode observers for uncertain MIMO systems 
without and with t

 

In this paragraph, the 
example for SISO syste

ime-delay 

sliding mode observers design techniques for MIMO and as a simple 
ms are systematically advanced as a first purpose. Design parameters 

are selecte
state error dynamics is globally robustly 

design of a new 

ov-Krasovskii V-
esigned such that an 

asymptotically stable sliding mode always is generated in observer and observer state error 
dynamics is robustly globally asymptotically stable. The main results are formulated in terms of 
Lyapunov matrix equations and inequalitie
with simulation results using MATLAB show the effectiveness of proposed design approaches. 

ear system to generate estimates of the plant states can be traced to 
Luenberger (1971) [9], which is the most well known. The Luenberger observer performs well 

ble well. A full-order observer design method for 
linear systems with unknown inputs is given by Darouach, Zasadzinski and Xu (1994) [31]. 
However, in the presence of m
the plant states of uncertain time-delay systems may not be sufficiently accurate. From the 
point of view of robust control, the desirable properties and functional possibilities of variable 

[49]; De Carlo, Zak and Matthews, 1988 
[3 ; Edwards and Spurgeon, 
20  and Spurgeon, 2004 [74]; 

hoi, 2004 [57]; Cao and Xu, 2004 [63]; 

In recent years, the slid
subject to external distu
There are several modification of discontinuous state observers which were successfully 

ott, Corless and Zak (1987) 
], Zak, Walcott and Hui (1993) [ , 1996, 1998) [35]-[33], 

S festas (1992) [16], 
Hachimoto, Utkin, Xu, Suzuki and Harashima (1990) [11] and et al. Lyapunov V-function 

 [42] has been o
ro asymptotically in the presence of matched 

y region re
y stable sliding mode or 

not because its robustness directly is related with the sliding mode. Secondly, could we 
generalize the design of sliding mo
delay? 

d
ervers for time delay systems (Pearson and Fiagbedzi, 1989 [45]; Fattouh, 

9 [36]; Wang and Unbehauen, 2000 [52]; Wang, Lam and Burnham, 
2002 [53]; Jafarov, 1999 [40], 2002 [39], etc

d such that on the defined switching surface always is generated asymptotically 
stable sliding mode. Moreover, observer 
asymptotically stable. Then, advanced design techniques are generalized to the 
modification of sliding mode observers for uncertain MIMO systems with time-delay. Robust 
sliding and global asymptotic stability conditions are derived by using Lyapun
functional method. By these conditions observer parameters are d

s. Design example for AV-8A Harrier VTOL aircraft 

 
5.3.1. Introduction 
The purpose of a state observer is to estimate the unavailable state variables of a plant. The idea 
of using a dynamical lin

when the plant dynamics are known reasona

odel perturbations and external disturbances, the estimation of 

structure control are very well known (Utkin, 1992 
2]; Oh and Khalil, 1995 [44]; Edwards and Spurgeon, 1998 [33]
00 [64]; Edwards, Spurgeon and Hebden, 2003 [65]; Yan, Edwards

Garofalo and Glielmo, 1996 [37]; Jafarov, 2000 [55]; C
etc.). 

ing mode observer design problem for uncertain dynamical systems 
rbances has been a topic of considerable interest of several authors. 

designed by Utkin (1981) [48], Walcott and Zak (1988) [50], Walc
[51 54], Edwards and Spurgeon (1994

lotine, Hedrick and Misawa (1987) [17], Watanabe, Fukuda and Tza

method used to formulate sliding m de observers design which guarantees that 
the state estimation errors converge to ze
uncertainties. In other words, this type of discontinuous observers is designed such that 
observer state error dynamics is globally asymptotically stable or globally uniformly ultimately 
bounded because the stabilit  is stricted by some small ball. However, first question 
arises as to whether these types of observers provide an asymptoticall

de observers for uncertain multivariable systems with time-

It shoul  be noted that in contrast to above mentioned observers, there is a few linear and 
variable structure obs
Sename and Dion, 199

.) by using Lyapunov-Krasovskii functionals [41]. 
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Razumikhin-Hale typ  theorem (Razumikin,  and Verduyn-Lunel, 199e  1956 [46]; Hale 3) is used 
trol of 
using 

L presented by Gu, Kharitonov and Chen, 2003 [67]; 
cu, 2002 [72 3]; Fridman and Shaked, 2003 [66]; Jafarov, 2003 [39]; 
n and Wang

 this paper sliding mode observers design techniques for MIMO and as a simple example for 
 advanced as a first purpose. Design parameters are selected 

 for uncertain MIMO systems with time-delay. Robust sliding and 
global asymptotic st
method. By these c

 
 

ons and some matrix inequalities. Design example for AV-8A Harrier VTOL 
ircraft with simulation results using MATLAB show the effectiveness of considered design 

aches. 
anced design techniques of sliding mode observers for 

O d SISO systems are presented in section 2. Extension to a new modification of sliding 
 

5. The following no tion will 

for example by (Mahmoud and Muthairi, 1994 [43]; Shyu and Yan, 1993 [47]) for con
time-delay systems. Recent advances in analysis and control of time-delay systems 

yapunov-Krasovskii functionals are 
Nicules ]; Richard, 2003 [7
Jing, Ta , 2004 [71]; etc.  
In
SISO systems are systematically
such that on the defined switching surface always is generated asymptotically stable sliding 
mode. Moreover, observer state error dynamics is globally robustly asymptotically stable. 
Then, advanced design techniques are generalized to the design of a new modification of 
sliding mode observers

ability conditions are derived by using Lyapunov-Krasovskii V-functional 
onditions observer parameters are designed such that an asymptotically 

stable sliding mode always is generated in observer and observer state error dynamics is
robustly globally asymptotically stable. The main results are formulated in terms of Lyapunov
matrix equati
a
appro
The paper is organized as follows: Adv
MIM an
mode observer for uncertain MIMO systems with time-delay is presented in section 3. Design
example for VTOL aircraft is given in section 4. Finally, the conclusion is included in section 

( ) ( ) ( )Tx t x t x t=  and  ta be used throughout the paper: 

max ( )TA A Aλ=  will denote the Euclidean norm for vectors and the spectral norm for 

matrices respectively; AT, )(min Aλ , )(Amaxλ  are the transpose, minimum and maximum 
eigenvalues of a m

efinite matrices 
atrix A, respectively; Rayleigh’s min/max matrix inequality for positive 

0>d −Q  is:  P
2

mi
2

max
2

max
2

min )()( )())(()()()()( txPtxQPtxtxQtxP T λλλ −≤−≤− n )()( txQλ  

sign techniques for uncertain MIMO and SISO systems  
 
Before embarking to main results let us consider the contributing factors to the sliding mode 

a ign 
e ted 

symptotically stable sliding mode. Moreover, observer state error dynamics is globally 

he observer design problem involves estimating the states of the uncertain dynamical system 

)

 
5.3.2 Sliding mode observers de

observer design techniques. In this section sliding mode observers design techniques for MIMO 
and as a simple ex mple for SISO systems is systematically advanced as a first purpose. Des
parameters are s lected such that on the defined switching surface always is genera
a
robustly asymptotically stable. 
T
described by the following differential equations: 

 

0 0 0( ) ( ) ( ) ( , ( )) ( ) (x t A A x t f t x t B B u= +∆ + + +∆� t  

      

                                                                                                          (5.3.1) 

( ) ( )y t Cx t=
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w  output 
atrices 
ed to be of 

odel parameters of the 
system;  and  are unknown matrices involving all possi stem parameter variations. 

, at the unknown function 

here the unknown state nRtx ∈)( , the control input  mRtu ∈)( , the measurable
pRty ∈)(  with npm <=  and the model uncertainties Rf ∈0  are vectors, and the m

A∆ , B , B∆  and B  are compatibly dimensioned. The matrices B  and C  are assum

n
0A , 

0

full rank. The known matrices 0A  and B  represent the nominal linear m
 0A∆ B∆ ble sy

we require th 0 ( , ( ))f t x tFor solving this problem  to be continuous in 
( )x t  and the following convent  There exist ional matching conditions are assumed to be valid.

 such that 

) ( )

(

0h , w  and 0dfunctions 

 

 

0 0

0 0

( , ( )) ( , ( ))

(

( ) , ( )).

f t x t Bh t x t

Bw t

t t

⎫
⎪
⎪⎪

=

∆ =        (5.3.2) 

L

t x t h t x tξ
∆
=

Bu t ⎬
⎪

                                                                                               

A x Bd x t
⎪
⎪⎭∆ =

et  

0 0 0( , ( )) ( , ( )) ( , ( )) ( )d t x t w t+ + .                                                                               (5.3.3) 

It is assumed that 

 0 0( , ( )) , ( ))(f t x t t x t                                                                      Bξ=                                    (5.3.4) 

where the function ξ0  is unknown but bounded, so that 
 

max0 0 0 0 0( , ( ))t x tξ ( ) ( ) ( )Ty t C C x tρ β ρ β λ≤ + ≤ +                                                         (5.3.5) 

 
where 0ρ  and 0β  are known constant positive scalars. 

ote that, second condition of (2) together with condition (5) limits the class of available 
ards and Spurgeon, 2000 [64]). 

( ) ( , ( ))

( ) ( )

N
control laws. However, this is a common limitation (Edw
Thus, system (1) can be simplified to: 
 

0( ) ( )x t A x
            

0t Bu t B t x t

y t Cx t

ξ ⎫
⎪
⎬
⎪
⎭

+ +

=
                                                                           (5.3.6)  

 
It is also assumed 
gain matrix 

=�

that the pair ( 0A , C ) is detectable and that there exists a constant feedback 
n pG R ×∈  such that GCA= 0A −0  has some desirable stable eigenvalues and there 

exists a Lyapunov pair ( P , 0Q ) for 0A ch that the conventional structural constraint 
(Edwards and Spurgeon, 1998 [33]): 

 su

TFC B P=                                                                                                                             (5.3.7)  

is satisfied for some non-singular design matrix mmRF ×∈ .  
The problem to be considered is that of reconstructing the state variables using only measured 
output information in the framework of modern sliding mode control theory. 
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The observer motion is governed by the following differential equation: 

0ˆ ˆ ˆ( ) ( ) ( ) ( )( )

ˆ ˆ( ) ( )

x t A x=�

                                       (5.3.8)  

w
 mode observers with 

t Bu t G y t Cx t Bv⎡ ⎤⎣ ⎦+ + − −

y t Cx t=
                                  

 
here v  is the discontinuous vector term to be formed. 

It should be noted that there is various canonical form design of sliding
different gain matrices: 

• Walcott and Zak observer (1988) [51]: 
1 ( )ˆ( , , ) ( , )

TP C Ce tx y t uρ ρ
−

= −                                                     
( )Ce t

ν                                        (5.3.9) 

• Walcott, Corless and Zak observer (1987) [50]: 
1 ( )ˆ( , , ( )

( )

TP C Ce tt x y t
Ce t

ν ρ
−

= −                                                                  )                              (5.3.10) 

• Edwards and Spurgeon modification (1994) [35]: 
1 ( )

( )FCe t
ν ρ= −                                                                                           (5.3.11  

T TP C F FCe t−

           )

(1996,1998) [34], [33]:   • Edwards and Spurgeon modification 

( )( , , )
( )

FCe tt y u
FCe t

ν ρ= −                                                                                                        (5.3.12) 

where ˆ( ) ( ) ( )e t x t x t= − is the observer state error; ρ , P  and F  are design parameters. In actual 
ct, mentioned observers are all equivalent. 

D ypes of observers were determined by using Lyapunov V-
fa

esign parameters of these t
functional method such that 0)( →te  as ∞→t  or observer motion is uniformly ultimately 
bounded.  
H e weer  consider another type of observer with modified gain matrix: 

1
0

( )( ) ( )
( )

T
0

s tv k y t B PB
s t

−⎡ ⎤⎣ ⎦δ= −                                                                       (5.3.13) +               

where, 0δ  and 0k  are design constants to be selected; ( )s t  is a switching function, which can 

                             (5.3.14) 

w e F i

be defined as follows:  

[ ] )()()(ˆ)()()( tPeBtFCetytyFtFrts T≡=−==                                         

her s a design ( mm× )-matrix of full rank, ˆ( ) ( ) ( )r t y t y t= −  is the observer residual. 

From equations (6) and (8) the observer state error dynamics can be obtained as follows: 

1
0 0( ) ( )e t A e t δ ξ⎡ ⎤⎣= − +� 0 0

( )( ) ( ) ( , ( ))
( )

T s tk y t B B PB B t x t
s t

−
⎦ +                                              (5.3.15) 
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where GCAA −= 00  is a stable matrix. 

 
5.3.2.1 Sliding n

 observer design approaches we want first to organize 
on the switching surface 14) a sliding mode. For this purpose let us select a Lyapunov 
V-function candidate 

co ditions 

Now, in different from above mentioned
( ) 0s t =  (

as:  

( )( ) 1 ( ) ( )TV s t s t s t=                                                         
2

                                                   (5.3.16) 

g observer state error dynamics (15) can be calculated as: 
 
Then, the time derivative of (16) alon

0

1

0 0 0( ) ( ) ( , ( ))
( )

T Tk y t s t B PB t e t
s t

δ ξ⎡ ⎤⎣ ⎦− + +

0 0 0 0 0
( ) ( ) ( ) ( )1 ( )(  ) ( ) ( ) ( ) ( , ( ))

2 ( ) ( )

T T
T T T Ts t s t s t s te t P A A P e t k y t s t B PB t x t

s t s t
δ ξ= + − − +

0
1 ( ) ( )Te t Q e t≤−

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

T T T T T

T T T

V s s t s t s t B Pe t e t PBB PA e t

s t B PB B PB s t−

= = =� � �

max max0 0( ) ( ) ( ) ( ) ( ) ( ) ( )T T

(5.3.17) 

0 0( )s tδ− k y t s t B PB s t B PB y t s tρ λ β λ− + +

 

       max max0 0 0 0 0
1 ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

T T Te t Q e t B PB s t k B PB y t s tδ ρ λ β λ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= − − − − −  

           
where PPBBP T=  is a positive semi-definite matrix satisfying the following Lyapunov matrix 
equation: 

0 0 0 TP A A P Q+ = − ; 0Q ≥ ; 0(min =Qλ        
(5.3.18) 

where 

)                       

0Q  is in general a positive semi-definite matrix.  

Thus, if we select the design parameters 0δ  and 0k  as 

max0 0 ( )TB PBδ ρ λ≥                                                                                                              (5.3.19) 
 

0 0
Tk β= max ( )B PBλ                                                                                                              (5.3.20) 

 
then (17) can be evaluated as: 

max0 0 02 ⎣ ⎦
1 ( ) ( ) ( ) ( )T Tt Q e t B PB sδ ρ λ⎡ ⎤− −V e≤ −� t max0 0⎣ ⎦( ) ( ) 0TB PB s tδ ρ λ⎡ ⎤≤ − − <          (5.3.21) 

since 0)(min =Qλ . The e crefore, w onclude that if the sliding conditions (18), (19) and (20) are 
satisfied, then on 0)( =ts  (14) always is generated a robustly asymptotically stable sliding 
mode. 
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5 . Global stability conditions .3 2.2 

step is to derive the global robust asymptotical stability conditions with respect to the 
bserver state error coordinates. 

Choose Lyapunov V-function candidate as  

 
The next 
o

1( ) ( ) ( )
2

TV e e t Pe t=  

where 

                                                  (5.3.22) 
 

ynamics (15) is given by 

0TP P= >                                                                         

The time derivative of (22) along the observer state error d

0 0
1( ( )) ( ) ( ) ( )( ) ( ) ( )
2

T T T TV e t e t Pe t e t A P PA e t e t P= = + +� � Bv 0 0
1( ) ( , ( )) ( ) ( )
2

T Te t PB t x t e t Q e tξ+ = −  

                                    
1

0 0 0
( ) ( ) ( )( ) ( ) ( , ( ))

( )

T T
Te t PB B PB s tk y t e t PB t x t

s t
δ ξ

−
⎡ ⎤⎣ ⎦− + +             (5.3.23) 

            [ ] )()()(
)(

)())(()()()(
2
1

00

1

000 tstyts
ts

tsPBBtstykteQte
TT

T βρδ +++−−≤
−

 

1 1
0 0 0 0 0min min

1 ( ) ( ) ( ) ( ) ( ) ( ) ( )            
2

T T Te t Q e t k B PB y t s t B PB s tλ β δ λ ρ− −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦≤ − − − − −  

where 

0 0
T

A P P A+ 0Q= − ;     0 0 0TQ Q= >                                                                                    (5.3.24) 

Select 0k  and 0δ  such that 

1
0 0min ( )Tk B PBλ β− =                                                                                                            (5.3.25) 

1( )TB PB0 0minδ λ ρ− ≥                                                                                                            (5.3.26) 

T
 

hen (23) reduces to 

2
0n( ( )) ( ) ( ) 0V e t Q tλ <�     for    ( ) 0e tmi

1
2

e≤ − ≠                                                                 (5.3.27) 

erver 
tate error dynamics is robustly globally asymptotically stable, i.e.  asymptotically 

converges to zero as 

Note that, since 

Therefore, we conclude that if stability conditions (24), (25), (26) are satisfied then obs
s )(te

∞→t . 

max 1
min

1( )
( )

T
TB PB

B PB
λ

λ −=  where PBBT  is a positive definite matrix then the 

sliding and stability conditions coincide. 
 

5.3.2.3. Simplified design example for SISO systems 
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In this subsection finally, let us consider a reduced design of continuous sliding mode observer 
for the nominal time-invariant SISO systems when 0A∆ = , 0B∆ =  and 0 0f =  as a simple 
analytical design example.  

Then (1) reduces to:
 

( ) ( ) ( )

 

x t Ax t bu t= +�
                                                                                                             (5.3.28) 

he scalar control input. The measured 

( ) ( )Ty t c x t=
 
where nRtx ∈)(  is the immeasurable state vector, )(tu  is t
output )(ty  is scalar.  A, b and c have the appropriate dimensions. 

For this case observer configuration can be selected as follows: 

ˆ ˆ( ) ( ) ( ) ( )x t Ax t bu t b tν= + −�  

ˆ ˆ) Ty(t c x(t)=                                                                                                                         (5.3.29) 

s med that the pair (A, c) is completely observable and structural constraint holds: It is a su
T Tfc   b P=                                                                                                                            (5.3.30) 

where f is a scalar, P is a

Then, the observer-sliding surface can be defined as: 

tPetfrt ≡==                                                                                               (5.3.31) 

Subtracting (29) fro

 positive definite design (n×n)-matrix.  

)(be(t)fc  )()( TTs

m (28) we have the following observer error system: 

e(t)  Ae(t)  b (t)ν= +�                                                                                                                (5.3.32)  

ow, let us select the observer control term according to equivalent control method: 

PT                                                 (5.3.33) 

T T
eqt t b Pb b PAe t gsν ν −= = − ≡ −

where  is a positive definite scalar because ; g is a gain scalar. 

N

0)()()()( =+== tPbbtPAetebts TT ν��                               b

Hence 
1( ) ( ) ( ) ( ) ( )t                                                                         (5.3.34) 

1)( −PbbT 0)( >PbbT

Substituting (34) into (32) we have observer error system as: 

)()( teAte� =                                                                                                                           (5.3.35) 

where [ ]AfcPbbbAA TT 1)( −−= . Our goal is to design the parameters f and P such that A  
always is stable or observer error dynamics (35) is globally asymptotically stable. 

Now, let us derive the sliding conditions. 

Choose a Lyapunov V-function candidate as follows:  

21
2

V(s(t)) s (t)=                                                                                                                     (5.3.36) 

Then, the time derivative of (36) along (35) is given by: 
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1 0
22

TT T T T  e (t)Qe(t) e (t)Pbb PAe(t) e (t)(P A  A P)e(t)1

T T(s(t)) s(t)s(t) s(t)b Pe(t) s(t)b PAe(t)V

= −= = + ≤

= = =� � �
                                 (5.3.37) 

here TP Pbb P=  w is a positive semi-definite matrix satisfying the following Lyapunov matrix 
equation: 

QPAAP T −=+ , 0≥Q                                                                                                        (5.3.38) 

where Q  s a positive semi-definii te matrix. 

Thus if (38) is satisfied then on 0)( =ts  the sliding manifold (31) always is generated an 
tically stable sliding mode. 

emark 1: A s ler alternative to (30), (38), sliding conditions which provides a positive-
apunov matrix equation, can be formulated as: 

asympto

R imp
d  solefinite ution to Ly

T TrfcA = ,                                                                                                               (5.3.39) 0r <fc

where r is one of the left eigenvalues of the stable matrix A  corresponding to the eigenvector 

Then (37) becomes 

Tfc . 

0)( )()()( )()()()())(( 2 <==≡== trstes(t)rfcteAfctsteAPbtstststsV TTT�            (5.3.40) 

nd the global asymptotical stability conditions with respect to the observer error state 

�

A
coordinates: 

QPAAP T −=+ ; 0>= TQQ                              
(5.3.41) 

fo m Lyapunov function easily llows fro

1( ( )) ( ) ( )
2

TV e t e t Pe t=                                                                                                          (5.3.42) 

where P is a positive definite solution of equation (41). 

Hence 

( ( ))V e t =� 2
min

1 1( ) ( ) (Te t Qe t Qλ− ≤ − ) ( ) 0e t <                                                                (5.3.43) 
2 2

Therefore, an asymptotically stable sliding surface is determined through f  and P . 

 
5.3.3    Design modification of sliding mode observers for MIMO -delay systems 
The purpose of this section is to e

 time
xtend the design techniques advanced in section 2 for the 

esign modification of sliding mode observers for uncertain MIMO systems with time-delay. 
D by using the Lyapunov-

rasovskii V-functional method.  
Consider the uncertain time-delay MIMO system described by the following differential 
equations with time-dela

d
irect extension is difficult as well. We overcome these difficulties 

K

y: 

( ) ( )0 0 1 1( ) ( ) ( )x t A A x t A A x t τ= +∆ + +∆ −�  
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          ( )B B u t f( ) 0 1( , ( )) ( , ( ))t x t f t x t τ+ +∆ + + − ,    0t >  

( ) ( ), 0,

( ) ( )

x t t t

y t Cx t

φ τ= − ≤ ≤

=
                                                                                                        (5.3.44)                    

here the immeasurable state vector   the control  input , the measurable 
re vectors, and 

ith

n mRtx ∈)( , Rtu ∈)(w
output pRty ∈)(  and the unknown disturbances nRf ∈0 , nRf ∈1  a nnRA ×∈0 , 

nnR ×∈1 , mnRB ×∈  and npRC ×∈  are known constantA  matrices w  npm <= . The matrices 
0A∆ , 1A∆  and nctions representing time-varying parameter 

uncertainties, 
B∆  are real valued unknown fu

τ  is a known positive time-delay and )(tφ  is a continuous vector-value initial 
function with (t)φφ sup=  on 0tτ− ≤ ≤  and 0(0) (0)x xφ= = . 

We want to design a sliding mode observer modification for uncertain MIMO systems with 
time-delay such that in which can always be generated a robustly asymptotically stable sliding 

e. 
mptions (2), (4), (7) we now make the following assumptions: 

Assumption 1: The nominal system of (44) is detectable (Pearson and Fiagbedzi, 1989) 

                                                                                                 (5.3.45)  

 s

ssumption 2: There exist the functions h1 and d1 such    that    the   following    
conventional    matching conditions are satisfied: 
 

1

1 1

( , ( ))

( ) ( , ( ))

Bh t x t

A x t Bd t x t

m
In addition to assu

od

[45]: 

 0 1
ssI A A erank n

C

τ−⎡ ⎤
⎢ ⎥
⎣ ⎦

− − =

for all complex  with Re( ) 0s ≥ . 

A

1( , ( ))f t x t τ τ

τ τ

−

∆ − = −
                                                                                         (5.3.46)  

− =
 

 
et  L

 
1 1( , ( )) ( , ( )) ( , ( ))t x t h t x t d t x t1ξ τ τ τ− = − + −  

 
It is assumed that  

)τ−                                                                                          (5.3.47) (,())(,( 11 ξτ =− txtBtxtf

where the function 1ξ  is unknown but bounded, so that   

)()()()(,( max11111 τλβρτβρτξ −+≤−+≤− txCCtytxt T                     (5.3.48) 

hw ere 1ρ and 1  are the known β positive constant scalars.  

hen, ti e-dela stem (44) can be represented as T m y sy
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0 1 0( ) ( ) ( ) ( ) ( , ( )t A x t A x t B u t B t x tτ ξ= + − + + 1) ( , ( )),     0x B t x t t

y t

ξ τ ⎫
⎪
⎪⎪
⎬
⎪
⎪
⎪⎭

+ − >�

(5.3.49) 

 
Now let us construct a new m e-delay observer as: 

1

( ) ( ),    0x t t tφ τ= − ≤ ≤

( ) ( )C x t=

odification of tim

0 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )x t A x t A x t Bu t G y t Cx t Bvτ ⎡ ⎤⎣ ⎦= + − + + − −�     

ˆ ˆ( )  ( )y t C x t=                                                                                                                        (5.3.50)  

The observer design parameters should be determined so that an asymptotically stable sliding 
mode will be generated on the sliding surface ( ) 0s t =  (14) defined for the time-delay system 
(49). The output error  matrix  can be chosen so that the closed-loop matrix feedback gain G

0 0A A GC
∆
= −  is stable and has some desirable eigenvalues.  

The discontinuous vector term  can be selected as follows:  1v

1
1 1 0 1

( )( ) ( ) ( )
( )

T s tv k y t k y t B PB
s t

δ τ −⎡ ⎤⎣ ⎦= −                     (5.3.51) 

where 

+ + −                                           

1δ , 0 1k , k  and P  are observer design parameters to be again selected for (49). 

Then, the time-delay observer state error dynamics can be obtained from (49) and (50) as: 
 

1
0 1 1 0 1

( )( ) ( ) ( ) ( ) ( ) ( )
( )

T s te t A e t A e t k y t k y t B B PB
s t

τ δ τ −⎡ ⎤⎣ ⎦= + − − + + −�

0 1( , ( )) ( , ( )),    0

ˆ( ( ),   0.

B t x t B t x tξ ξ τ+ +

) ( ), ( ) ( )e e

t

e t t tφ τ

− >

− ≤ ≤

                            (5.3.52) 

 

ror system, 2) Relay term with gain parameter 

t t tφ φ φ= = −

As seen from (50), (51) the structure of a new combined time-delay observer consists of three 
parts: 1) Conventional linear Luenberger part with gain matrix G for the stabilization of the 
nominal part of the observer er 1δ  for the 

 3) Variable structure term with feedback gain 
r perturbations. The design parameters 

of combined time-delay observer will be selected by using the classical Lyapunov-Krasovkii V-
functional method.  

5.3.3.1 Sliding conditions 

The following lemma summarizes the sliding conditions. 

Lemma 1: Combined time-delay observer state error dynamics is given by (52). Then, an 
asymptotically stable sliding mode can always be generated on the switching surface 

suppression the external disturbance, and
parameters 0k  and 1k  for the compensation the paramete

 

0)( =ts  
(14) defined for time-delay system (52) if the following conditions are satisfied: 
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0 0
T

Q A P PA R⎡ ⎤
1 0⎢ ⎥⎣ ⎦
= − + + ≥ ,    0TP PBB P= ≥                                                                  (5.3.53) 

 

or    0 00
T

R A P PA⎡ ⎤
⎢ ⎥⎣ ⎦

≤ ≤  − +

 

1 1 0
Q PA

H
⎡ ⎤
⎢ ⎥

−
= ≥                                                           

1
TA P R ⎥⎦

                                           (5.3.54) 

)

⎢⎣−

max1 0 1( ) ( TB PBδ ρ ρ λ> +                                                                                                    (5.3.55) 
 

                                                                                                            (5.3.56) 
 

                                                                                                             (5.3.57) 
 

here

)(max00 PBBk Tλβ=

)(max11 PBBk Tλβ=

 1Q  and H  are any positive semi-definite matrices. w

Proof: Choose a Lyapunov-Krasovskii functional candidate as follows:  

( , ) ( ) ( ) ( ) ( )
t

T TV t s t s t e Re dθ θ θ= + ∫ 0
t τ

θ
−

>                                                                             (5.3.58) 

where 0TR R= ≥  is a positive semi-definite matrix to be selected. 

The time derivative of (58) along (52) can be calculated as follows: 
 

0 1

( )2 ( ) ( )
T 1

1 0 1

( , ) 2 ( ) ( ) ( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )
( )

T T T

T T T T

T T

V t s t s t e t Re t e t Re t

s t B Pe t e t Re t e t Re t

PA e t2 ( ) ( ) 2 ( )T T T Te t PBB PA e t e t PBB

s t Bk y t k y tδ τ⎡ ⎤− + + − PB B PB s t
s t

θ τ τ

τ τ

τ

−

⎣ ⎦

= + − − −

= + − − −

−

� �

�
                                      (5.3.59) 

              

= +

 

0 12 ( ) ( , ( ))t 2 ( ) ( , ( )) ( ) ( ) ( ) ( )T T T T T Ts t B PB t x s t B PB t x t e t Re t e t Re tξ ξ τ τ τ+ + − + − − −   

anced in section 2, we get: 
 

  
Rearranging (59) similar to (17) adv

0 0 1( , ) ( ) ( ) 2 ( ) ( )
TT TV t e t A P PA R e t e t PA e tθ τ⎡ ⎤

⎢ ⎥⎣ ⎦
≤ + + +�  −

 

 248



 

               

1 0 1

max max0 1 0

max1

( ) ( ( ) 2 ( ) ( ) 2 ( ) ( )

2( ) ( ) ( ) 2 ( ) ( ) ( )

2 ( ) ( ) ( )

T

T T

T

e t Re t s t k y t s t k y t s t

B PB s t B PB y t s t

B PB y t s t

τ τ δ τ

ρ ρ λ β λ

β λ τ ⎤⎦

− − − − − − −

+ + +

+ −

                     (5.3.60) 

 

) 2

[ ] )()()(2
)(

)(
)(

)(
max101

1

11 tsPBB
te

te
RPA

APQ
te

te T
T

T

λρρδ
ττ

+−−⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡

−
−

⎥
⎦

⎤
⎢
⎣

⎡
−

−=           

         

               [ ] [ ] )()()(2)()()(2 max11max00 tstyPBBktstyPBBk TT τλβλβ −−−−− 0) 

 
the conditions (53)-(57) l  then (60) can be evaluated as If ho d,

 
( ) ( )

( ( ), ( ))
( )
e t

V e t e t H
e t

τ  
( )

T e t
e tτ τ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣

− ≤ −
−

�
⎦−

  

 
                          max1 0 12 ( ) ( ) ( )TB PB s tδ ρ ρ λ⎡ ⎤⎣ ⎦− − +  
 
                       max1 0 12 ( ) ( ) ( ) 0TB PB s tδ ρ ρ λ⎡ ⎤⎣ ⎦≤ − − + <                                              (5.3.61) 

 

Since min Hλ ⎡ ⎤
⎣ ⎦ 0=     and    

( ) Te t⎡ ⎤ ⎡ ( )e t
t

⎤ 0
( ) ( )

H
e e tτ τ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

− ≤
− −

. 

 
Therefore, we conclude that an asymptotically stable sliding motion always is generated on the 
sliding surface ( ) 0s t =  (14). Although, it should be noted that, as shown by Hong, 2004 [69] if 

0V > and even 0V ≤�  then a state-delayed system is asymptotically stable also. 
 
5.3.3.2 Global stability conditions 

he following theorem summarizes our stability results. T

Theorem 4: Suppose that Assumptions 1, 2 and the conditions of Lemma 1 are met. Then the 
time-delay observer error system (52) is robustly globally asymptotically stable if there exist 
some positive definite matrices P, R and positive constant scalars 1δ , 0k  and 1k  such that the 
following conditions are satisfied: 
 

01 0 0
T

Q A P PA R⎡ ⎤
⎢ ⎥⎣ ⎦

= −

    or its Schur complement    

+ + >                                                                                                 (5.3.62) 

 
1 1

1
0T

Q PA
H

A P R
⎡ ⎤
⎢ ⎥
⎣ ⎦

−
= >

−
1

1 1 1 0TH Q PA R A P−= − >              (5.3.63) 

 
1

1 0min ( )TB PBδ λ ρ− ≥ + ρ                                                                                                     (5.3.64) 
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1

0 0min ( )Tk B PBλ β− =                                                                                                            (5.3.65) 
 

1
1 1min ( )Tk B PBλ β− =                                                                                                             (5.3.66)  

roof: Choose a Lyapunov-Krasovskii V-functional candidate as: 

t e t Pe t e d
τ

θ θ θ θ
−

= + >∫                                                                         (5.3.67) 

here, P and  are any positive definite symmetric matrices to be selected. 

he time derivative of (67) along the trajectory of observer error system (52) can be calculated 
nd rearranged as follows: 

 
P

( , ) ( ) ( ) ( )Re( ) 0
t

T T

t

V

0TR R= >w

T
a
 

0 0 1

( ( ), ( )) ( ) ( ) ( ) ( ) ( )Re( ) ( )Re( )

( ) ( ) 2 ( ) ( ) ( )Re( )

T T T T

TT T T

V e t e t e t Pe t e t Pe t e t t e t t

e t A P PA R e t e t PA e t e t t

τ τ τ

τ τ τ⎡ ⎤
⎢ ⎥⎣ ⎦

− = + + − − −

= + + + − − −

� � �
 

−
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                       since     . 

 
Therefore, we conclude that the time-delay observer error system (52) is robustly globally 
asymptotically stable. 

Note that, the sliding and stability conditions are coordinated very well. 
 

  
( ) ( )

0
( ) ( )

Te t e t
H

e t e tτ τ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= − <
− −

 0H >
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5.3.4 Design example 

To illustrate the design modification of a combined time-delay observer, let us consider the 
observer design example for fault-tolerant control of AV-8A Harrier VTOL aircraft in hovering 
flight. The nominal parameters of this aircraft are taken from (Calise and Kramer, 1984) [29]: 
 

0( ) ( ) ( )

( ) ( )

x t A x t Bu t

y t Cx t

= +

=

�
   

       
where, the state vector is represented by [ ]pr        υφψ=Tx ,  

 is Euler yaw attitude perturbation (rad), ψ

φ  is Euler roll attitude perturbation (rad), 

υ  is the velocity perturba
 r   is the body-axis yaw rate (rad/s), 
 p is the body-axis roll rate (rad/s), 
the control inputs are 

tion along body y axis(m/s), 

[ ]RUDLAT δδ   = : Tu

LATδ  is the lateral stick perturbation (cm), 

RUDδ  is the rudder pedal perturbation (cm), 

and the system, control and output matrices are given by: 
 

 

⎢ ⎥⎣ ⎦

= ,    =

 
For the simulation, the lows: 

∆ =

0

0         0          0          1         0
0         0          0          0         1
0       9.8   -0.042       0         0
0         0    -0.007  -0.06  -0.075
0         0    -0.039    0.11  -0.260

A =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

     0             0
     0             0
     0         -0.27
0.0055       0.085
0.177       -0.033

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

1  1  0  1  1
1  1  1  0  1

C ⎡ ⎤
⎢ ⎥
⎣ ⎦

 

parameter perturbations are selected as fol

0 00.2sin( )A t A , 1 10.2cos( )A t A∆ = , .3A A1 00=  

Aircraft model really has some small time-delay because of pilot’s (or commands) effective 
time delay (Blakelock, 1991 [30]) and transports delays of aircraft mechanical and hydraulic 
servomechanisms. For the simulation purpose, we select 0.24sτ = . 

Simplified design procedures for time delay observer (50) and (51) with given parameters can 
be fulfilled by the following steps: 

• Find the eigenvalues of matrix 0A  
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  is unstable matrix. 

• Using pole placement Matlab command find gain matrix G for  and C such that 

0Eig(A  )   0;  0.2715  0.6239i; -0.8253 ;-0.0798= ±  

0A

0A 0A  has 
some desirable left eigenvalues: 
 Desired poles: λ=[-2.4 -3 -3+2i -3-2i -3.4] 

 C=[1 1 0 1 1;1 1 1 0 1] ;    G = PLACE(A0
 T,C T,λ)T

⎥⎦

• Calculate  

   -1.5081   -3.1242
   -0.9076    2.9437
    2.4910    5.6844
    8.2576   -3.1940
    0.0564    3.0359

G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢⎣

=  

0 0 *
    4.6324    4.6324    3.1242    2.5081    4.6324
   -2.0361   -2.0361   -2.9437    0.9076   -1.0361

     =    -8.1754    1.6246   -5.7264   -2.4910   -8.1754
   -5.0635   -5.0635    3.1870   -8

A A G C= −

.3176   -5.1385
   -3.0923   -3.0923   -3.0749    0.0536   -3.3523

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

eig( 0A )= -3.0000 + 2.0000i, -3.0000 - 2.0000i, 

                -2.4000,  -3.4000,  -3.0000. 

which is a stable matrix. 

• Solve Lyapunov equation (62) for P: 

Q=[1 0 0 0 0;0 1 0 0 0 ;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1]; 

where  ; 51Q Q R I= + = Q),ALYAP( P 0=  

 

0.6566
   -0.0668    0.2177   -0.0055   -0.1363 22
   -1.1028   -0.0055
   -1.0030   -0.1363    1.2771    1.3908  -0.

P =
2392

   -0.6566    0.0822   -0.2407   -0.2392    0.8960

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

eig(P) = 0.0712, 0.0906, 0.2763, 1.5689, 3.8483. 
which is a positive definite matrix. 

• 

    1.9024   -0.0668   -1.1028   -1.0030   -
   0.08

    1.4484    1.2771    -0.2407  
   

TP PBB P=  
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    0.0697   -0.0047   -0.0600   -0.0470   -0.0156
   -0.0047    0.0004    0.0030    0.0023    0.0020
   -0.0600    0.0030    0.0767    0.0613   -0.0097
   -0.0470    0.0023    0.0613    0.0490   -0.008

=
8

   -0.0156    0.0020   -0.0097   -0.0088    0.0250

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

             

 eig( )    0.1790,   0.0416,   0.0000 + 0.0000i,
                  0.0000 - 0.0000i,   0.0000 

P =  

which is  a positive semi-definite matrix. 
• The conditions (53) and (62) are independent. Equation (62) has a positive definite 

solution P. Then (53) always holds because 0 00
T

R A P PA⎡ ⎤
⎢ ⎥⎣ ⎦

≤ ≤ − + . 

• Calculate   
⎣ ⎦

which is a positive definite matrix. 

• Select a matrix F such that condition (7) holds: 

;  

• Select a matrix  such that a matching condition for external disturbance holds: 

     0             0
 0     0     0       0.2    0

     0         -0.27
 0     0     0.1    0       0.2

0.0055       0.085
0.177       -0.033

H

⎡
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

= =  

            

    0.0276    0.0015
    0.0015    0.055
⎡ ⎤
⎢ ⎥=  

0
TB PB

0.0551 ;    0.0276,    )( =PBBeig T

   -0.1217    0.0138   -0.0356   -0.0347    0.1573
    0.2342   -0.0128   -0.2746   -0.2187    0.0151

TB P ⎡ ⎤
⎢ ⎥
⎣ ⎦

=  

1    36.2214   -0.9658
( )

   -0.9658   18.1922
TB PB − ⎡ ⎤

⎢ ⎥
⎣ ⎦

=  

18.1406   36.2730,   ))(( 1 =−PBBeig T  

   -0.0347   -0.0356
   -0.2187   -0.2746

F ⎡ ⎤
⎢ ⎥
⎣ ⎦

= 1 -157.5535   20.4257
 125.4805  -19.9093

F − ⎡ ⎤
⎢ ⎥
⎣ ⎦

=  

 0H

0

     0             0 ⎤

D B

 

         0         0         0         0         0
         0         0         0         0         0
         0         0   -0.0270         0   -0.0540
         0         0    0.0085    0.0011    0.017

=
0

         0         0   -0.0033    0.0354   -0.0066

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   

0.063910 ==+ Dρρ . 
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0 0max 1.96A
σ

β = ∆ = ,  1 1max 0.588A
σ

β = ∆ =   •

Find from (64), (65), (66) :  •

1δ ≥  0.0035 ,    k0 1

l the parameters of the time-delay observer are design

=  0.1080,    0.0324 

Thus, al ed. 

For
which is
take s

k =

 testing the combined time-delay observer (50), (51) and (14) is simulated. Block diagram of 
 shown in Fig. 5.3.1. For the convenience of simulation the time-delay system model is 
: n a

0( ) ( ) ( ) ( ) ( ) ( )0 1 1( )x t A A x t A A x t Bu t Df tτ= +∆ + + ∆ − + +                                                (5.3.69) �

whe Dre  is the ( nn× )-matrix, ( )f t  is a norm bounded n-vector disturbance 0)( ftf ≤ . 
Equ
resu
syst
figu
resi l
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ation (69) can easily be transformed to the form of time-delay system (49). Simulation 
lts using MATLAB-SIMULINK are shown in Fig. 5.3.2-5.3.7 (for original closed-loop 
em) and Fig. 5.3.8-5.3.12 (for original unstable open-loop system). As seen from these 
res, the combined time-delay observer estimates the state vector satisfactorily (observer 
dua  is satisfactorily small) which show the effectiveness of our observer design 
roaches. 

5 Conclusion 

his ection we have presented two contributions. One of which is to advance a sliding mode 
erver design techniques for uncertain MIMO and SISO systems, such that on the switching 
ace can always be generated robustly asymptotically stable sliding mode. The main result is 
esign of new modification of sliding mode time-delay observer for uncertain time-delay 
O systems with parameter perturbations and external disturbances by using Lyapunov-

sovskii V-functional method.  Robust stable sliding and global asymptotical stability 
ditions are formulated in terms of Lyapunov matrix equations and some matrix inequalities. 
ign example for AV-8A Harrier VTOL aircraft with simulation results show the 

eness of our observer design approaches. 
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Fig. 5.3.1 Block diagram of multivariable sliding mode observer for uncertain 

                   time-delay system with parameter perturbations and external disturbances             
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Figure 5.3.2 Original state responses 
 

 
 

Figure 5.3.3 Estimated state responses 
 

 
 

Figure 5.3.4 Original output responses 
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Figure 5.3.5 Estimated output responses 
 

 
 

Figure 5.3.6 Switching functions 
 

 
 

Figure 5.3.7 Observer residual 
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Figure 5.3.8 Unstable open-loop state responses 
 

 
 

Figure 5.3.9 Estimated state responses 
 

 
 

Figure 5.3.10 Open-loop output responses 
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Figure 5.3.11 Estimated output responses 
 

 
 

Figure 5.3.12 Open-loop switching functions 
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CHAPTER 6 
 
 

Stability Analysis and Control of Time-Delay Systems 

T ists of our sections. Section 1 cons ers de lity and α-
st e-d  sy -dependent 

w design methodology is given. 
Section 6.3 develops delay-dependent stabilization of single input-delayed systems by 
continuous sliding mode cont ho logy i given. ection
robust stabilization of uncertain input-delayed systems by a new modified reduction method. 

. iterions for linear time-delay systems 

s for linear time–delay 
ystems are considered by using Leibniz-Newton formula and augmented, special augmented 

Lyapunov-Krasovskii functionals. The stability results depend on the size of the delay term and 
are given in terms of quadratic forms of state and some matrix inequa
examples are considered systematically to illustrate and comparison analysis of various stability 
conditions. The upper bound of delay term is computed by solving of quasi-convex 
optimization problem. Stabilization by memory less control is considered as fifth example. 

 
nt 

stability rions have been considered, for example in [4]-[23]. 
In [4] the delay for the stability of linear uncertain time-delay 

ikhin function approach. A time-delay 
term is presented via Leibniz-Newton formula by further substituting into primary system and 
later is evaluated by employing Razumikhin-Hale type theorem However, it is
the system parameters, that is, it is  checkable criterion. Furtherm
is somewhat conservative, especially in situations where delays are small. 

ity criterion for uncertain 
time-delay systems by using standard Lyapunov function method. The time-delay term is 
v luated by employing Razumikhin-Hale type theorem. The stability results are obtained in 

s of matrix norm. In [6] Niculescu has proposed new H∞ memoryless control whit α-
for time-delay systems using Lyapunov-Krasovskii functional method 

combined with LMI’s techniques. Note that, α-uniformly asymptotic stability implies uniformly 
symptotic stability. However, if α=0, α-stability conditions becomes delay-independent as in 

robust exponential delay-independent stability conditions have been derived for 
ng delays by using Leibniz-Newton formula and matrix 

measure method. Delay-dependent robust stabilization of uncertain systems with time-varying 
multiple state delays has been considered in [8] by using Lyapunov-Razumikhin function 

 
 

his chapter cons  f 6. id lay-dependent stabi
ability criterions for linear tim elay stems. Section 6.2 covers delay

stabilization of input-delayed systems by linear control. A ne

rol. A new design met do s  S  6.4 considers 

An easy way is proposed. 
 
6 1 Delay-dependent stability and α-stability cr

In this section, some improved delay-dependent stability condition
s

lities. Four simple 

 
6.1.1 Introduction 

It is well known that many delay-independent stability criteria exist for various time-delay 
systems based on Lyapunov-Krasovskii functional method [1]-[3], Razumikhin-Hale type 
theorem and matrix measures norms. However, recently, there are few delay-dependent results
reported for linear delay systems. The brief review and analysis of various delay-depende

 crite
-dependent sufficient condition 

systems has been derived by using Lyapunov-Razum

.  not related to 
 not analytically ore, this result 

Shyu and Yan have proposed [5] new delay-dependent robust α-stabil

e
term

a

stability constrained 

a
[5]. 
In [7] the 
uncertain systems with time-varyi
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method. As in [4], also in [8] the time-delay term is presented by using  
formula with further substituting into the primary system and later is ev
Razumikhin-Hale type theorem; as a result the time-delay term appears. Finally, the stability 
criterion is obtained in terms of several LMI’s, leading to less conservative results depending on 
the size of delay  The useful idea of Su and Huang dealing with the delay terms [4], is 
successfully used in [9] for robust decentralized stabilization of larg
with state delays. Lyapunov-Krasovskii functional method combined with LMI’s techniques is 
adopted. The stability results are depended on the size of the system delays and so they are less 

vative than the Riccati equation approach results. In [10], discrete-delay-dependent 
conditions are derived for the robust sta  after-effect by using 
L -Razu ikhin function combin . The stability results 

11], sufficient mixed dela
tems with multiple st

of LMI’s. For the asymptotic stability analysis various standard and non-standard Lyapunov-

] some new 
elay-dependent stability conditions for linear time delay systems with three main model 

transformations of the original system are obtained by using Lyapunov-Krasovskii functional 
method combined with Riccati matrix equations. Recently a new fourth descripto
transformation was introduced for delay-dependent stability of neutral system in [13]
previous transformations, the descriptor model leads to an equivalent system. A new delay-

ependent stability conditions for a system with time-varying delays in terms of LMI’s is 

s for systems with uncertain delays. Lyapunov-Krasovskii functional 

 f called non-standard functional including quadratic 
rms in terms of time-derivatives of state vectors for the h integration horizon [-h,0]. In this 

case also a delay term is presented by using Leibniz-Newton formula. An example showed that 
the proposed criterion performs much well than several existing criteria. However, these results 

 parameters and positive matrices that required frequent tuning. 
6] 7] som inear time-delay systems have 
 ned. pendent stability problems are 

nalyzed. Several: simple α-stability and robust stability criterions for linear systems with time-
 are proposed by Niculescu, Verriest, Dugard and Dion usin punov-Krasovskii 
ional method and 2) Lyapunov-Razumikhin function approac ed with Riccati-

quation or LMI techniques. 
n 
]. 

For determinat

 Leibniz-Newton
aluated by employing 

.
e-scale uncertain systems 

conser
bility of large-scale systems with

yapunov m ed with Leibniz-Newton formula
are obtained in terms of matrix norm. In [ y-independent / delay-
dependent stability conditions for linear sys ate delays are derived in terms 

Krasovskii functionals combined with some LMI’s are used. This stability result improves 
analytically the previous results, where Razumikhin-Hale techniques including some 
supplementary constraints on the system and Lyapunov matrices are used. In [12
d

r model 
. Unlike 

d
obtained in [14]. Park proposed [15] a new stability criterion based on improved upper bound 
and LMI’s technique
introduced here involves three particular terms: standard Lyapunov function, standard 
Lyapunov-Krasovskii unctional and the so–
fo

have included many
In [1 , [1 e recent stability and robust stability results for l
been outli Two specific delay-independent and delay-de
a
delay g: 1) Lya
funct h combin
e
Determination of augmented quadratic Lyapunov functionals depending on unknow
continuously differentiable matrix functions for linear time-delay systems is considered in [18

ion of ))(( θxV  some sufficient conditions in terms of ordinary and partial 
feren uations are obtained. Note that, in [18] any sufficient conditions especially in 
ms of linear matrix inequalities for the stability of time-delay system have not been 

co side d. Rep  appro  but as pointed in [18], is very difficult because 
 ordinary and partial differential equations. A general way for constructing Lyapunov-

onstant quadratic matrices is developed in [1]-[3] etc. 

introducing augmented and special augmented Lyapunov-Krasovskii functionals combined with 
Leibniz-Newton formula and s techniques. 
 
 

dif tial eq
ter

n re in ach is very interesting,
of solving
Krasovskii functionals with c
In this paper, some new improved delay-dependent stability and α-stability conditions for linear 
time-delay systems are derived similar to the stability criteria [1]-[3], [12], [16]-[17], [20] by 

 some matrix inequalitie
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6.1.2 System transformation and preliminaries 

Consider the fo lol wing linear time-delay system 

≤
                 

 is the state vector, A and B are known constant matrices with appropriate 
imensions, h is constant delay, but bounded 0 < h ≤

 
x(t) Ax(t) Bx(t h),               t 0

x(t) (t),                            -h  t  0 φ

= + − >

= ≤

�
                        (6.1.1) 

 
w
d

here x(t)∈Rn

 h , it is assumed that change rate of delay 
 slow, at is h� smooth vector-valued initial function n –h

 is to derive some delay-dependent stability conditions for (6.1.
nown. If we consider a case where h is unknown then we assume that h is bounded. In this 

tability problem can be formulated as: find the upper bound 

is  th 0)( ≈t , φ(t) is  i  ≤ t ≤ 0. 
Our aim 1) when delay h is 

 

k
hcase s on the delay such that the 

asymptotic stability of time-delay system (1) is preserved for any positive delay smaller than 
the upper 

6.1.2.1 -stability conditions 

First let us consider a simple α-stability criterion [6], [ ng standard Lyapunov-
Krasovskii functional combined with the some matrix inequality techniques. In further we shall 

[16], [20]: . ay-independen
finite matrices P and R 

⎥⎦
                            (6.1.2a) 

r its Schur complement 

PB

bound. 
 

α

16], [20] by usi

compare our improved stability results with this. 

Theorem 1: [6], The linear time-delay system (6.1 1) is del t 
asymptotically α-stable if there exist symmetric and positive-de
atisfying the following matrix inequality: s

T αh

T αh
A P PA 2α P R e PBH 0

B Pe R
⎡ ⎤
⎢ ⎥
⎢⎣

+ + += <
−

 

o
T 2 1 TH A P PA 2 α P R e R B P 0 α h −= + + + + <                            (6.1.2b) 

                                (6.1.3) 

to transform (1) into following model form 

                            (6.1.4) 

Then, choose standard Lyapunov-Krasovskii functional as  

                            (6.1.5) 

z (t)Rz(t)-z (t-h)Rz(t-h)

z(t-h) z(t h)B Pe -⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

Proof: Utilize the following state transformation 

0        t0      x(t),ez(t) αt >>= α  

h)      Bz(teαI)z(t)(A (t)xex(t)αe(t)z αhαtαt −++=+= ��  

t
T T

t h
V(z(t),z(t h)) z (t)Pz(t) z (θ) R z(θ) dθ

−

− = + ∫  

where P and R are symmetric and positive-definite matrices. The time-derivative of (6.1.5) 
along the trajectory of transformed system (6.1.4) is given by: 

T T T αhV z (t) (A αI) P P(A αI)  z(t) 2z (t)e PBz(t h)⎡ ⎤= + + + + − +� T T

T

⎣ ⎦
    (6.1.6) 

T αh

T αh

z(t) z(t)A P PA 2α P R e PB 0
⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥

+ + += <
-R
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if satisfied (6.1.2). Therefore, the system (6.1.1) is asymptotically α-stable. 
If we consider a case where h is unknown but bo ound of delayunded, then the upper b  h  can be 
computed by solving the following optimization prob

Subject to H < 0 (2)  
and P > 0, R > 0 

x optimization problem. Hence, it is possible to compute the 

lem: 

OP: maximize h 

which is a standard quasi-conve
maximum upper bound h  using efficient convex optimization algorithm [22], [8] etc. 
Note that in this case a d .1.6) at once and can be determined from (6.1.2) 

mall values of h or α, 
iculty, we will 

consider below another stability criterion based on augmented Lyapunov-Krasovskii functional
combined with LMI’s techniques. 

iliar form [1]-[3], [16] a first-order delay-

−−=                                 (6.1.7) 

nts, h > 0. 
nto 

) (α-a)z(t)-be z(t h)= −                                (6.1.8) 
 
Choose Lyapunov-Krasovskii functional for (6.1.8) as 

elay term appears in (6
as a solution of transcendental matrix inequality. However, if α=0 or in s
α-stability condition does not depend on the size of delay. To avoid this diff

 

Example 1: Let us consider the following fam
differential system 

x� h)-bx(tax(t)(t)

where a and b are scalar consta
Utilize (6.1.3), system (6.1.7) can be transformed i
 
z(t� αh

t
2 2

t h

1(t (θ )dθ
2

+    V(z(t),z h)) z (t) µ z
−

− = ∫                            (6.1.9) 

ed. 
Then 
 

   

where µ > 0 to be select

2 αh 2V (α a µ)z (t) e z(t)z(t h) µz (t h)= − + − − − −�  

αhT

αh

1a α µ ez(t) z(t)2 0
z(t h) 1 z(t h)e µ

2⎢ ⎥⎣ ⎦
 

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

− −
= − <

− −
                                                                     (6.1.10) 

e following Sylvester’s conditions hold 
 
if th

0µαa >>−  

0e
4
1µ)µα −                             ((aH h α 2 >−−=  6.1.11) 

 is asymptotically α-stable. 
If we consider case where h is unknown but boun we an solv 11): 

 
Therefore (6.1.8)

ded  c e a convex OP for (6.1.

H
a α 2µ 0,

µ
= − − =

∂
                         (6.1.12) 

∂
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Hence a αµ
2
−=  and max 0

4
obtained as 

b eα)(a 2h α 22

>
−−

=  from which stability conditions are H

>−                                 (6.1.13) 

hen the upper bound of delay size is given b

2h α 22 beα)(a

T y 

ln
h

a
b
α

α

−

= ,           

-stable for any

                          (6.1.14) 

Thus, system (6.1.7) is α  hh0 ≤<  if condition (6.1.14) hold. 

6. ity conditions 

heorem 2 [20]: The linear time-delay system (6.1.1) is asymptotically stable if there exist 
he following matrix inequality 

0            

or its Schur com lement
1 TP PA R hQ PBR B P 0= + + + + <                              (6.1.15b) 

roof: Construct augmented Lyapunov-Krasovskii functional candidate as follows 

− − +

 

The time-derivative of (16) along (1) is given by 
 
V x (t)(A P PA)x(t) 2x (t)PBx(t h) x (t)Rx(t)

x )R t h) x (t)Q

= + + − +

− − − +

�
 

 ⎥
⎦

⎢
⎣

⎡ +++
⎥
⎦

⎤
⎢
⎣

⎡
=                          (6.1.17) 

 
1.2.2 Stabil

T
symmetric and positive-definite matrices P, R and Q satisfying t

T

T
A P PA R hQ PBH

B P R
⎡ ⎤
⎢ ⎥
⎣ ⎦

+ + += <
−

                 (6.1.15a) 

p  
T -H A

P
t 0 t

T T TV(x(t),x(t h)) x (t)Px(t) x (θ)Rx(θ)dθ  x (ρ)Qx(ρ)dρ dβ− = + +∫ ∫ ∫                            (6.1.16) 
t h h t β

T T T T

t
T T T

t h

(t h x( h x(t) x (β)Qx(β)dβ
−

− ∫
 

 dβ)β(Qx)β(x 
h)-x(t

x(t)
R-PB

PBhQRPAPA 
h)-x(t

x(t) t

ht

T
T

TT

∫
−

−⎥
⎦

⎤
⎢
⎣

⎡⎤
  

 
Since the last term in (6.1.17) is positive-definite, then 

Tx(t) x(t)
V  H 0

x(t-h) x(t-h)
⎡ ⎤ ⎡ ⎤
⎢ ⎥ <                                  (6.1.18) 

is as table. 

 2: Again consider a simple time-delay system (6.1.7). Choose augmented Lyapunov-
kii functional for (6.1.7) as            

⎢ ⎥
⎣ ⎦ ⎣ ⎦

≤�  

if satisfied (6.1.15). Therefore, system (6.1.1) ymptotically s

Example
Krasovs

t 0 t
2 2 2

t-h -h t β

1V x(t),x(t h) x (t) µ x (θ )dθ ρ x (γ )dγ d
2

β
+

⎡ ⎤⎣ ⎦− = + +∫ ∫ ∫                          (6.1.19) 
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wher  µ and ρ are poe sitive scalars to be selected. 
Then 
 

t

h-t

2222 ∫+−   µxh)bx(t)x(t(t)µ)x-(aV −−−−=� dβ) (βxρ-(t)ρhx h)(t

T t
2

t-h

1a µ ρh b⎡

    
- x(t)2 -ρ x (β )dβ 0

1 x(t h)b µ
2

⎤
⎢ ⎥ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥⎣ ⎦

−
<∫                           (6.1.20) 

 the following conditions hold  

x(t)
x(t h)
⎡ ⎤
⎢ ⎥= −

− −

 
if

21H (a µ ρh)µ b 0
4

= − − − >  a µ ρh 0 ,    0, 0µ ρ− − > > > ,                            (6.1.21) 

ptotically stable.  
d e h is unknown b ex optimization 

problem for (6.1.21). 

Therefore, (6.1.1) is asym
If we consi er a case wher ut bounded then we can solve a conv

aSelect ρ µ= , then  µ
1 h

<
+

 and from 2 21H aµ (1 h)µ b
4

= − + −  we have  

H∂
a 2(1 h)µ 0= − + = . 

µ∂

Hence aµ = . Substituting
2(1 h)+

 µ into (6.1.21), we have  

max 
2 2 2

2
a (1 h) b (1 h)H 0

4(1 h)
+ − += >

+
                            (6.1.22) 

Hence and h)(1ba 22 +> 2

22

b
bah −

< . Then the upper bounded of delay size is obtained as 

2
(a b)(a b)h =   

b
− +                             (6.1.23) 

hus, (6.1.7) is asymptotically stable for any  if (6.1.23) holds. T hh0 ≤<

Comparison of (6.1.23)  with (6.1.14) shows that the upper bound  for (6.1.23) is greater than 2h

that 1h  for (14), i.e. 2h > 1h . 
 
6.1.2.3 Combined α-stability conditions 

tages of Theorem 1 and 2, let us combine those results as follows. 

Theorem 3: The linear time-delay system (6.1.1) is asymptotically α-
symmetric and positive-definite matrices P, R and Q satisfying the following m

PB 0
⎤
⎥ <                          (6.1.24a) 

or                   

To use advan

stable if there exist 
atrix inequality  

T

T αh
A P PA 2α P R hQ eH
⎡
⎢

+ + + +=
αh

B Pe R⎢ ⎥⎣ ⎦−

 its Schur complement         
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0PBPBRehQRP α 2PAPAH T1h α 2T <+++++= −                                                    (6.1.24b) 

Proof: Choose augmented Lyapunov-Krasovskii functional for (6.1.4) as 

             (6.1.25)               

hen 

T T

t h

h

z (t) (A αI) P P(A αI)  z(t) 2z (t)e PBz(t h) z (t) R z(t) 

 )R z(t-h) hz (t) Q z(t) z (β) Q z (β)d β

z(t-h) z(t-h)B Pe -R

−

⎡ ⎤

dβ dρ)ρ(Qz)ρ(z  dθ)θ(Rz)θ(z(t)Pz(t)zh))z(tV(z(t),
0

h

t

βt

T
t

ht

TT ∫ ∫∫
− +−

++=−   

T
 
V� T T T αh T

⎣ ⎦

t
Tz (t-h−

T tT αh
T

T αh

z(t) z(t)A P PA 2α P R hQ e PB z (β
⎡ ⎤

t−

⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

= + + + + − +

+ − ∫

T z(t)
 H 0

z(t-h) z(t-h)
⎡ ⎤
⎢ ⎥

     (6.1.26) 

+ + + += −
z(t)

)Qz (β)d β ⎡ ⎤
⎢ ⎥
⎣ ⎦ ⎣ ⎦

≤ <

 

6.1.3 Improved stability conditions 

 i ependent stability conditions are derived by introducing special 
nal combined with Leibniz-Newton formula and some 

es.  

Theorem 4: The linear time-delay sy  (6.1.1) is asymptotically
 positive-defin

           (6.1.27a) 

∫

if satisfied (6.1.24). Therefore, the transformed system (6.1.4) is asymptotically α-stable. 
Clearly that feasible set of (6.1.24b) is always larger than that of (6.1.2b) and (6.1.15b). 
 

Below some mproved delay-d
augmented Lyapunov-Krasovskii functio
matrix inequality techniques and some integral evaluating inequaliti

stem  stable if there exist 
symmetric and ite matrices P, R and Q satisfying the following matrix inequality 

0P]BBPBBRPBAPBAQ Rh[QB)P(APB)(AH TT1TT1T <+++++++= −−         

or alternative 

T

T) 0
h

          (6.1.27b) 

(A B) P P(A B) h(Q R) PBA PBB
1

⎢ ⎥
⎢ ⎥

+ + + + + − −

T(PBB)
⎢ ⎥
⎢ −

H (PBA Q 0

10 R
h

⎡ ⎤

⎢ ⎥
⎢ ⎥

⎥
⎥⎦

= − − <

−

 

Proof: Since x(t) is continuousl  differ tiable ibniz-Newton formula, 

                                             (6.1.28)        

for t > h. Then, the primary system (6.1.1) can be rewritten as 

                                                 (6.1.29) 

ubstituting again (6.1.1) into (6.1.29) yields 

⎢⎣

y en for  t ≥ 0, using the Le
the time-delay term can be presented as 

t

t h

x(t h) x(t) x(θ)dθ
−

− = − ∫ �

t

t h

x(t) (A B)x(t) B x(θ)dθ
−

= + − ∫� �

S
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t

t h

t t

t h t h

x(� t) (A B)x(= + t) B Ax(θ) Bx(θ h) dθ

(A B)x(t)-BA x(θ)dθ BB x(θ h)dθ

−

− −

⎡ ⎤⎣ ⎦− + −

= + − −

∫

∫ ∫

                                

x (t)P  x (ρ)Qx(ρ)dρdθ  x (ρ)Rx(ρ)dρ dθ
− + − + −

= + + ∫ ∫

                 (6.1.31) 

 
Introduced a special augmented functional (6.1.31) involves three particular terms: first term, 
V  is standard Lyapunov function, second and third non-standard terms, namely V2 and V3 are 

ar except for the length integration horizon [t-h, t] for V2 and [t+θ-h, t] for V3, 
respectively. This functional is different from existing [12], [15], etc. 

e derivative of V  along  twice ransfo ed system (6.1 0) is c
t

ht

T
t

ht

TT −−+++ ∫∫
−−

                 (6.1.32) 

Proposition 1: T

                                    (6.1.33)             

for any ctors u  v and mmet c posit e defin e matr

                            

   

−

 is calculated as 

TTT ∫−=++−                          (6.1.36) 

                             (6.1.30) 

 
Let us choose a special augmented Lyapunov-Krasovskii functional as 
 
V(x(t),x(t-h)) V V V  = + +1 2 3

0 t 0 t
T T T

h t θ h t θ h

x(t) ∫ ∫

1

simil , 

The tim 1 of -t rm .3 alculated as follows 

[ ])xV T
1 =� dθ)hθ(x(t)PBB2x- dθ)θ(x(t)PBA2xx(t)B)P(APB)(A(t

he following inequality holds 
b b

T T T 1

a a

2 u vdt u Wudt u W udt
b

a

−− ≤ +∫ ∫ ∫

ve , sy ri iv it ix W. Then   

dθ)θ((t)PBAxx2dθ)θ(x(t)PBA2x
t

ht

T
t

ht

T ∫∫
−−

−=−  

 

 
t t

T -1 T T T

t h t h
x (t)PBAQ A B Px(t)dθ x (θ)Qx(θ)dθ

− −

≤ +∫ ∫    

 

                                  
t

T -1 T T T

t h

hx (t)PBAQ A B Px(t) x (θ)Qx(θ)dθ
−

= + ∫                                 (6.1.34)  

                
and similar to (6.1.34) we evaluate 

h)dθ-θ(Rx)hθ(xt)(PxBB(t)PBBRhxdθ)hθ(x(t)PBB2x
t

TTT1-T
t

ht

T −+≤−− ∫∫
−

                      (6.1.35) 
ht

V� 2

[ t)Qx(xV
t0

T
2 ∫=� ] dθ)θ(Qxθ)(x)t(t)Qx(hx dθ θ)t(θ)Qxt(x)t(

hth −−
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Then 
t

T T
3

t h
V hx (t)Rx(t) x (θ-h)Rx(θ-h)dθ

−

= − ∫�                                        (6.1.37)   

As seen from (6.1.35) the positive term dθ)h-θ(Rxh)-θ(x
t

ht

T∫

             

−

 V3 . Moreover, for the sake of 
dance of results in matrix inequalities (6.1.34) and (6.1.35), it was assumed 

ed. 
when (6.1.27b) is satisfied. From (6.1.32), 

ulated as 

 appears in the right side of 

 is introduced to cancel this term(6.1.35). Third functional
simplicity and accor
that W = Q and W = R in both cases, respectively. Thus, V�  is obtained as follows: 
 

T T -1 T T -1 T T
1 2 3

T

V V V V x (t) (A B) P P(A B) h(Q R PBAQ A B P PBBR B B P)  x(t) 

   
  x (t)H x(t) 0 

⎤⎡⎣ ⎦= + + = + + + + + + +

= <

� � � �

(6.1.38) 

 
if satisfied (6.1.27a). Therefore, system (6.1.30) is asymptotically stable. First part of the 
Tearoom 4 is prov
Now let us prove the second part of Theorem 4 
(6.1.36) and (6.1.38) V� can be calc
 

t
T T T

t h

V x (t) (A B) P P(A B) x(t) 2x (t)PBA x(θ )dθ
−

⎡ ⎤⎣ ⎦= + + + − ∫�  

 

       
t

T T

t h

2x (t)PBB x(θ h)dθ hx (t)Qx(t)
−

− − +∫                                                                    (6.1.39) 

 

       
t t

T T T

t h t h
x (θ )Qx(θ )dθ hx (t)Rx(t) x (θ h)Rx(θ h) dθ

− −

− + − − −∫ ∫   

 
Proposition 2: The following inequalities hold for any delay h and positive-definite matrix Q 

Tt t t
T

t h t h t h
x (θ )Qx(θ )dθ x(θ )dθ Q x(θ )dθ

− − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

1. 

⎣ ⎦
≥∫ ∫ ∫                                       (6.1.40) 

if h 1≤ , and 
Tt t t

T

t h t h t h
h x (θ )Qx(θ )dθ x(θ )dθ Q x(θ )dθ

− − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

≥∫ ∫ ∫                            (6.1.41) 

if h > 

Proof: The proof of this proposition is based on the definite integral evaluating theorem [24], 
[25]: 

b

a

m(b a) f(x)dx M(b a)− < < −∫ ,    a < b                            (6.1.42) 
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where m and M minimum and maximum values of a continuous function f(x) on the closed 
interval [a,b]: Mf(x)m ≤≤ . 
Since 
 

t t t
T T T

maxmin
t h t h t h

λ (Q) x ( θ)x(θ)dθ x ( θ)Qx(θ)dθ λ (Q) x ( θ)x(θ)dθ
− − −

< <∫ ∫ ∫                               (6.1.43) 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
<

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫∫∫∫
−−−−

t

ht

Tt

ht

t

ht

Tt

ht
min )dθ x(θQ)dθ x(θ)dθ x(θ)dθ x(θ(Q)λ   

 
t

                 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
< ∫∫

−−

t

htht
max )dθ x(θ)dθ x(θ(Q)λ                         (6.1.44) 

 
and  

T

Mxxm =≤≤ ,     T 20 x x M< ≤                   (6.1.45) 

then clearly that 

t
T 2

t h

0 x ( θ)x(θ)dθ M h
−

< <∫     and     
Tt t

2 2

t h t h

0 x(θ )dθ x(θ )dθ M h
− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

t

⎣ ⎦
< <∫ ∫            (6.1.46) 

Therefore, from comparison of (6.1.43) and (6.1.44) we conclude that the condition (6.1.40) 
holds if 1h ≤  because 222 hMhM >  and the condition (6.1.41) holds if 1h >  because 

222 hMhMh ≥⋅ . Using Proposition 2 for last integral terms of (6.1.39) we can rewrite 
 

[ ] h)dθx(θ(t)PBB2x )dθx(θ(t)PBA2x  x(t)R)h(QB)P(APB)(A(t)xV
ht

T

ht

TTT −−−+++++= ∫∫
−−

�  

       

t

Tt t

t h t h

1 x(θ)dθ Q x(θ)dθ
h − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− ∫ ∫
Tt t

t h t h

1 x(θ h)dθ R x(θ h)dθ
h − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− − −∫ ∫              (6.1.47) 

 

Note that for the case where 1h ≤ in according to (6.1.40) the factor 
h
1

 in two last terms of  

(6.1.47) disappears. 
Thus, we can rearrange (6.1.47) as a full quadratic form of three integral variables as follows: 

T

t

x(t)

V x(θ)dθ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

≤ ∫�

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

−

−−+++++
1(PBA)

PBBPBAR)h(QB)P(APB)(A
T

T
t

x(t)
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

t h
t

x(θ h)dθ
⎢ ⎥
⎢ ⎥

−
t h−
⎢ ⎥
⎢ ⎥⎣ ⎦
∫

−

⎦

⎢
−

−

R
h
1

0Q
h

x(θ)dθ 0

x(θ h)dθ

−
⎢ ⎥
⎢ ⎥
⎢ ⎥

<

−

∫   (6.1.48) 

.1.27b). Second part of theorem is proved. This stability criterion can be called as 
“three integral variables e on” because of (6.1.48). This approach provided more deeply 
investigation of the internal structure of time delay systems. 

t h
t

⎢
⎢
⎣

− 0(PBB)T

t h−
⎢ ⎥
⎢ ⎥⎣ ⎦
∫

if satisfied (6
crit ri
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Note that, 8 s mor inform tive than that i 6.1.48) 
contains much parameter than that in previous criteria.  

   

 in (6.1.4 ) i e a n previous cases because H in (H

Example 3: Again consider simple time delay system (6.1.7) 

x(t) ax(t) )= − −�                         (6.1.49a) 

with auxiliary equation 

bx(t-h

x( ) ax( ) bx( -h)θ θ θ= − −�                            (6.1.49b) 

 (6.1.50) 

a) wit

(a b)x(t) ab x(θ )dθ b x(θ-h)dθ
− −

= − + − −∫ ∫                             (6.1.51) 

Choose a special augmented Lyapunov-Krasovskii functional for (

,x (t) µ  x (β )dβ dθ ρ  x (γ )d

Substituting Leibniz-Newton formula 
t

x(t h) x(t) x(θ )dθ                                         
t h−

− = − ∫ �  

into (49 h (49b) we obtain 
t t

2

t h t h
x(t)�

51) as 
0 t 0 t

2 2 2

t θh h t θ-h
V(x(t) (θ ),x(θ h)) x γ dθ+ +∫ ∫ ∫ ∫            (6.1.52) 

θ-h)dθ

µhx (t) µ x (θ ) θ ρhx (t) x (θ-h)dρ

− −

−

+ − +∫ ∫

                                (6.1.53) 

Using integral evaluating of (6.1.34) and (6.1.35) 
 

2             (6.1.54) 

 

t h−
∫    

− =�
+− − +

where µ and ρ are positive scalars to be selected. 
Then 
 

t t
2 2 2 2

t h t h
V 2x(t)x(t) µhx (t) µ x (θ )dθ ρhx (t) ρ x (θ-h)dθ

− −

= + − + −∫ ∫� �

t t
2 22(a b)x (t) 2abx(t) x(θ )dθ 2b x(t) x(= − + − −∫ ∫

t h t h

t t
2 2 2 2

t h t-h
d θ−

 

t t
22x(t) x θ hx (t) x θ− ≤               

t h t h
(θ )d (θ )d

− −

+∫ ∫  

t t
2 2

t h
2x(t) x(θ-h)dθ hx (t) x (θ-h)dθ

−

− ≤ + ∫                            (6.1.55) 

 
from (6.1.53) we have  

 274



  

t t
2 2 2 2 2 2V 2(a b)x (t) abhx (t) ab x (θ )dθ b hx (t) b x (θ-h)dθ≤ − + + + + +� 2

t h

t
2 2 2

− −
∫ ∫

          (6.1.56) 
t h

 
t

2µhx (t) µ+ −
t h t h

x (θ )dθ ρhx (t)- x (θ-h)dθρ
− −

+∫ ∫
 
If  we select 2bρ =  and abµ = , then (6.1.56) reduced to 2 2V 2(a b) 2abh-2b h x (t) 0⎡ ⎤⎣ ⎦≤ − + + <�   

if  H 2(a b) 2bh(a b) 0= + − + >  or bh 1< , a b 0+ >                               (6.1.57) 

Thus, (6.1.49) is asymptotically stable if  

a b 0+ > , bh 1< , 2ρ b=  and                                  (6.1.58) 

If  we consider a case where h is then the upper bound 

 abµ =  

unknown but bounded h  can be obtained 
om (6.1.58) as fr

1h
b

=  and 

h refore, we conclude that (6.1.49) is asymptotically stable for any

2 ab                            (6.1.59) a b 0+ > , ρ b= , µ =  

 if (6.1.59)T e  hh0 ≤<  hold. 

le 4: For c sis let us investigate the same problem by using the second 

an evaluate 

 

Examp omparison analy
part of Theorem 4. 

hus, we have (6.1.49)-( 6.1.53). Using the properties of (6.1.40) and (6.1.41) we cT
for (6.1.53) 

2t t
2µ x (θ )dθ− ≤∫

t h t hh− −⎢ ⎥⎣ ⎦

1 µ x(θ )dθ
⎡ ⎤
⎢ ⎥− ∫                             (6.1.60) 

 
2t t1 ⎡ ⎤

2

t h t h
ρ x (θ h)dθ ρ x(θ h)dθ

h− −

⎢ ⎥
⎢ ⎥⎣ ⎦

− − ≤ − −∫ ∫                            (6.1.61) 

 
Then (6.1.53) becomes 
 

2t t t
2 2 2 2

t h t h t h

T

2
2t t

t h t h
t 2

t h

1V 2(a b)-ρh -µh x (t) 2abx(t) x (θ )dθ 2b x(t) x (θ-h)dθ µ x(θ )dθ
h

x(t) 2(a b) ρh µh ab b
1 1ρ x(θ-h)dθ x(θ )dθ ab µ 0h h

1b 0x(θ-h)dθ

− − −

− −

−

⎡ ⎤
⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

≤ − + − − −

+ − −

−

∫ ∫ ∫

∫ ∫

∫

�

− =
t

t h
t

t h

x(t)

x(θ )dθ 0

ρ x(θ-h)dθh

−

−

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎣ ⎦

<∫

∫

    (6.1.62) 

 
if satisfied H > 0 for h > 1 or its principles minors are positive: 
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1H 2(a b) ρh µh 0,     µ 0,     ρ 0= + − − > > >                               (6.1.63) 

 
2 2

2
1H 2(a b) ρh µh µ a b 0
h

⎡ ⎤⎣ ⎦= + − − − >                            (6.1.64) 

 
2 2 4 2

2H H 2(a b) ρh µh µρ a b µb ρa bh hh
⎡ ⎤⎣ ⎦

2
3

1 1 1 0= = >                         (6.1.65) 

.1.49) is asymptotically stable for > 6.1.63) – (  then we 

b 0 ρ⎢ ⎥
⎢ ⎥⎣ ⎦

−
           (6.1.66) 

or  

+ − − − − −

 
Thus (6 h  1 if ( 6.1.65) hold. If  1≤h
know that 

2

2

2(a b) ρh µh ab b
H ab µ 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥

+ −
= >                    

1H 2(a b) ρh µh 0,     µ 0,     ρ 0= + − − > > >                                 (6.1.67) 

 
2 2

2H 2(a b) ρh µh µ 0⎡ ⎤⎣ ⎦ a b= + − − − >                              (6.1.68) 

 
2 2 4 2 2H H 2(a b) ρh µh µρ a b µb ρa b 0⎡ ⎤3 ⎣ ⎦            (6.1.69) 

 
hus, (6.1.49) is asymptotically stable for 

= =               + − − − − − >      

 if (6.1.66)T 1≤h  or (6.1.67) – (6.1.69) hold. 
se where h is unknown but bounded. Then the upper bound of h can be 

7)  h  

Now let us consider a ca
computed as follows for 1≤h . 

Select µ ρ= , then from (6.1.6  µ 0 2(a b) 2+ > >  and a bµ
h
+<   where  a b 0+ > ,  

2H
2(a b) 4 µ h 0

∂
µ = + − = . 2 2 2

2H 2(a b)µ 2µ h a b= + − −  and  
∂

Hence, 

a bµ +=                                (6.1.70) 
2h

max
2 2 2

2
(a b) 2a b hH 02h
+ −= >  from which  

2

2 2
(a b)h
2a b
+<                                (6.1.71) 

and the upper bound is o tained as  b

( )2a b
h

+
=  with a b 02 22a b

+ > , ab 0>                              (6.1.72) 

From (6.1.69) 
 

 276



  

2 2 2 2 2 2
3 3H 0>  H 2(a b) 2 µ h µ µb (a b) µ 2(a b)µ 2µ h b (a b ) µ⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦= + − − + = + − − + =

 

0h 4b)2(a
H3

=−+=
∂

µ . Hence 
µ∂

a bµ
2h
+=  which coincide with (6.1.70). 

 

Then, max
2 2 2 2

2
(a b) 2b (a b )H 02h
+ − += >  from which h 2

2 2 2
(a b)h +<  and the upper 

2b (a b )+
ound can found as  b

2

2 2 2
(a b)h

2b (a b )
+=
+

                                 (6.1.73) 

Clearly that the h  (6.1.73) less than h  (6.1.72). Therefore, the upper bound of delay size can 
om (6.1.73). 

 Im -stab ty con

Using Leibniz-Newton formula 

) z(θ)dθ
−

− ∫ �                             (6.1.74)      

t) e Bz(t h) (A αI)z(t) e B z(  ) dθ       he Bα θ
•

+ − = + + − ∫�  

       (
t

h h

t h

found fr
 
6.1.4 proved α ili ditions 

t
z(t h z(t)− =  

t h

we can rewrite transformed time-delay system (6.1.4) as 
 

t
αh αh

t-h
z(t) (A αI)z(= +

 

( ) ( ) ) )(A e B I A zα αz t e B I dα α θ θ
−

= + + + ∫
t

2  h

t-h
-e BB (θ-h) d∫

foll wing t orem summarizes our ult. 

Theorem 5: The linear transformed time-d system (6.1.75 is asy
ere exist symmetric and positive-definite matrices P, R and Q satisfying the following matrix 

T

A e B αI) P P(A e B αI)

    h Q R e PB(A αI)Q (A αI)B P e PBBR B B P 0− −⎡ ⎤⎣ ⎦

= + + + + +

+ + + + + + <

                    (6.1.76)      

                                                         

roof: Choose a special augmented Lyapunov-Krasovskii functional as 

(z(t),z(t h)) z (t)Pz(t)  z (ρ)Qz(ρ)dρ dθ  z (ρ)Rz(ρ)dρ dθ− = + +∫ ∫ ∫ ∫       (6.1.77)                             

) is given by 

− α z θ            (6.1.75) 

 
The o he improved α-stability res

elay  ) mptotically α-stable if 
th
inequality 
 
H (* αh T αh

αh 1 T 2 α h 1 T    

P
0 t 0 t

T T TV
t θh h t θ h+− − + −

The time-derivative of (6.1.77) along the transformed system (6.1.75
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t
T T T αh

t-h

t t t
T 2α h T T T T

t-h t-h t-h

V z (t) (A B αI) P P(A B αI) z(t) -2z (t)e (A αI) z(θ)dθ 

-2z (t)e PBB z(θ-h)dθ hz (t)Qz(t)- z ( ) ( ) hz (t)Rz(t)- z (θ-h)Rz (θ-h)dθ

h he e PB

Qz d

α α

θ θ θ

⎡ ⎤⎣ ⎦= + + + + + +

+ +

∫

∫ ∫ ∫

�

 

T

t) B

e PBBR B B P   z(t) z (t)H z(t) 0

h hα α

⎤⎦+ = <

6.1.78) 

5) is asymptotically α-stable if (6.1.76) hold. 
unded e can olve a

 
T

  αh 1 T T

 z (  (A B αI) P P(A αI)

Q R e PB(A αI)Q (A αI) B P

e e

h −⎡⎣

≤ + + + + +

+ + + + +                                                            (

{

}

T

2 α h 1 T T T− ∗

 
if satisfied (6.1.76).  Therefore, system (6.1.7
If we consider a case where h is unknown but bo  w  s  convex OP similar to 
case 2.1. 
 
6.1.5 Stabilization by memoryless control 

Now consider the following linear time-delay system with input delay 

( )1( ) ( ) ( ) ( )x t Ax t Bx t h Du t D u t h= + − + + −�                            (6.1.79) 

) is m-control vector. For stabilization of 

                     

where D and D  are constant ( mn× )-matrices, u(t1

(6.1.79) let us choose a memoryless feedback control law as 

( ) ( )u t Kx t= −                                (6.1.80)   

where K is ( nm× )-design matrix. 
Substituting (6.1.80) into (6.1.79) yields 

x(t) x x      ( ) ( )A t B t h= + −�                         (6.1.81)               

KDBBDKAA −=where  and 1 are (nxn)-matrices. Clearly that stability of the closed-
loop system (81) can be ea analyzed by using obtained above stability criterions. 

Example 5: Consider the stabilization of first order time-delay system: 

( ) ( ) ( ) (

−=
sily 

)x t ax t bx t h cu= − − − +� t                             (6.1.82) 

where a, b and c are constant scalars, by mploy l 

                          (6.1.83) 

where k is a design parameter. 
Then closed-loop system is given by 

)

 e ing following memoryless contro

( ) ( )u t kx t=      

( ) ( ) ( ) (x t a kc x t b h= − − −�               (6.1.84) 

Stability conditions (6.1.27b) of Theorem 4 for (6.1.84) are similar to (6.1.62) for h>1. 

x t−                
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2

2

2(a-kc b) ρh µh (a-kc)b b

1b 0 ρ
h

⎡ ⎤
⎢ ⎥

⎥

⎢ ⎥⎣ ⎦

+ − −
1H (a-kc)b µ 0 0h

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢ ⎥

= >                           (6.1.85a) 

or  
 

1H 2(a-kc b) ρh µh 0,     µ 0,     = + − − > > ρ 0>    

 
2 2

2
1H 2(a-kc b) ρh µh µ (a-kc)
h

⎡ ⎤⎣ ⎦= + − − − b 0>                               (6.1.85b) 

 
4 2 2

3 2H H 2(a-kc b) ρh µh
h

⎡ ⎤⎣ ⎦= = + − − 1 1 1µρ- µb (a-kc) b 0h h− >   

em (6.1.84) is asymptotically stable if (6.1.85) hold. 
 h is unknown but bounded, then the upper bound of h can be 
 

 
Thus, closed-loop syst
If we consider a case where
computed as follows for h>1.
Select ρµ = , then from (6.1.85b) 

a kc b
h

− +  where  2( ) 2  0a kc b hµ− + > >  and . 0a kc b− + >µ <

22( ) 2 ( 2 2)2H a kc b a kc bh
µ µ= − + − − −  

2 12( ) 4
H

a kc b
∂

= − + − 0µ =  and  hµ∂

hence  
2h

a kc b− +µ =                                (6.1.86) 

2)kc b− + − 2 2 2

2
2 ( ) 0

2
h a kc b

h
− >  2

(max aH =Then  

hence  

1 a kc bh
(a kc)b2
− +<
−

  and the upper bound is found as 

 

1 a kc bh
(a kc)b2
− +=
−

                              (6.1.87) 

Thus, closed-loop system (6.1.84) is asymptotically stable for any hh0 ≤<  if (6.1.87) hold. 
te esign parameter k can be selected such that the upper bound 2h  for (6.1.87) greater No that, d

1h  in (6.1.72), i.e. 12 hh > . than that 
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6.1.6   Conclusions 

We have derived some improved delay-dependent stability conditions for linear time–delay 
using Leibniz-Newton fo ula and augmented, special augmented Lyapunov-

 results are depended on the size of the delay term and are 
given in terms of quadratic forms of state and some matrix inequalities, which are more 

nd accurate. Four simple examples are considered systematically to illustrate and 
m arison analysis of derived stability conditions. The upper bound of delay term is computed 
 solving of quasi-convex optimization problem. Stabilization by memoryless control is 
n dered as fifth example.  

 

ilization of input-delayed systems by linear control: a new design 
methodology 

A new design approach based on Lagrange mean value theorem is used for the first time for the 
stabilization of multivariable input-delayed system by linear controller. The delay–dependent 

m y conditions are derived by using augmented Lyapunov-Krasovskii 
c nals and formulated in terms of conventi al Lyapunov matrix equations and some 

simple matrix inequalities. Proposed design approach is extended to robust stabilization of 
multi-variable input delayed systems with unmatched parameter uncertainties. The maximum 
upper bound of delay size is computed by using simple optimization algorithm. A liquid 
monopropellant rocket motor with a pressure feeding system is considered as a numerical 

ple. Design example shows the effectiveness of our proposed design approach. 

6.2.1 Introduction 

Time-delay effect is frequently encountered in oil-chemical systems, metallurgy and machine-
l p s control, nuclear reactors, bio-technical systems missile-guidance and aircraft 

ms, aerospace remote control and communication control systems, etc. The 
presence of delay effect complicates the analysis and design of control systems. Moreover, 
time-delay effects in the state vector, especially in the control input degrade the control 

rformances and make the closed–loop stabil em challenging. For better 
understanding of time-delay effect properties let us briefly analyze the existing design 
methodologies. There are three basic control design methodologies for the stabilization of input 
delayed systems: 

S ith predictor method 2) Reduction method 
3) Memoryless control approach. 

common design method of input-delayed systems is well known Smith predictor control to 
cancel the effect of time-delay. Smith predictor is a popular and very effective long delay 
compensator for stable processes. The main advantage of the Smith predictor control method is 

at, the time-delay is eliminated from the characteristic equation of the closed-loop system. 
ictor was suggested by Smith [26], [27]. Modified Smith predictor schemes 

systems by rm
Krasovskii functionals. The stability

informative a
co p
by
co si

 
6.2 Delay-dependent stab

asy ptotical stabilit
fun tio on

design exam
 

too roces
control syste

pe ization probl

1) m

A 

th
Classical Smith pred
have been advanced by Marshall [28], Aleviskas and Seborg [29], Watanabe and Ito [30], 
Watanabe, Ishiyama and Ito [31], Al-Sunni and Al-Nemer [32], Majhi and Atherton [33], etc. 
Note that Smith Predictor removes only the time–delay from closed–loop while it is remained 
in feed-forward path. Therefore, it is also an input-delayed system. An extension of the Smith 
predictor method for the MIMO systems with state and input delays is considered by Alevisaxis 
and Seborg [29]. The control algorithm in a Smith Predictor is normally a PI-controller. The D–
part normally is not used since the prediction is performed by the dead–time compensation. 
Prediction through derivation is not suitable when the process contains a long dead– time. 
Replacing a PID-controller with a Smith predictor gives a drastic increase in operational 
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complexity. This is the main reason why most processes with long time–delay are still 

ith predictor and controller for unstable processes 

ee 
8], Kim, Jeung and Park [40], Su, Chu and Wang [41], etc. However, this 

tive when the actual size of the delay is small. In fact, information on the 

wn delays by using appropriately selected Lyapunov-Krasovskii functionals 

 delays based on Nyquist criterion is considered 

controlled by PI-controllers. A modified Smith predictor based on industrial PI-controller is 
designed by Hagglund [34]. A modified Sm
with time–delay are developed by DePaor [35]. Modified Smith predictor control for 
multivariable systems with delays and immeasurable disturbances is extended by Watanabe, 
Ishiyama and Ito [31]. Modified Smith predictor and controller design procedure for unstable 
processes is proposed by Majhi and Atherton [33]. A Smith predictor fuzzy logic based PI-
controller design for processes with long dead–time is proposed by Al-Sunni and Al-Nemer 
[32]. 
The second important control design method of input–delayed systems is the reduction method 
that was suggested by Kwon and Pearson [36].  
This control strategy has been shown to overcome some of inherent problems of the 
conventional Smith predictor method. For example, unstable system can be stabilized and the 
effects of the initial conditions are taken into consideration. The reduction method, however, 
suffers from a weakness that the complete reduction to a delay free system is only possible with 
an exact model of the system. Reduction method is extended to time–varying system with 
distributed delays by Arstein [37]. A new robust stabilizing controller for multiple input–
delayed system with parametric uncertainties by using a modified reduction method is proposed 
by Moon, Park and Kwon [38]. However, an industrial implementation of reduction method 
controllers is much complicated than conventional method. 
The third design approach to stabilization of input-delayed systems is so-called memoryless 
control method, which is similar to the conventional linear control method. Such controllers 
have feedback of the current state only, are designed to delay–independent stabilization of 
input–delayed systems by using Lyapunov–Krasovskii functional method, for example, s
Choi and Chung [3
approach is conserva
size of the delay is often available in many processes. Hence, by using delay information and 
past control history as well as the current state delay–dependent controllers may provide much 
better performance than memoryless controllers. 
In analysis and design of time-delay systems, in general, the Lyapunov-Krasovskii functional 
method is commonly used. Recent advances in time-delay systems are presented by Richard 
[42], Fridman and Shaked [43], Jafarov [44], Niculescu and Gu [45], Niculescu [46], Mahmoud 
[47], Gu, Kharitonov and Chen [48], Boukas and Liu [49]. Some sufficient delay-dependent 
stability conditions for linear delay perturbed systems are derived using exact Lyapunov-
Krasovskii functionals by Kharitonov and Niculescu [50]. Several new LMI delay-dependent 
robust stability results for linear time-delay systems with unknown time-invariant delays by 
using Padé approximation are presented by Zhang, Knospe and Tsiotras [51]. Both delay-
independent and delay-dependent robust stability LMI’s from conditions for linear time-delay 
systems with unkno
are systematically investigated by Zhang, Knospe and Tsiotras in another paper [52]. Stability 
of the internet network rate control with diverse
by Tian and Yang [53]. Improved delay-dependent stability conditions for time-delay systems 
in terms of strict LMI’s avoiding cross terms are developed by Xu and Lam [54]. A new state 
transformation is introduced to exhibit the delay-dependent stability condition for time-delay 
systems by Mahmoud and Ismail [55]. Determining controllable sets from a time-delay 
description is given by Rhodes and Morari [56]. 
Resuming the brief analysis of references concerning the existing design approaches, it can be 
concluded that time-delay systems are intensively investigated recently by researchers in light 
of the above mentioned three directions. However, a new direction to stability analysis and 
controller design of time-delay systems is not developed. In this paper, we have attempted to 
present for discussion a principle new design approach to analysis and design of time-delay 
systems. Introduced new design approach may open a new direction in this field. Proposed 
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design approach based on Lagrange mean value theorem is used for the first time for the 
stabilization of multivariable input delayed system.  The delay–dependent asymptotical stability 
conditions are derived by using augmented Lyapunov-Krasovskii functionals and formulated in 
terms of conventional Lyapunov matrix equations and some simple matrix inequalities. 
Proposed design approach is extended to robust stabilization of multi-variable input delayed 
systems with unmatched parameter uncertainties. The maximum upper bound of delay size is 
computed by using simple optimization algorithm. A liquid monopropellant rocket motor with a 
pressure feeding system is considered as a numerical design example. Design example shows 
the effectiveness of our proposed design approach. 
 
6.2.2 Delay-dependent stabilization by linear control 

Let us consider the following control input-delayed multivariable system of the form: 
 

)()()( htButAxtx −+=� ,   0>t  
 

)()( ttu φ= ,              0≤≤− th                                           (6.2.1) 
 

where )(tx is the measurable state n-vector, )(tu is the control input m–vector, in general 
m n≤ , A  is the unstable )( nn× - matrix and  B is the )( mn× - matrix of full rank, )(tφ  is 
known initial control function on interval ]0,[ h− , 0>h is a constant time–delay. If we 
consider a case where h  is an unknown, then we assume that h  is bounded hh <≤0 . 

We assume that time–delay system is completely state controllable [57]. 

This design method is based on the Lagrange mean value theorem familiar from classical 
Calculus [58], [59]. Remember that Lagrange mean value theorem is stated as follows: 

baf
ab

afbf
<<′=

−
− ξξ    ),()()(

                                           (6.2.2) 

where )(xf  is a continuous function at every point of the closed interval [a, b] and 
differentiable at every point of its interior (a, b) or in terms of delayed control input 

 

)()()( θuhtuhtu �−=−                                            (6.2.3) 

 

where θ  is a point in tht <<− θ . 

After introducing the θ  parameter, the constructive delay-dependent asymptotical stability and 
robustly asymptotically stable conditions can be derived by using the augmented Lyapunov-
Krasovskii functionals. 
Now, after preparing the necessary background we can present a new continuous control design 
methodology for input-delayed systems with known or unknown but bounded delays. 
Substituting (3) into (1), the input-delayed system can be transformed to following system: 

)()()()( θuBhtButAxtx �� −+=                                                      (6.2.4) 

Now we can utilize the conventional linear controller 

)()( tGxtu −=                                                   (6.2.5) 

where G is the gain )( nm× matrix to be selected. Then, 
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)()()()( θxhBGtxBGAtx �� +−=                                (6.2.6) 

where  

)()()( hBuAxx −+= θθθ� )()( hBGxAx −−= θθ                             (6.2.7) 

since )()( hGxhu −−=− θθ                                               (6.2.8) 
H ng transform  state stem 

_
tx   

ence, we have the followi ed delayed multivariable sy

)()()())( 2 hxBGhhBGAxAtx −−+= θθ�                             (6.2.9)  
_

(

where A A BG= − . G can be selected for example by pole placement, such that A  has 
desirable eigenvalues. 

As seen from (6.2.9), the state equation depends on: 

1) current state ( )x t , 2) near past history of the state ( )x θ , 3) far past history of the state 
( )x hθ − . 

Therefore, the problem of stabilization of system (6.2.9) is not simple.  
Now, we need to make the following assumption. 

Assumption 1: Time-delay parameter 

 

θ  is a time-dependent function and norm-bounded such 

θη t�     

that  

1)(10 <≤≤−< η                                       (6.2.10) 

where η  is a scalar. 
Note that assumption similar to (2.10) is used by many authors, for example, by Ikeda and 
Ashida [60], Su and Chu [61], Su, Ji and Chu [62], Wu, He, She and Liu [63], Kim [64] etc. 
Stability orme ted Lyapunov–

T

⎢ ⎥
⎢ ⎥⎣ ⎦

<                             (6.2.11) 

 results for transf d time-delay system (6.2.9) by using augmen
Krasovskii functionals can be formulated as follows. 

Theorem 6: Suppose that Assumption 1 holds. Then the transformed time-delay system (6.2.9) 
driven by linear controller (6.2.5) is delay-dependent asymptotically stable, if there are design 
parameters G and positive definite symmetric matrices P, R and T such that the following 
conditions are satisfied:    
 

0
(1 ) 0 0

TH

Q hD hC
hD R S
hC R

η η
η

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −
− −

=
− − −

0
0 (1 ) 0

0 0 0 T−
 

0<−=+++ QTSPAAP
T

       
 

                               (6.2.12) 

(1 )0 R Sη
η
−< <  ;                                      (6.2.13) 

 
where  a 2) . D PBGA= nd (BGPC =

h se augmented Lyapunov–Krasovskii functionals candidate as follows: 

 

Proof: C oo
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( ) ( )) ) ( ) T(
h

T( ( ), ( ), ( ), ( ) x Rx dx Px t
θ

V x t x x h t h x t
θ

ζ ζ ζθ θ
−

− − =

  

+ ∫            

                                                     ( ) ( )T T ( ) ( )
t t

x Sx d x Tx d
t hθ

ξ ξ ξ+ +∫ ∫ ϕ ϕ ϕ            (6.2.14) 

where P, R, S and T are some positive definite

 of (6.2.9) can be calculated as follows: 

( ) ( ) (T T T TV x t Px t x t Px t t x Rx x Rxθ θ θ θ θ⎡ ⎤⎣ ⎦= + + − −�� � �

                            (6.2.15) 

−

 
 symmetric matrices.  

The time derivative of (6.2.14) along the state trajectory
 

( ) )h h−( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T Tx t Sx t t x Sx x t Tx t x t h Tx t hθ θ θ+ − + − − −�
 

2( )( ) ( )TTx t PA A P x= + 2 ( ) ( ) 2 ( ) ( ) ( )

( ( ) ( ) ( ) ( ) )

T T

T

t hx t PBGAx hx t P BG x h

x Rx h x t S x t

θ θ

θ θ

+ − −

− + + − −

        

( ) ( )( ) ( ) ) ( ) ( ) (T T Tt x R S x t h T x t h Tx t hθ θ θ θ+ − − − −� �
 
Since 1)(10 <≤≤−< ηθη t�   

Then, 
 

2TT T T( )( ) ( ) 2 ( ) ( ) 2 ( )V x t P A A P S T x t hx t PBGAx hx t ( ) ( )

( ) ( ) (1 ( ( ) (1 ) (T

P BG x hθ θ≤ + + + + − −�

) ) ) ( ) ( ) ( )T T Tx Rx Sx x hη θ θ θ η θ+ − − − −
 

   

x Rx h x t h Tx t hη θ θ− − − − −
 

( ) Tx t

 
( )x
( )
( )

x h
x t h
θ⎢ ⎥

⎢ ⎥
−
−

0ThC⎢
⎢ ⎥
− −

θ⎢
⎢ ⎥= (1 ) 0 0Sη−
⎡ ⎤
⎢ ⎥

Q hD⎡
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−

⎥

⎣ ⎦
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−
−

− 0
−
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( )
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(x θ

⎡ ⎤
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x h
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θ

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−
−

 

 
    2

min( ) ( ) ( ) ( ) 0Tz t Hz t H z tλ= < − <                                                                                 (6.2.16) 
 

(t h)⎦− , where ( )          z t x(t) x(θ) x(θ h) x⎡⎣= − T
⎤ D PBGA=  and , if conditions  

(6.2.11), (6.2 13) are satisfied.  

Note that, matrix 

2)(BGPC =

.12) and (6.2.

H  has its own quadratic structure , where 1
TH MH M=

 

1H = 0 (1 ) 0 0
0 0 (1 ) 0

R S
R

η η
η

⎢ ⎥
⎢ ⎥

− −
− −

0 0 0Q

0 0 0 T

⎡ ⎤
⎢ ⎥
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⎢⎣

− 1 1(1 )I hD R Sη η

⎥⎦−

,    0 0IM

(1 ) 0
0

0 0 0

hC R

I
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⎢ ⎥
⎢ ⎥
⎢

0 0 0 I
⎥
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−
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Since M is a nonsingular and 1 0H <  because its leading principle elements are always negative 
then 0H < . Therefore, cond 2.11) is feasible. Thus, the transformed time-delay system 
(6.2.9) with known delay is delay-dependent asymptotically stable. 
If we consider a case where the time-delay term is unknown but bounded 

ition (6.

hh <<0  then we 
can solve the following convex optimiza
 

ect to conditions (6.2.11)-(6.2.13) 

tion problem: 

         OP: maximize h   
         Subj
         and P, R, S, T > 0                                                        (6.2.17) 

which is a quasi – convex optimization problem. Hence it is possible to compute the maximum 
upper bound h  using efficient convex optimization algorithms by Boyd, Ghaoui, Feron, and 
B is an [65

m 6 
 
6.2.3 Robust stabilization of input-delayed sys ms wi

T dv  can be extended to robust stabilization of input-
delay e equations of this class of systems can be 

) htButxAx ∆+=

alak hn ], etc. 

Theore is proven. 

te th parameter uncertainties 

he design approach a anced in section 2
ed systems with parameter uncertainties. Stat

presented as follows: 
 

( ) )()()(( At −+σ�  
 

)()( ttu φ= ,  0<≤− th                                          (6.2.18) 
 
where in addition to (6.2.8) )(σA∆ are the parameter uncertainties. It is  assumed that 

α≤∆ )max , σ(A σ  is an uncertain element. 
Substituting (6.2.3) with (6.2.5) into (6.2.18) we have: 

_
2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x t A x t A x t hBGAx hBG A x h BG x hσ θ σ θ θ= + ∆ + + ∆ − −�                (6.2.19) 

Now, delay–dependent robust stability conditions for transformed time-delayed system with 
parameter uncertainties can be formulated as follows. 

heorem 7: Suppose thaT
p

t Assumption 1 holds. Then, the transformed time–delay system with 
a ameter uncertainties (6.2.19) driven by linear controller (6.2.  asymptotically 
t le, there e the d sign parameter an  positi atrices P, R, T 
nd S such that the following conditions are satisfi

 
( ) 0

T

Q hD PBG I hCαλ⎡ ⎤

⎢ ⎥

⎣ ⎦

− + −

          20) 

 

r 5) is robustly
ab if ar e s d ve definite symmetric mG  s

a ed: 

max

max( ) (1 ) 0 0 0
ThD PBG I R SH αλ η η

⎢ ⎥
⎢ ⎥+ − −= <                      (6.2.

0 (1 ) 0
0 0 0

hC R
T

η⎢ ⎥
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− − −
−

max ( ) 0
T

P A A P S T P I Qαλ+ + + + = − <                                                    (6.2.21) 
 

(1 )R Sη
η
−<                                       (6.2.22) 0 <
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2( )P BG= . C D PBGA=wh ree  and 

Proof: Again consider an extended Lyapunov–Krasovskii functional of the form (6.2.14). 
The time derivative of (6.2.14) along (6.2.19) is given by: 
 

2

( )( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( )
TT T TV x t P A A P x t x t P A x t hx t PBGAxσ θ= + + ∆ +�

2 ( ) ( ) ( ) 2 ( ) ( ) ( ( ) ( )(

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

T T T

T T T

hx t PBG A x hx t P BG x h t x R S x

t x h Rx h x t S T x t x t h Tx t h

) ) ( )σ θ θ θ θ θ

θ θ θ

+ ∆ − − + −

− − − + + − − −

�

�
(6.2.23) 

 

                                     (6.2.24) 
 

         

 
Since 
 
0 1 ( ) 1tη θ η< − ≤ ≤ <�  

max( ) ( ) ( ) ( ) ( ) ( )T Tx t P A x t P x t x tσ αλ∆ ≤                               (6.2.25) 
 

( ) ( ) ( ) ( ) ( ) ( )T T
maxx t PBG A x PBG x t x tσ θ∆ ≤                                 (6.2.26) 

 
αλ

    

Then (6.2.23) can be evaluated as follows: 
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min( ) ( ) ( ) ( ) 0Tz t Hz t H z tλ= < − <                                    (6.2.27) 
 

here z t x(t) x(θ) x(θ h) x(t h)⎡ ⎤⎣ ⎦= − − , if the conditions (6.2.20), (6.2.21) and (6.2.22) are 
satisfied.  

ote that, matrix  has its own quadratic structure , where 
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where IPBGhDD )(maxαλ+=  

Since M  is a nonsingular matrix and 1 0H <  due to the fact that its leading principle elements 
are always negative, then 0H < . Therefore, condition (6.2.20) is feasible. Thus, the 
transformed time-delay system (6.2.19) with known delay is delay-dependent asymptotically 
stable. 
If we consider a case where time-delay term is unknown but bounded hh <<0  then we can 
solve the following convex optimization problem: 

 

                       (6.2.28) 

 

s v  optimization problem. Hence it is possible to compute the maximum 

         OP: maximize h   
         Subject to conditions (6.2.20)-(6.2.22) 
         and P, R, S, T > 0                     

which i  a quasi – con ex
upper bound h  using efficient convex optimization algorithms by Boyd, Ghaoui, Feron, and 
Balakishnan [65], etc. Theorem 7 is proven. 
 
6.2.4 Numerical example 6: rocket motor control 

Let us consider a liquid monopropellant rocket motor with a pressure feeding system, which is 
more practical and complex example. This system is not delay-independently stabilizable e

riginal complete dynamics model of rocket motor is given by Fiagbedzi and Pearson (198
ither. 

6) 
and combustion chamber equations assuming 

 Kwon and Lee (2001), [66]:  

O
[66]. A linearized version of the feeding system 
non-steady flow is taken from [65] and Moon, Park,

1( ) ( ) ( ) ( )x t Ax t A x t h Bu t= + − +�                              (6.2.29) 

where 1( ) ( )   ( )   ( )   ( ) Tx t t t t tφ µ µ ψ⎡ ⎤⎣ ⎦= ; ( )tφ  is the non-dimens eous pressure in 
the combustion chamber, 1( )t

ional instantan
µ  is the non-dimensional instantaneous mass flow upstream of the 

capacitance, ( )tµ  is the non-dimensional instantaneous mass rate of injected propellant and 
)(tψ  is the non-dimensional instantaneous pressure at the place in the feeding line.  is the 

reduced time in stea
h

lag dy operations, 1h ≤ . 

0 1( )( )
2

p pu t
p
−

=
∆

                                           (6.2.30) 

 
is the non-dimensional pressure control input. 
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−
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−
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⎡ ⎤

1 1
0 1 1 0

⎥ 0 0 0 0
0 0 0 0

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

ystem Equation (6.2.29) can be converted to our input-delayed system form as follows. 
ituting  into (6.2.

=                (6.2.31) 

S
Subst 29) we have  ( ) ( )u t Gx t= −

1( ) ( ) ( ) ( )x t A BG x t A x t h= − + −�                    (6.2.32) 
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Linear controller (6.2.5) computational algorithm for input delayed system (6.2.1) with stability 
conditions (6.2.11), (6.2.12), (6.2.13) can be fulfilled by the following MATLAB programmin  
steps: 
 

g

 
clear; clc; 
A      = [0 0 0 0; 0 0 0 -1; 
          -1 0 -1 1; 0 1 -1 0]; 
A1     = [-1 0 1 0; 0 0 0 0; 
          0 0 0 0; 0 0 0 0]; 
B      = [0 0 0 0; 0 1 0 0; 
          0 0 0 0; 0 0 0 0]; 
Lamda  = eig(A); 
Poles  = [-0.4+1.27i; -0.4-1.27i; 
          -0.21; -.1]; 
G      = place(A,A1,Poles); 
aa     = 6.26; 
h      = 0.244; 
eta    = 0 ;.005  
R      = 0.5*eye(4); 
Q      = 0.9*eye(4); 
S      = aa*(eta*R)/(1-eta); 
Q1     = eye(4); 
T      = Q1 - aa*S - Q; 
eQ1    = aa*S + T + Q; 
Ahat   = A - (B+A1)*G;  
P      = lyap(eQ1,Ahat); 
LamdaP = eig(P); 
D      = P*A1*G*A; 
C      = P*(A1*G*A1*G); 
A1*G; 
o0     = eye(4)-eye(4); 
H    = [-Q h*D - *C o0     h ;
          h*D' eta*R-(1-eta)*S o0 o0; 
          -h*C' o0 -(1-eta)*R o0; 
          o0 o0 o0 -T]; 
H
 
eig   = eig(H) 

putational results are 

        0   

⎢ ⎥
⎢ ⎥

⎢ ⎥⎣ ⎦

0 7
 -0.4000 - 1.2700i

  -0.1000 

Com

  -0.2151 + 1.3071i⎡ ⎤  -0. 0  + 1.2 00i

• ( )
  -0.5698          

eig A
⎢ ⎥
⎢ ⎥

= ,        
  -0.2100          

Poles
  -0.2151 - 1.3071i

40⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,     

  0

⎡ ⎤
⎢ ⎥
⎢ ⎥

 

 sec. 

=

 -0.0550   -0.0023   -0.0340    0.3268
         0          0              0             0
  0.055     0.0023    0.0340   -0.3268

G
⎢ ⎥

=  

         0          0              0             0⎢ ⎥
⎢ ⎥⎣ ⎦

6.26aa =  •

max 0.2440h =• 
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0.0050η =  • 

    0.5000     0         0         0
         0    0.5000     0         0
         0         0    0.5000     0
         0         0         0    0.5000

R

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= • ,     

  

     ⎢
⎢

⎣

⎡

=
0         0         0.0157    0         
0         0         0         0.0157    

S ,  

• 

• 

 

• ,         

•

•
⎥
⎥

⎢
⎢

0.0157    0         0         0         
0         0.0157    0         0         
⎥
⎥

⎦

⎤

    

 

    0.9000     0         0         0
         0    0.9000     0         0
         0         0    0.9000     0
         0         0         0    0.9000

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

• 
    0.0015     0         0         0
         0    0.0015     0         0
         0         0    0.0015     0
         0         0         0    0.0015

T

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= 1

    1     0     0     0
    0     1     0     0
    0     0     1     0
    0     0     0     1

Q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= ,   

P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

=  

 g P

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= ,       

    0.0550    0.0023    0.0340   -0.3268
         0            0             0         0.5000
    0.5000        0         0.5000   -0.5000

•     

         0     -0.5000     0.5000         0⎢ ⎥
⎢ ⎥⎣ ⎦

   0.2000 + 0.6350i
   0.2000 - 0.6350i

( )
   0.0500          
   0.1050

 

  -0.0037   -0.0359    0.0322    0.0035
         0              0             0            0
  -0.0340   -0.3268    0.2928    0.0317
         0              0             0            0

D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢
⎢⎣ ⎦

=
⎥
⎥

ei• ,  

• ,       

• *
         0            0             0             0

   0            0           0          0

A G

⎣

=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 

    0.0007    0.0000    0.0004   -0.0040
         0            0             0             0
    0.0061    0.0003    0.0037   -0.0359
         0            0             0             0

C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=

    0.1100    0.0047    0.0681   -0.6536
         0            0             0             0
⎡ ⎤
⎢ ⎥
⎢ ⎥

1
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   -0.9000     0         0         0   -0.0009   -0.0088    0.0079    0.0009   -0.0002   -0.0000

         0   -0.9000     0         0         0               0          

  -0.0001 0.0010  0         0         0         0⎡
⎢

⎤

• H =

    0.0079      0    0.0714      0         0                0       -0.0132       0              0              0

    0.0009      0    0.0077      0         0                0

⎢
⎢
⎢
⎢

        0         0         0         0         0         0

   0            0              0              0

714    0.0 77   -0.001    -0.0001

  0                         0            0

             0            0              0              0

             0     -0.0132           0             0

   -0.0002     0   -0.0015     0         0                0             0            0        -0.4975         0

   -0.0000      0                0             0                         

   -0.0001     0   -0.0009     0         0                0             0            0               0             0

.0088            0       0           0         

              0            0               0             0

   0             0

 0             0

         0          0         0          0         0               0           

  

        0         0         0         0         0         0

 0.0009  0.

   0            0                        0

⎢
⎢
⎢
⎢

⎢
⎣

0         

        0         0         0         0         0         0

         0         0         0

        0         0         0         0         0         0

        0         0         0         0         0         0

  -0.4975    0         0         0         0         0

   0

        0         0   -0.0015    0         0         0

        0         0         0   -0.0015    0         0

        0         0         0         0   -0.0015    0

        0         0         0         0         0   -0.0015

⎥
⎥

         0          0   -0.9000     0
⎢
⎢ ⎥

⎥
⎥

   -0.0083   -0.0797    0.0 0 5

         0          0         0   -0.9000      0               0            0    

 - 0088  
⎢

0         0         0         0

        0         0         0         0         0

   -0.0009     0   -0.0083     0   -0.0132           0
⎢
⎢ ⎥

⎥
⎥   -0.0088     0   -0.0797     0         0          -0.0132        0            0              0              0

⎢
⎢         0         0         0

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  0   -0.0001     0        0 0      -0.4975        0         0         0         0         0         0

    0.0010      0    0    0               0               0             0⎢
⎢

        0   -0.4975    0         0         0      

         0          0         0          0         0               0⎢
⎢         0          0         0          0         0               0              0            0            

         0          0         0          0         0               0              0            0              
⎢
⎢

    0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

 

7
-0.0132  -0.0131  -0.0131  -0.0015  -0.0015  -0.0015  -0.0015  -0.0001

H
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 this paper, a new design approach based on Lagrange mean value theorem is used for the 
first time for the stabilization of multivariable input delayed system by linear controller. The 

elay–dependent asymptotical stability conditions are derived by using augmented Lyapunov-
s skii functionals and formulated in terms of conventional Lyapunov matrix equations and 

imple matrix inequalities. Proposed design approach is extended to robust stabilization of 
ulti-variable input delayed systems with unmatched parameter uncertainties. The maximum 

upper bound of delay size is computed by using simple optimization algorithm. A liquid 
nopropellant rocket motor with a pressure feeding system

design example. Design example shows the effectiveness of our proposed design approach. 

.3 Delay-dependent stabilization of single input-delayed systems by continuous sliding 
mode control: a new design methodology 

The Smith predictor method, reduction method and reduction method combined with classical 
continuous sliding mode control approaches are discussed and presented as some 

preliminary results. A new continuous sliding mode control design methodology based on 
Lagrange mean value theorem is proposed for stabilization of single input delayed systems. The 
Lagrange mean value theorem as a basic theorem of calculus is used for the design of linear 

ode time-delay controller for the first time. This controller satisfies the sliding 
ondition using a Zhou and Fisher type continuous control law eliminating the chattering effect. 

 constructive delay-dependent ymptotically stable sliding conditions are obtained by 
sing the augmented Lyapunov-Krasovskii functionals and formulated in terms of simple 

. Developed design approach can be extended to 
nown but bounded input delay. These 

contributions are the m alytical and numerical design examples 
r nsidered to illustr  v maximum upper bounds of delay 

• 9 5  -0.4975  -0.4973 ( )eig -0.9132  -0.9        -0.9        -0.9       -0.4975  -0.4

 
6.2.5 Conclusions 
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size can be found by using simple optimization algorithms. Helicopter hover contr
considered as fifth design example for illustrating the perform ces of
pproach and Smith predictor control. Unstable helicopter dynamics are successfully stabilized 

by g linear me-delay controller. For example, settling time is about 20 sec. 
S predicto , also, is very well, because for considered example model 

thodology. Apparently, the proposed method has a great potential in design of time-

 ountered in oil-chemical systems, metallurgy and machine-
tool process control, nuclear reactors, bio-technical systems missile-guidance and aircraft 
control systems, aerospace remote control comm nicati  cont
presence of delay effect complicates the analys  design of control sy

e s in state vector, especially in contro  input ntrol performances and 
 lose loop s bilization problem challenging esign method of input-

d systems is we k ith predictor control to cancel the effect of time-delay. Smith 

tor was suggested by 
eme’s have been advanced by Marshall [70], 
2], [73], Al-Sunni and Al-Neymer [74], Majhi 

method 
that was suggested by Kwon and Pearson [76]. 
Recently several new variable structure control design methods for stabilization of various 
classes of systems without time-delay are deve le by 
[77], Lee and Xu [78], Cao and Xu [79], [80], Choi [81], Edwards, Spurgeon and Hebden [82], 
Sabanovic, Fridman and Spurgeon [83], Jafarov [84]-[86], Yeh, Chien and Fu [87], Singh, 

g and Page [88], Koshkouei and Zinober [89]. But, there is no a large number of papers 
concerning th  of stabilization of time-delay systems by variable structure control, for 
ex ], Yan [91], Luo, De La Sen and Rodellar [92], Gouaisbaut, 
D hard [94], Perruquetti and Barbot [95], Jafarov [96], [97], Li 
an ], Koshkouei and Zinober [100] etc. In 
an  by sliding mode control the Lyapunov-Krasovskii 
fu nces in time-delay systems are presented by 

Niculescu and Gu [103], Niculescu 
6], Boukas and Liu [107]. Some 

sufficient delay  stability conditions for linear delay derived 
l new 
 time-

invariant delays by using Padé pprox ation are pres
e  LMI’s from conditions for 

ime-de ing appropriately selected Lyapunov-

0]. Stability of the internet network rate control with diverse delays based on 
quist criterion is considered by Tian and Yang [111]. Improved delay-dependent stability 

MI’s avoiding cross terms are developed 
by Xu and Lam [112]. A new state transformation is introduced to exhibit the delay-dependent 

delay systems by Mahmoud and Ismail [113]. 

ol is 
an  smooth sliding mode 

a
 usin  sliding mode ti

mith r control result
parameters are known. Therefore, simulation results confirmed the effectiveness of proposed 
design me
delayed controllers. 
 
6.3.1 Introduction 

Time-delay effect is frequently enc

and u on rol systems, etc. The 
is and stems. Moreover, time 

delay eff ct l degrades the co
make the c d– ta . A common d
delaye ll nown Sm
predictor is a popular and very effective long delay compensator for stable processes. The main 
advantage of the Smith predictor control method is that, the time-delay is eliminated from the 
characteristic equation of the closed-loop system. Classical Smith predic
Smith [68], [69]. Modified Smith predictor sch
Aleviskas and Seborg [71], Watanabe and Ito [7
and Atherton [75]. 
The other important control design method of input-delayed systems is the reduction 

loped, for examp Wang, Lee and Juang 

Steinber
e problem

ample see Shyu and Yan [90
ambrine and Richard [93], Ric
d De Carlo [98], Gouaisbaut, Blango and Richard [99
alysis and design of time-delay systems
nctional method is commonly used. Recent adva

Richard [94], Fridman and Shaked [101], Jafarov [102], 
[104], Mahmoud [105], Gu, Kharitonov and Chen [10

-dependent perturbed systems are 
using exact Lyapunov-Krasovskii functionals by Kharitonov and Niculescu [108]. Severa
LMI delay-dependent robust stability results for linear time-delay systems with unknown

  a im ented by Zhang, Knospe and Tsiotras 
[109]. Both d lay-independent and delay-dependent robust stability
linear t lay systems with unknown delays by us
Krasovskii functionals are systematically investigated by Zhang, Knospe and Tsiotras in 
another paper [11
Ny
conditions for time-delay systems in terms of strict L

stability condition for time-
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Variable structure control is often used to handle the worst-case control environment: 
parametric perturbations, external disturbances with knowledge of only the upper bounds etc. 

etimes we may come up with more appro such as incorporating 
VSC with linear control, time-delay control etc. It is well known that classical sliding mode 
control uses a discontinuous control action to drive the state to the origin along the reaching and 

uncertainties and external disturbances. However, 
e discontinuity in control law sometimes is undesirable. The 

n  mode control approach satisfies the sliding conditions using a continuous 
n ut requiring discontinuous switching in the controller. Therefore, it retains the 
v ing control but without the chattering phenomena. Such approach is used by 

[114], Shtessel and Buffingtonn [115] etc. Continuous sliding mode control 
n sed in details and its comparison analysis with the conventional discontinuous 

ol by Zhou and Fisher [114]. 
ot be directly applied to the control of input-delayed system. Feng, Mian 

Basker and Crisalle [117] have been successfully used the reduction 
ith variable structure control for stabilization of certain and uncertain 

ltivariable input-delayed systems with known delays. 
t mith predictor method, reduction method and reduction method combined 
th tinuous sliding mode control approaches are discussed and presented as 

Som priate control approaches 

sliding paths and is insensitive to parametric 
the control chattering due to th
co tinuous sliding
co trol law witho
ad antages of slid

r Zhou and Fishe
co cept is discus
sliding mode contr
Note that VSC cann
and Weibing [116], Hu, 
method combined w
mu
In his topic, the S
wi  classical discon
some preliminary results.  A new sliding mode control design methodology for the single input 
delayed systems with known or unknown but bounded delays is developed. This design method 
is based on the Lagrange mean value theorem, which is used for the first time for the 
stabilization of input-delayed systems. Proposed linear sliding mode time-delay controller also 
satisfies the sliding condition, but in contrast to classical variable structure control, uses Zhou 
and Fisher type of continuous control law without requiring discontinuous switching in the 
controller. Therefore, undesired control chattering in this case is avoided. 
The constructive delay-dependent asymptotical stability and robustly stable sliding conditions 
are obtained by using the Lyapunov-Krasovskii functional method and formulated in terms of 
some matrix inequalities. Hence, it is possible also to compute the maximum upper bound of 
the allowable time-delay h  using efficient convex optimization algorithms. Four analytical and 

trating the various design approaches. The 

ered 
 Therefore, simulation results confirmed the 

of the proposed design methodology. 

ary results and problem statement  

tter understanding the Smith predictor control, reduction method and reduction 
mbined with variable structure control design approaches let us consider the 
ingle input-delayed system 

htbutAx

numerical design examples are considered for illus
maximum upper bound of delay size is computed by using simple optimization algorithm. 
Helicopter hover control is considered as fifth design example for illustrating the performances 
of smooth sliding mode approach and Smith predictor control. Unstable helicopter dynamics is 
successfully stabilized by using linear sliding mode time-delay controller. For example, settling 

l result, also, is very well, because for considtime is about 20 sec. Smith predictor contro
example model parameters are known.
effectiveness 
 
6.3.2 Prelimin

For the be
method co
following s

)(tx� )()( −+=                                           (6.3.1) 

where )(tx  is the measurable n-state vector, u(t) is the scalar control input, A  is a constant real 

d: Modified Smith predictor control scheme represented in state-space 
quation form is shown in Figure 1 where  is the reference vector, 

( nn× ) matrix, b is the constant n-vector, 0>h  is a time-delay.  

Smith predictor metho
e )(tr )(tx∆  is the state error 
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vector. From Figure 1, the state-space equation of controlled system can be presented as 

ethod: In according to this method, if an unknown delay term is constant but 
ded 

follows: 

)()()()( htrbktbutAxtx T −++=�                                                (6.3.2) 

where it is assumed that the model parameters m m mA , b , h  exactly coincide with the process 
parameters A, b and h. Therefore, the time-delay is moved outside the minor loop, which means 
that the design problem can be considered for delay free system. 
Thus, for example a linear controller: 

)()( txktu T−=                                                                        (6.3.3) 

where k is the gain n-vector parameter, can be designed by using one of the known design 
methods, for example by pole placement method. Then, the closed-loop delay-free system with 
desirable poles is given by 

)()()( txbkAtx T−=�                                                                       (6.3.4) 

Note that the time response of closed-loop system (6.3.2) depends on delayed input reference 
function r(t-h). Therefore, Smith predictor moved the time-delay from minor loop to major 
loop. Moreover, the Smith predictor needs to exact model of the process and it is sensitive to 
parameter variations. Details of advantages and disadvantages of Smith predictor design 
methods are discussed in above-mentioned references [70]-[75].    

Reduction m
0 h h< <boun , then delay-dependent stability conditions can be derived by using the 

state transformation [76]: following linear 

( )
1( ) ( ) (A t hz t x t e b uθ )

t
d

t h

− −= + ∫ θ θ                                                        (6.3.5) 

1 htub −+                                             (6.3.6) 

 the constant vectors. 

e reduced to following delay-free system: 

10 tubeb Ah−+                                  (6.3.7) 

r: 

                                                                      (6.3.8) 

s: 

                                                                (6.3.9) 

trix to be selected. 
(6.3.8) can be found as: 

tQzt                                       (6.3.10) 

−

for input-delayed system: 

()()( 0 tubtAxtx +=� )()

where  0b  and 1b  are

Then, (6.3.6) can b

)()( tubtAz
−

+=  ()()( tAztz +=� )()

where    10 bebb Ah−+= . 
−

This system can be stabilized by using delayed controlle

)()( tzktu −=            T

Choose a Lyapunov function candidate a

)()())(( tPztztzV       T=

where P is a positive definite symmetric ma
.7), Then the time-derivative (6.3.9) for (6.3

)
−−

−= zT(])( )()[( tzPkbAkbAPtzV TTTT −+−=� 0)()( <
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if the following Lyapunov matrix equation holds: 

<−= QPk TT                                        (6.3.11) 

n (6.3.11) holds. If we consider a case 
ertain but bounded 

()( −+−
−

bAkbAP T
−

0)

where Q is a positive definite symmetric matrix.  
Thus, controller (6.3.8) stabilizes (6.3.7) if the conditio

hh <<0where delay term is unc  then we can solve the following convex 
m: 

imize h 
                       

                                                                                     (6.3.12) 

which is a quasi-convex optimization problem. Hence it is possible to compute the maximum 
upper bound 

optimization proble

           OP: max
           Subject to LMI (6.3.11)  

                               and P>0           

h  using efficient convex optimization algorithms by Boid, Ghaoui, Feron and 
Balakrishnan [118]. 
In order to compute the maximum upper bound h  let us consider the following simple 
example. 

Example 7: Consider the first order input-delayed system 
)()()( htbutaxtx −=+�                                                           (6.3.13) 

where a and b are some constant scalars. 
By using a linear state transformation: 

                                             (6.3.14) 

input-delayed system (6.3.13) reduces to:  

                                                               (6.3.15) 

which can be stabilized by linear delayed controller 

                                                                        (6.3.16) 

Choosing a Lyapunov function as  

∫
−

−−−+=
t

ht

hta dbuetxtz θθθ )()()( )(

)()()( tbuetaztz ah+−=�

)()( tkztu =

)(
2
1 2 tzV =                                                                                    (6.3.17) 

the time-derivative of (6.3.17) for (6.3.15) can be found as  

                                                                   (6.3.18) 

Hence, the stability condition for (6.3.15) and (6.3.16) with known delay h>0 is trivial: 

                                                                                   (6.3.19) 

If we consider a case where h is unknown but bounded 

)()( 2 tzbkeaV ah−−=�

0>− bkea ah

hh <<0  then the upper bound can be 
obtained from (6.3.19) as follows 

a
bk
a

h
ln

=                                                                                          (6.3.20) 
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Thus, transformed system (6.3.15) is robustly stable for any hh <<0  with maximum upper 
bound h   (6.3.20). 

Reduction method combined with discontinuous VSC: Now, let us demonstrate how this 
idea can be used for the control of single input-delayed system of form (6.3.6) with matched 
external disturbances: 

0 1( ) ( ) ( ) ( ) ( )x t Ax t b= +�        (6.3.21) 

where 

u t b u t h f t+ − +                                 

( )f t  is an unknown but norm-bounded and matched external disturbance: 

)()( tfbtf = ;        0)( ftf ≤                                          (6.3.22) 

( )f t  is a scalar function, 0f  is a given scalar.  

By using reduction method input-delayed system (6.3.21) can be transformed to the delay free 
system (6.3.23).  

)()()()( tfbtubtAztz ++=
−

�                              (6.3.23) 

Then, we can utilize the following simple classical discontinuous sliding mode control 

                                                           (6.3.24) 

                                                            (6.3.25)  

where  is the switching function, c is a design n-vector, k is a relay gain vector, 

))(()()( tssigntzktu T δ−−=

)()( tzcts T=

)(ts δ  is a 
scalar to be determined. The sufficient conditions for the existence of the sliding mode are 
formulated in the following theorem. 

Theorem 8: Suppose that the matching condition (6.3.22) holds. Then an asymptotically stable 
sliding mode can always be generated on the sliding manifold 0)( =ts (6.3.25) defined for the 
transformed system (6.3.23) driven by variable tructure controller (6.3.24) if the following 
conditions are satisfied: 
 

 s

( )T T
Lc A bk cλ− =  T                              (6.3.26) 

 
( )0 0fδ − >                                                             (6.3.27Tc b ) 

 
where Lλ  is one of the left eigenvalues of the stable closed loop system matrix ( )TkbA− . 

Proof: The time derivative of the Lyapunov function candidate  

( ) 21( ) ( )
2

V s t s t=                               (6.3.28) 

along the trajectory of the system (6.3.23) can be calculated as follows:  
 

( ) ( ) ( ) ( ) ( )[ ( ) ( ) ( ( )) ( )]T T T T T TV s t s t s t c z t s t c Az t c bk z t c b sign s t c b f tδ= = = − − +� � �  
    
    ( )( ) ( ) ( ) ( ) ( )T T T Ts t c A bk z t c b s t c b f t s t  δ= − − +                         (6.3.29) 
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Now we can present the switching vector corresponding to one of the left eigenvector of the 
closed loop system matrix 

Tc
( )TkbA−  as stated in (6.3.26). 

Note that, design of the plane  does not imply assigning the eigenvalue 0)()( == tzcts T
Lλ ; it 

appears in proof of the theor  pointed by Ackermann 
nd Utkin [119]. Then (6.3.29) reduces to: 

em only and may take an arbitrary value as
a

. 2( ) ( ) ( ) | ( ) |T
oLV t s t c b f s tλ δ

−
≤ − −                               (6.3.30)                               

or  

1( ) ( )  | ( ) | 0s t s t s tµ< − <�                                 (6.3.31) 

since < 0; where  is a positive constant. Then, reaching time can 
be evaluated approximately as:  

)(2 tsLλ 1 ( )T
oc b fµ δ

−
= −

1

| (0) |
s

st
µ

≤                                (6.3.32) 

Therefore, the sliding surface is reached in finite words, the controller exists and 
makes the manifold asymptotic ally attractive in finite time. This 
ends the proof. 
If we consider a case where

 time. In other 
ally stable and glob( ) 0s t =

h<0 h time-delay is uncertain but bounded <  then we can solve 
the following convex optimization problem: 

      OP: maximize h 
             Subject to conditions (6.3.26), (6.3.27)                                     (6.3.33) 

In order to compute the maximum upper bou  

  

hnd  let us consider the following simple 
example. 

Example 8: Again consider simple input-delay  system (6.3.13) transformed to (6.3.15). 
Define the classical relay controller and switching function as: 
 

                                     
(6.3.34) 
 

                                                                        (6.3.35) 
 
where k and c are design constants. 
Closed-loop system can be written as  

                                                         (6.3.36) 

Sliding condition for (6.3.36) is given by 
2 −<+−= acbketscbketaststs ahah�

if   .                                  (6.3.38) 

Hence the maximum upper bound 

ed

))(()( tsksigntu =                          

)()( tczts =

))(()()( tsbksignetaztz ah+−=�

0)(2 <ts                                        (6.3.37) )( |)(|)()()(

0<− acbkeah

h  can be obtained as: 
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a
cbk
a

h
ln

=                                                                        (6.3.39) 

and, (6.3.36) is robustly stable for any hh <<0  with the upper bound (6.3.39).  
Thus, summarizing above mentioned design approaches we can conclude that these 
methods are very useful for many cases, but they cannot be directly used to treat the 
input-delayed systems. Therefore, a question arises whether it is possible to consider 
direct design of input-delayed system. 
In this section, a new sliding mode control design methodology for the single input-
delayed systems with known or unknown but bounded delays is proposed. This design 
method is based on the Lagrange mean value theorem. 
Remember that Lagrange mean value theorem [120], [121] is stated as follows 

baf
ab

afbf
<<′=

−
− ξξ    ),()()(

                                              (6.3.40) 

where  is a continuous at every point a, b] and differentiable at 
every point of its interior (a, b) o

)(xf of the closed interval [
r in terms of delayed control input 

)()()( θuhtuhtu �−=−                                                               (6.3.41) 

where θ  is a point in tht <<− θ . 
After introducing the θ  parameter, the constructive delay-dependent asymptotical stability and 
robustly stable sliding conditions can be derived by using the augmented Lyapunov-Krasovskii 
functionals method. Hence, it is possible to compute the maximum upper bound of the 
allowable time-delay h  using efficient convex optimization algorithms. Analytical and 
numerical design examples are considered to illustrate our design approach. The maximum 
upper bound of delay size is computed by using simple optimization algorithm. Note that such 
direct combined design methodology is introduced to the control theory for the first time. 
 
6.3.3 Main results: a new design methodology 

Now, after preparing the necessary back sent a new continuous sliding mode 
control design methodology for input-delayed s own but bounded 
delays. 
Again consider single-input del

ground we can pre
ystems with known or unkn

0>ayed system (6.3.1) with known = const  or unknown but 
bounded delay

h
 hh <<0  and initial condition )()( ttu φ=  for 0≤≤− th , where )(tφ  is a 

nown scalar function.  
elect a Zhou and Fisher type of continuous sliding mode controller as  

−=                                                                                   (6.3.42) 

n-dim ng linear function: 

k
S

u )()( tkst

where k is a constant gain scalar to be designed. Assume that linear sliding mode is defined in 
ensional state space by the followi

)()( txcts                                                                             (6.3.43) 

where c is a design n-vector to be selected. This linear control law must satisfy the sliding 
condition. 
Using the Lagrange mean value theorem (6.3.41) let us represent input-delayed system (6.3.1) 
as follows 
 

T=
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)]()([)()( θuhtubtAxtx �� −+=  )()()( θubhtbkstAx �−−= )()()( θskbhtbkstAx �+−=        
 
                 (6.3.44)  

 an asymptotically stable linear sliding mode on defined hyper plane 

)()()( θxkbhctbkstAx T �+−= )]()([)()( hbksAxkbhctbkstAx T −−+−= θθ
 
        )]()()()( 2 hbshbckAxkbhctbkstAx TT −−+−= θθ  
 
From (44) it is obvious that full delay term h already appears in transformed system. Now, our 
goal is to organize 0)( =ts  
(6.3.43). Stable slid
to make the followin

ing mode conditions are formulated in the following theorem. But, we need 
g assumption. 

Assumption 1: Time-delay parameter θ  is a time-dependent function and norm-bounded such 
that  

1)(10 <≤≤−< ηθη t�                               (6.3.45) 

where η  is a scalar. 
Note that assumption similar to (3.45) is used by many authors, for example, by Ikeda and 
Ashida [122], Su and Chu [123], Su, Ji and Chu [124], Wu, He, She and Liu [125], Kim [126] 
etc.  

Theorem 9: Suppose that Assumption 1 holds. Then the transformed time-delay system 
(6.3.44) driven by continuous sliding mode controller (6.3.42), (6.3.43), is delay-dependent 
asymptotically stable relative to the manifold 0)( =ts  (6.3.43), if there are design parameters 

,  c, , , k α β γ  and η  such that the following sliding conditions are satisfied:  

0

-            0                  0                                 0         

0      )-(1-              0                    )(
2
1

 0               0           )1(            
2
1  

0   )(
2
1    

2
1    b  

22

22

<

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−++−

=

γ

ηα

βηαηλ

λγβλ

bchk

bkhc

bchkbkhckc

H
T

T

TTT

                           (6.3.46)  

or  
 

Tk
c b

λ β γ+ +>                                (6.3.47) 

 
1 ηα β
η

<                                (6.3.48) 

 
T Tc A c

−

λ=                                (6.3.49) 
 
where  λ  is any left or right eigenvalue of matrix A; α , β  and γ  are some positive adjustable 
scalars. 

Proof: Choose an augmented Lyapunov-Krasovskii functionals as  

∫
−

                      +=−−
θ

θ

ζζαθθ
h

dstshtshsstsV )()(
2
1))(),(),(),(( 22 ∫∫

−

++
t

ht

t

dsds ϕϕγξξβ
θ

)()( 22     (6.3.50)         
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α , β  and γwhere  are some positive adjustable scalars. 
The time derivative of (6.3.50) along the state trajectory of (6.3.44) can be calculated as 
follows: 
 

( ) ( ) ( ) ( )t s s t s t hθ β θ γ γ− + − −    

) ( ) ( ) ) ( ) ( )

2 2 2 2 2 2( ) ( ) ( ) ( ( ) ( )) ( )V s t s t t s s h s tθ α θ θ β= + − − +� �� �
       

   
2 2 2 2( )[ ( ) ( ) ( ) ( ) ( )] ( ) ( ) ( )T T T T Ts t c Ax t kc bs t khc bc Ax k h c b s h s t s t hθ θ β γ γ= − + − − + + − −

2 2 2( ( ( )t s sαθ θ α θ θ θ βθ θ+ − − −� �
    (6.3.51) 

t s h t�
 
Since 
 

2 2( ) ( ) ( )t s sθ θ η θ≤�                               (6.3.52) 
 

−                            (6.3.53) 

2

s t kc bs t khc b s s t k h c b s h s t s t

s h s s h s s t h

kc b s t khc b s s t k h c b s t s h s

s h

θ θ β γ

γ θ ηα θ η α θ η β θ γ

2 2( ) ( ) (1 ) ( )t s h s hθ θ η θ− − ≤ − −�  
 
nd (6.3.49) hold, then (6.3.51) reduces to a

 
2 2 2 2 2

2 2 2 2 2

2 2 2

2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) (1 ) ( ) (1 ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( (1 ) ) ( )

(1 ) (

T T T

T T T

V λ λ

λ β γ λ θ θ ηα η β θ

η α θ

− + − − + +

− − + − − − − − − −

+ + + − − + − −

− − −

�

2) ( )s t hγ− −

         

T

s

≤

= −

 
( )s t

    
( )

( )

( )

s h

θ

θ

⎢ ⎥
⎢ ⎥

⎢ ⎥
⎢ ⎥

−

s t h
⎢ ⎥
⎢ ⎥
⎣ ⎦−

⎡ ⎤
⎢ ⎥

⎢ ⎥
⎢ ⎥=

2 21 1  b         
2 2

            (1 )            0              0 

1 )               0            - (1 )      0

T T T

T

kc kh k h

b

k b

λ β γ λ

λ αη η β

α η

− + + −

− −

− 2 2(         -h c

( )    0c b c b

1  
2

Tkhc

2
         0                                0                  0            -γ

⎡ ⎤

⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥

s t
⎢ ⎥
⎢ ⎥  ( )s

 

  ( )⎡ ⎤
⎢ ⎥

θ
⎢ ⎥
⎢ ⎥⎢

⎢

⎢ ⎥
⎣ ⎦ ( )

( )s h

s t h

θ

⎢ ⎥
⎢ ⎥
⎢

 
⎥

⎢ ⎥
−

⎢ ⎥
⎢ ⎥
⎣ ⎦−

 
    0)()()()( 2

min <−<= tyHtHytyT λ                            (6.3.54) 
 
where ( )   ( )      ( )      ( )     ( ) Ty t s t s s h s t hθ θ⎡ ⎤⎣ ⎦= − − . 

Note that matrix H  has its own quadratic structure TMMHH 1=  

where  
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1

                 0                    0           0
              0                  (1 )         0            0 
              0                           0              - (1- )     

Tkc b

H

λ β γ
αη η β

α η

+ + −
− −=

0
              0                           0                    0           -γ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎥⎦

,   

⎢⎣
 

2 2 0.5 ( )  0.5  1                            0
(1 ) (1 )

  0               0                      0                1                     

k h c bkh c b

M

λ
αη η β α η− − −

=
    0

            

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎥

 
Since M s a nonsingular and lways negative 

TT

  0                   0                              1                   
⎢ ⎥
⎢
⎢ ⎥  0                   0                  0                       1⎣ ⎦

 i 1 0<  because its leading principle elements are aH
then 0H < . Therefore, condition (6.3.54) means that manifold ( ) 0s t =  is reached in finite time 
and the reaching time can be evaluated approximately as follows: 

min

(0)
( )s

y
t

Hλ
≤                                  (6.3.55) 

Thus, the time-delay system (44) with known delay is delay-dependent as
If we consider a case where the delay term is unknown but bounded 

ymptotically stable.  
hh <<0  then we can 

lve the following convex optimization problem: 

his ends the proof of Theorem 9. 

mple analytical example to illustrate our design approach. 

Again consider the simple input-delayed system (6.3.13). Define a continuous 
g mode controller as follows. 

                                                                        (6.3.57)  
 

cx t=                                                                               (6.3.58) 

here k and c are the  design scalars. 
(41) with (57) and (58) into (13) we have 

so
           OP: maximize h   
                  Subject to conditions (6.3.46)                            (6.3.56) 

T

Let us consider a si

Example 9: 
slidin
 
 ( ) ( )u t ks t= −

( ) ( )s t
 
w
Substituting  
 

)()()( htbutaxtx −+−=� )()()( θubhtbutax �−+−= ( ) ( ) ( )ax t bks t bhks θ= − − + �  
 

        ( ) ( ) ( )ax t bks t bhkcx θ= − − + � 2 2( ) ( ) ( ) ( )ax t bks t abhkcx b hk cs hθ θ= − − − − −            (6.3.59)    

Then the time-derivative of (6.3.50) alon  (6.3.59) is given by  
 

  
        2 2( ) ( ) ( ) ( )ax t bks t abhks b hk cs hθ θ= − − − − −  
 

g

2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )V s t t t s s h s t t s s t s t hθ α θ θ β θ β θ γ γ⎡ ⎤s ⎣ ⎦�= +

 
− − + − + − −� ��  
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2 2 2 2

2 2 2 2 2

( )[ ( ) ( ) ( ) ( )] ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

s t acx t bkcs t abchks b c hk s h t s

t s h s t t s s t s t h

θ θ θ α

θ α θ β θ β θ γ γ

= − − − − − +

− − + − + − −

�

� �
  

θ

2 2) ) (1 ) ( )s s hαη β η α η+ + − −
         (6.3.60) 

s

    

 

    
( ) 2 2 2 2( ) ( ) ( ) ( ) ( )a bck s t abchks t s b c hk s t s hβ γ θ θ≤ − − + + − − −

                            
( ) 2(1 ( ( )s t hθ θ γ− − − −

 
( ) Ts t

    
( )

( )

( )

s h

⎡ ⎤

⎢ ⎥
⎢ ⎥

⎢ ⎥
⎢ ⎥
s t h⎢ ⎥
⎣ ⎦−

θ

θ
⎢ ⎥
⎢ ⎥

=
−

⎢ ⎥
⎢ ⎥

2 2 2

2 2 2

1 1  bck a− − +⎡
⎢     -           0

2 2
1  -              

                0            - (1-       0
2

abchk b c hk

abchk

b c hk

β γ

αη

α η

+ −

−

      0              -γ

⎤
⎥

⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥

⎦

( )

( )

s t

(1 )          0              0 η β−
⎢ ⎥
⎢ ⎥  ( )s

 

  ( )

θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

2
1

⎢
⎢ s h

s t h

θ   )   −

         0                            0          ⎣

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

−

−

    

 
 

0)()()()( 2
min <−<= tyHtyHtyT λ      

 
or the ’s conditions hold: 
 

 following Sylvester

0|| 1 <++−−= γβabckH  or γβ ++−> abck    with 0>+γβ                         (6.3.61) 
 

[ ][ ] 0)(
4
1 )1(| 2

2 <−−+++−−= abchkabckH ηβαηγβ                          (6.3.62) |

 
3| | 0H <  and 4| | 0H <  r

en, time-delay system (6.3.59) with known h is delay-dependent asymptotically stable relative 
to the 
If we consider a case where h is unknown but bounded 

espectively,  

th
( ) 0s t = . 

hh <<0  then the maximum upper 
ound can be calculated as follows. b

From min 0 || <H  (6.3.62) we compute  2

[ ] 0)(
2
1)1( 2

2
=−−+−=

∂

∂
kabchabc

k

H
ηβαη                             (6.3.63) 

Hence,  2

2 (1
( )

bc
h

k abc
)αη β η⎡ ⎤⎣ ⎦− + −

=                 (6.3.64) 

ith (1 ) 0αη β η+ − < , 0bc > . w

Thus, tim em .59) with u nown but ded delay term is robue-delay syst  (6.3 nk boun stly 
the 0)( =ts with upper bound hasymptotically stable relative to  (6.3.64). 

mple 10: Helicopter hover control Design Exa
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The linearized longitudinal motion of helicopter near hover (see Fig. 6.3.2) can be modeled by 
the normalized linear third order system [127] with pilot time-delay h [128] as follows: 

)δ
− −

= + −
− −

�
�
�

  

h

 is the pitch rate, 

0.4 0 0.01 6.3
1 0 0 0 (
1.4 9.8 0.02 9.8

q q
t h

u u
θ θ
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

                         (6.3.65) 

⎢ ⎥⎣ ⎦

w ere  

q
θ  is the pitch angle of fuselage, 

 is the horizontal velocity (standard aircraft notation), u
 is the rotor tilt angle (control variable), 

e pilot’s effective time- delay, for example, 
δ
h  is th 0.43h =  s. 

Continuous sliding mode controller is formed as (6.3.42): 

ks t= −                                (6.3.66) 

where  is a scalar to be designed by (6.3.47) and sliding function is defined as (6.3.43): 

( ) ( )u t

k

1 2 3( )s t c q c c uθ= + +                                 (6.3.67) 

where  are design parameters to be determined. 
esign procedure can be fulfilled with MATLAB programming (which is given in A1) by the 

eps: 

• )    0. 83 + 0.3678i
⎡ ⎤
⎢ ⎥
⎢ ⎥=  

e with one pear conjugate complex-roots. 

• Calculate matrix (46): 

,       

 is a negative definite matrix. 

 c1 =

• alpha =  0.2000 
• beta =0.0200 

 cTb = -10.02

1 2 3, ,c c c
D
following st

  -0.6565          
( 11eig A

   0.1183 - 0.3678i⎢ ⎥⎣ ⎦
A is unstabl

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0.3000-     0              0              0       
0       0.1820-       0         0.0034- 
0          0         0.1640-    0.0177   
0       0.0034-   0.0177    0.0313- 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0.0289-
0.1663-
0.1821-
0.3000-

)(Heig        H

H

 -0.0389 •
• c2 =  0.0592 
• c3 = -0.9975 
• k =  0.0125 
• h =  0.4300 
• eta =  0.0900 

• gamma = 0.3000 
• hmax = 1.714 

04 •
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Thus all design parameters are calculated. Maximum upper bound of time delay, hmax = 1.714, 
is found from condition (6.3.46). A block diagram of continuous sliding mode controller for 
helicopter input delayed system (6.3.1), (6.3.42), (6.3.43) or (6.3.65), (6.3.66), (6.3.67) is 
shown in Fig. 6.3.3. This system is simulated by using MATLAB-Simulink. Continuous sliding 

de controller is performed by linear Simulink blocks  and . Note that, these are not 
ariable structure blocks, but linear blocks satisfying the sliding condition (6.3.54). Helicopter 

 performances are shown in Fig. 6.3.4, from which can be seen that unstable helicopter 
dy ics is successfully ear sliding mode controller. For example, 
settling time is out 20  about 20 sec. Therefore, simulation results 

fulness of the develope  design methodology. 

er Smith predictor control 
ow let us Smith predictor control (see Fig. 6.3.1) example for the same unstable helicopter 

dy Multivariable block diagram is shown in Fig. 6.3.5. Helicopter control 
ystem (6.3.2) and (6.3.3) with parameters (6.3.65) is simulated. Controller (6.3.3) gain 

calculated by using MATLAB programming command, which is given in A2: 
Design parameters are cal

e1 = -0.0389 

 = 

Simulation resul
r dynamics, because the model 

thod, reduction method and reduction method combined with classical 
discontinuous sliding mode c ntrol iscussed and presented as some 

r liminary results. A new continuous slidi esign methodology based on 
agrange mean value theorem is proposed for stabilization of single input delayed systems. The 

Lagrange mean value theorem as a basi  of ca ulus i
sliding mode time-delay controller for the first time. This co
ondition using a Zhou and Fisher type continuous control law eliminating the chattering effect. 

dependent asymptotically stable sliding conditions are obtained by 
yapunov-Krasovskii functionals and formulated in terms of simple 

)-matrix inequalit ele pproach can be extended to 
ut bounded input delay. These 
al and numerical design examples 

 upper bounds of delay 
size are found by using simple optimization algorithms. Helicopter hover control is considered 
as fifth design example for illustrating the performances of smooth slidi
Smith predictor control. Unstable helicopter dynamics are successfully stabilized by using 

20 sec. Smith 
meters 
design 

)(ts )(tumo
v
control

nam  stabilized by using lin
ab  sec. Reaching time is also

confirmed the use d  

Example 11: Helicopt
N

namics (6.3.65). 
s
parameter is 

culated as follow: 

e2 = 0.0592 
e3 = -0.9975 
P
   -0.1555 
   -0.2369 
   -3.9899 
K = 
    0.6279    0.2531    0.0007 

ts are presented in Fig. 6.3.6. From which can be seen that Smith Predictor 
control, also, successfully stabilizes the unstable helicopte
parameters are known. 
 
6.3.4 Conclusions 

he Smith predictor meT
o approaches are d

e ng mode control dp
L

c theorem lc s used for the design of linear 
ntroller satisfies the sliding 

c
The constructive delay-
using the augmented L
( 44× y with scalar ments. Developed design a
robust stabilization of sliding system with unknown b
contributions are the main results of the paper. Four analytic
are considered to illustrate the various design approaches. The maximum

ng mode approach and 

linear sliding mode time-delay controller. For example, settling time is about 
predictor control result, also, is very well, because for considered example model para
are known. Therefore, simulation results confirmed the effectiveness of the proposed 
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methodology. Apparently, the proposed method has a great potential in design of time-delayed 
controllers. 
 
A1 
clear; clc; 
A = [-0.4 0 -0.01; 1 0 0; 
     -1.4 9.8 -0.02]; 
[V,D] = eig(A); 
D     = diag(D) 
% selection according to case a): 
lamda_L = D(1) 
c1    = V(1,1) 
c2    = V(2,1) 
c3    = V(3,1) 
h     = 0.43 
eta   = 0.09 
alpha = 0.2 
beta  = 0.2 
gamma = 0.3 
c_T   = [c1 2 ; c  c3]
b     = [6.3; 0; 9.8]; 
k     = 0.8*(lamda_L+beta+gamma)/(c_T*b) 
h_max = 1.714 % delay 
cTb   = c_T*b 
h11 = lamda_L-k*c_T*b+beta+gamma 
h22 = alpha*eta-(1-eta)*beta 
h33 =-alpha*(1-eta) 
h44 = -gamma 
H1 = [ lamda_L-k*c_T*b+beta+gamma; 
       0.5*k*h*c_T*b*lamda_L; 
      -0.5*k^2*h*(c_T*b)^2; 0]; 
H2 = [0.5*k*h*c_T*b*lamda_L; 
      alpha*eta-(1-eta)*beta; 0; 0]; 
H3 = [-0.5*k^2*h*(c_T*b)^2; 0; 
   -alpha*(1-e ;   ta)  0]; 
H4 = [0; 0; 0; -gamma]; 
H  = [H1 H2 H3 H4]; 
eig_H = eig(H) 
 
A2 
A=[-0.4 0 -0.01; 1 0 0; -1.4 9.8 -0.02]; 
b=[6.3; 0; 9.8]; 
[V D, ]=eig(A); 
e1=V(1,1); 
e2=V(2,1); 
e3=V(3,1); 
P = [4*e1; -4*e2; 4*e3]; 
K = place(A,b,P)
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Figu . e predictor control scheme re 6 3.1 Modified Smith state spac
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Figure 6.3.2 Helicopter 
 
 

 
 

  Figure 6.3.3 Block diagram of linear sliding mode controller for input-delayed system 
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a) State time responses 

 

 
    b) Linear sliding mode control function 

 

 
c) Sliding function 

 
 

Figure 6.3.4 Smooth sliding mode control 
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  Figure 6.3.5 Smith predictor for helicopter control 
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x(t)                                                                          

 
    a) Smith predictor time response 

 
 

   ∆x(t)  

 
    b) Feedback error time response 

 
 

  u(t) 

 
c) Smith control 

 
Figure 6.3.6 Smith predictor control 
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6.4 Robust stabilization of uncertain input-delayed systems by a new modified reduction   
method: an easy way 

 

An easy way to robust stabilization of multivariable input-delayed systems with unmatched 
parameter uncertainties is considered. A new modified reduction method is developed to overcome 
some of inherent issues in the usage of the conventional reduction method. Then, the transformed 
delay-free system can be stabilized by proposed linear controller, which is designed by using only 
conventional Lyapunov V-function method. Global stability conditions are formulated in terms of 
algebraic Riccati equations and some matrix inequalities. For the comparison analysis, a simple 
memoryless linear controller for robust stabilization of original time-delay systems with unmatched 
parameter uncertainties is also designed by using a conventional Lyapunov-Krasovskii V-
functional method. This analysis shows that the stability results of both approaches are coordinated. 
Two numerical examples with sim ch show e effectiveness of our 

 

Rem

som

How

stab

fun

Chu

ulation results are given whi th
design approach.
 
6.4.1 Introduction 

It is well known that major engineering systems for example, conventional ail-chemical process 
control, engine control and human-pilot control system contain a time-delay and parameter 
uncertainties which induced several known issues in design of robust systems. Therefore, the 
problem of robust stabilization of time-delay systems with parameter uncertainties still has received 
considerable attention by control researches. 
An easy way of dealing input-delayed systems is to reduce them into delay-free ordinary systems 
by using well known reduction method (Kwon and Pearson, 1980) [183]. Then, the transformed 

ar delay-free systems can be analyzed by using a conventional Lyapunov V-functiline on method 
and designed for example by pole-placement. This is an advantage of the reduction method. 

ember that, unstable system also can be stabilized by reduction method. However, the 
reduction method suffers from a weakness that the complete reduction to a delay-free system is 
only possible with an exact model parameters of the system. Hence, parameter uncertainties may 

etimes cause problems in using the reduction method [184]. 
Robust stabilization problem for multiple input-delayed system with matched parameter 
uncertainties using the reduction method is considered by Moon, Park and Kwon (2001) [184]. 

ever, an original time-delay system can not be completely reduced to a delay-free system due 
to existence of parameter uncertainties and some delay term. For this reason especially selected two 
Lyapunov-Krasovskii functionals are introduced to be considered. Then, global asymptotical 

ility conditions for transformed mixed time-delay system are formulated in terms of LMI’s of 
new state variables z(t) and z(t-h) which can be solved using convex optimization methods. Clearly 
that this combined way is a long way, at least it is not an easy way, whereas Lyapunov-Krasovskii 

ctional method itself is another useful way to robust stabilization of original time-delay systems 
 parameter uncertainties [185]with , [186], [187]. Some linear memoryless controllers for 

stabilization of time-delay systems with matched parameter uncertainties are designed by Choi and 
ng (1995) [188], Kim, Jeung and Park (1996) [189], Su, Chu and Wang (1998) [190], 
moud and Muthairi (Mah 1999) [191] etc. using Lyapunov Krasovskii V-function method. 

Memoryless controllers have merit that they are easy to implement. In general, an overview of 
e recent advances and open problems in time-delay systems som are given by Richard (2003) [192] 

and [193]. 
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In this section, an easy way to robust stabilization of multivariable input-delayed systems with 
atched parameter uncertainties is considered. A new modified reduction methounm d is developed 

tran esigned 

in te
sim riginal time-delay systems with 

V-f
Thi
exa re given which show the effectiveness of our design approach. 

6.4.

des

wit

to overcome some of inherent issues in the usage of the conventional reduction method. Then, the 
sformed delay-free system can be stabilized by proposed linear controller, which is d

using only conventional Lyapunov V-function method. Global stability conditions are formulated 
rms of algebraic Riccati equations and some matrix inequalities. For the comparison analysis, a 

ple memoryless linear controller for robust stabilization of o
unmatched parameter uncertainties is also designed by using a conventional Lyapunov-Krasovskii 

unctional method. 
s analysis shows that the stability results of both approaches are coordinated. Two numerical 
mples with simulation results a

 
2 Preliminaries and problem statement 

For better understanding the reduction method first let us consider a nominal input-delay system 
cribed by the following equation: 

)()()()( 10 htuBtuBtAxtx −++=�                         (6.4.1) 

h initial conditions 0(0)x x=  and ( ) ( )u t tφ=  for 0h t− ≤ ≤ , A and B are nominal constant 
rices, 0h >  is a constant time-delay.mat l reduction method proposed by Kwon  The conventiona

and Pearson (1980) [183] suggests the following linear state transformation 
t

∫ −−+= htA duBetxtz θθθ )()()( 1
)(                         (6.4.2) 

−

The e ordinary system: 

ht

n, input-delayed system (6.4.1) can be transformed to following delay-fre
 

( )
1( ) ( ) ( )A t hz t x t e B u ddt

θ
td

t h
θ θ− −= + ∫��      

−

 

       ( ) ( )( ) ( ) ( ) ( ) | ( )
t

A t h A t ht
0 1 1 1t h

t h
Ax t B u t B u t h e B u A e B u dθ θθ θ θ− − − −= + + − + + ∫  −

−
t

       ( )
0 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )A t hAh

t h
Ax t B u t B u t h e B u t B u t h A e B u dθ θ θ− −−

−

= + + − + − − + ∫  

 
       )()()( 10 tuBeBtAz Ah−++=                                    (6.4.3) 
 
or    ( )z t� ( ) ( )Az t Bu t= +                                           (6.4.4) 

re  whe

10 BeBB Ah−+=                                    (6.4.5) 

Then a linear controller  

( ) ( )u t Kz t= −                                      (6.4.6) 
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can be used for stabilization of complete delay-free system (6.4.3). The gain matrix K can be freely 
sen using any design method for cho example pole placement. This approach is extended for 

Kw ed system again is 

unc iding these 

ineq s, 1985) [194] are used. The stability results 

Thu ation similar to (6.4.2) 

dela ation for above-

con

6.4.

 

stabilization of input-delayed system with matched parameter uncertainties by Moon, Park and 
on, (2001) [184]. However, as mentioned in Section 6.4.1 the transform

obtained in terms of old and new state variables x(t), z(t), because of existence of parameter 
ertainties. Moreover, the transformed system is a time-delay system. For avo

difficulties two special selected Lyapunov-Krasovskii functional combined with inner-product 
uality and integral inner product inequality (Noldu

are formulated in terms of LMI’s of new state variables z(t), z(t-h). This approach is a long way. 
s, a question arises that whether exist a new modified state transform

which can be reduced the original input-delayed system with parameter uncertainties to complete 
y-free system. A main goal of this paper is to find a new linear state transform

mentioned class of systems after that a robust linear controller can be designed by using easy and 
venient methods. 

 
3 A modified reduction method 

Consider the following input-delayed system with parameter uncertainties 

0 1( ) ( ( )) ( ) ( ) ( )x t A A x t B u t B u t hσ= +∆ + + −�                                    (6.4.7)  

                                                                              

where in addition to (1) )(σA∆  is a parameter uncertainty. It is assumed that  

maxmax ( ) max ( ( ) ( ))A A A
σ σ

Tσ λ σ σ α∆ = ∆ ∆ =                                    (6.4.8)                               

 

Our goal is to design a linear controller such that it robustly stabilizes the transformed input-
delayed system for all admissible uncertainties.  
Let us consider a modified linear state transformation 

( max ( ) )( )) ( ) ( )n
t A A I t hx t e B u dσ

σ θ
1

t h
θ θ+ ∆ − −

= + ∫                  (z t
−

                  (6.4.9) 

whi
(6.4 ormed to following mixed delay-free system: 

z t

  

ch is the key point of this method. Then, in according to (6.4.3), the input-delayed system 
.7) can be transf

 
( )( )( ( )) ( ) ( ) ( ) ( ) |nA I t h tA A x t B u t B u t h e B uα θσ θ+ − −( ) 0 1 1 t h= +∆ + + − +� −

 

( )( )
1( ) ( )n

t
A I t h

n
t h

A I e B u dα θα θ θ+ − −

−

+ + ∫
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t

( )
0 1 1( ( )) ( ) ( ) ( ) ( )nA I hA A x t B u t B u t h e B u tασ − += +∆ + + − +

 

( )( )
1 1( ) ( ) ( )nA I t h

n
t h

B u t h A I e B u dα θα θ θ+ − −

−

− − + + ∫
 

  ( )( ) ( )( )
t

A I t h A I hA x t e α θ α+ − − − +
⎡ ⎤
⎢= + ∫     B u d B e B u tθ θ ⎡ ⎤⎥1 0 1

t h−
⎣ ⎦

( ) ( )n n

⎢ ⎥⎣ ⎦
+ +  

 

       ( )( )
1( ) ( ) ( )nA I t h

t h

t
A x t e B u dα θσ α θ θ+ − −

−

+∆ + ∫  

 
( )( )

1) ( ) ( ) ( ) ( ) ( )n

t
A I t h (z t

t h

Az t Bu t A x t e B u dα θσ α θ θ+ − −= + + ∆ + ∫                    (6.4.10) 
−

 
)( hIA nα+−

�

Let

tu

6.4.11) is robustly 

suc definite solution 

where 10 BeBB +=   

 us select the linear controller as follows: 

)() tPzkBT−=                         (6.4.11) (

where P  is a symmetric positive-definite matrix, k is  a  scalar gain to be selected. 
The stabilization conditions are presented in the following theorem. 

Theorem 10: The mixed delay-free system (6.4.10) driven by linear controller (
globally asymptotically stable, if there exist positive definite matrices P, Q, R and a scalar gain k 

h that the following algebraic Riccati equation has a positive 

QPkPBBPAPA TT −=−+ 2 , 0>= TQQ                      (6.4.12a) 

and holds max 13 ( ) nQ P I Rαλ− = ,  1 1 0TR R= >                    (6.4.12b) 

ollecting in one equation  or c

                            

zV

whe
The time derivative of (6.4.13) along (6.4.10) is given by 

1max )(32 RIPPkPBBPAP n
TT −=+−+ αλ                    (6.4.12c)   A

Proof: Choose a Lyapunov function candidate as follows 

)()())( tPztzt T=                         (6.4.13) (

re P is a symmetric positive definite matrix. 

 

])()(max)()([ )(2)())(( 1∫ ))(( −−+
t

htIATTT θα

−

      .4.14) 
 

∆+∆++=
ht

duBeAtxAPtztzPAPAtzV n θθσσ
σ

�  

 
 )()(2 tPzPBBtkz TT− )()( )(2)()2)(( txAPtztzPkPBBPAPAtz TTTT σ∆+−+=                        (6
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       ( )( )
12 ( ) max ( ) ( )n

t
A I t hT

t h

z t P A e B u dα θ
σ

σ θ θ+ − −

−

+ ∆ ∫  

 
Since the following very well known Schwarz’s inequalities hold 
 

max2 ( )  ( ) ( ) 2 ( )max ( ) ( ) ( )Tz t P A x t P A z t x t
σ

σ λ σ∆ ≤ ∆                                  (6.4.15) 

 
( )( )

1( ) max ( ) ( )n

t
A I t hT t P A e B u dα θ2z

t h
σ

σ θ θ+ − −∆ ∫  
−

 
( )( )

max 12 ( )max ( ) ( ) ( )n

t
A I t h

t h

P A z t e B u dα θ
σ

λ σ θ θ+ − −

−

≤ ∆ ∫    (6.4.16)                                                        

 
Then, using notation (6.4.12a) and rearranging (6.4.14) we have 
 

max( ( )) ( ) ( ) 2 ( )max ( ) ( ) ( )TV z t z t Qz t P A z t x t
σ

λ σ≤ − + ∆�

                      (6.4.17) 

( )( )
max 12 ( )max ( ) ( ) ( )nA I t h

t h

t

P A z t e B u dα θ
σ

λ σ θ θ+ − −

−

+ ∆ ∫
 

whe

Since        2 22ab a b≤ +                                     (6.4.18) 

re a and b are some scalars. 

Therefore  
2 22 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T Tz t x t z t x t z t z t x t x t≤ + = +                                    (6.4.19) 

 

( )( )
12 ( ) ( ) ( ) ( )nA I t h T

t h
z t e B u d z t z tα θ

t
θ θ

      

+ − −

−

≤∫   

 

                                        ( )( ) ( )( )
1 1( ) ( )n n

Tt t
A I t h A I t he B u d e B u dα θ α θ

t h t h
θ θ θ θ+ − − + − −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ ∫ ∫   (6.4.20) 
− −⎣ ⎦ ⎣ ⎦

 

⎢ ⎥ ⎢ ⎥

⎥⎦⎦

   

Then, 
 

max max( ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T TV z t z t Qz t P z t z t x t x t P z t z tαλ αλ⎡ ⎤ ⎡⎣ ⎦ ⎣≤ − + + +�

( )( ) ( )( )
1 1( ) ( )n n

Tt t
A I t h A I t h

t h t h

e B u d e B u dα θ α θθ θ θ θ+ − − + − −

− −

⎤⎡ ⎤ ⎡ ⎤
⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢⎣ ⎦ ⎣
+ ∫ ∫ ⎥
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( ) ( ) 2 ( ) ( ) ( ) ( )T Tz t Qz t P z t z t P xαλ αλ

           
max max

( )( ) ( )( )
1 1( ) ( )n n

Tt t
A I t h A I t h

t h

e B u d e B u dα θ α θ

( ) ( )T

t h

t x t⎡= − + + ⎣
                              (6.4.21) 

θ θ θ θ+ − − + − −

−

⎤⎡ ⎤ ⎡ ⎤

−

⎥⎢ ⎥ ⎢ ⎥
⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

+ ∫ ∫
⎦

Mo
 

reover, 

)()( wvwvwwvv TTT ++≤+    for    0v w+ ≠  

where v and w are some vectors.  

Therefore, 
 

( )( ) ( )( )n n

Tt t
A I t h A I t hT

1 1( ) ( ) ( ) ( )
t h t h

x t x t e B u d e B u dα θ α θθ θ θ θ+ − − + − −⎡ ⎤ ⎡ ⎤
+  

− −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ∫

 

     (
Tt t

      1 1) ( ) ( ) ( ) ( ) ( )
t h t h

( )( ) ( )( )n nA I t h A I t h Tx t
⎡ ⎤ ⎡ ⎤
⎢≤ e B u d x t e B u d z t z tθ θ θ θ

− −
⎥ ⎢ ⎥α θ α θ+ − − + − −

⎢ ⎥

 

 

⎢ ⎥⎣ ⎦ ⎣ ⎦
+ + =∫ ∫        (6.4.23) 

 
Then, (6.4.21) reduces to: 

max max( ( )) ( ) ( ) 2 ( ) ( ) ( ) ( ) ( ) ( )T T TV z t z t Qz t P z t z t P z t z tαλ αλ≤ − + +�

max 1( ) 3 ( ) ( ) ( ) ( ) 0T Tz t Q P z t z t R z tαλ⎡ ⎤⎣ ⎦= − − = − <
                                           (6.4.24) 

if satisfied (6.4.12a) and (6.4.12b) or (6.4.12c). 
refore, mixed delay-free system (6.4.10), (6.4.11) is robustly globally asymptoticallyThe  stable. 

Theorem 10 is proved. Now, let us consider an alternative proof of Theorem 10. 
ond proof: From (6.4.9): Sec

( max ( ) )( )
( ) ( ) ( )n

t
A A I t h

B u d z t x tσ
σ θ

1
t h

e
−
∫                 (6.4.25) θ θ

 

+ ∆ − −
= −      

Then, (14) can be rewritten as follows: 

( ))()()(max)(2)()( )(2)()( ztxAPtztQztz TTT +∆+− σ txtzAPtV −∆= σ�                  (6.4.26) 
σ

 
    max( ) ( ) 2 ( ) ( ) ( ) 2 ( ) ( ( ) ( ))T Tz t Qz t P z t x t z t P z t x tαλ α≤ − + + −  

e, 
 
Sinc

max max( )  (z ) ( ) ( )Tz t P x P z z x P z z xλ λ− ≤ − ≤ −                                  (6.4.27) 
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0 z x z x< − ≤ −                                   (6.4.28) because [195]:    

Then, (26) reduces to: 
 

. 2( ) ( ) 2 ( ) ( ) ( )  2 ( ) ( ) 2 ( ) ( ) ( )TV z t Qz t P z t x t P z t P z t x tαλ αλ αλ≤ − + + −max max max

  =

whe

max 2n⎣ ⎦
 

re  

( ) 2 ( ) ( ) ( ) ( ) 0T Tz t Q P I z t z t R z tαλ⎡ ⎤− − = − <
              (6.4.29) 

max2 2 ( ) nR Q P Iαλ= −     and  2 1 0R R> >                                  (6.4.30) 

ce system (6.4.10), (6.4.11) is robustly globally asymptotically stable. Therefore, an easy way Hen

New
inp  (6.4.7) by using conventional Lyapunov-Krasovskii functional method. For 

The riven by 

con

(

is fixed soundly because the results of two different ways coincide. 
 
6.4.4 Comparison analysis: Lyapunov-Krasovskii functional approach 

, for the comparison analysis let us consider the robust memoryless stabilization of the original 
ut-delayed system

which let us select a linear controller as 

0( ) ( )Tu t B Px tκ−             (6.4.31) 

Then, robust stability conditions can be presented as follows. 

orem 11: The input-delayed system (6.4.7) with unmatched parameter perturbations d
memoryless linear controller (6.4.31) is robustly globally asymptotically stable, if the following 

ditions are satisfied: 
 

ma0 0 32 2 )T T
nxA P PA PB B P P I R Rκ αλ+ − + + = −                      (6.4.32) 

⎡
 

⎤

 

Pro

3 1 0

1 0
0T

R PB B P
H

PB B P R
κ

κ
⎢ ⎥
⎢ ⎥⎣ ⎦

= >                                             (6.4.33a) 
T

or its Schur complement
2 1

3 1 0 1 0 0T TR PB B PR PB B Pκ −− >                                 (6.4.33b) 

where P, R and R3 are positive definite symmetric matrices. 

of: Choose a Lyapunov-Krasovskii functional candidate as follows: 

( ( )) ( ) ( ) ( ) ( )
t

T T

t h
V x t x t Px t x Rx dθ θ θ

−

= + ∫                                  (6.4.34) 

where P and R are positive definite symmetric matrices to be selected. 
Then, the time-derivative of (6.4.34) along (6.4.7), (6.4.31) can be calculated as follows: 

( ), ( )) ( )( ) ( ) 2 ( ) ( ) 2 ( ) (T T T T Tt x t h x t A P PA x t kx t PB B Px t x t P A− = + − + ∆
.

0 0( ) ( )V x x tσ  
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1 02 ( ) ( ) ( ) ( ) ( ) ( )T T T Tkx t PB B Px t h x t Rx t x t h Rx t h− − + − − −                                                   (6.4.35) 

Since, 
2

max max( ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( ) ( )T T2x t P A x t P x t P x t x tσ αλ αλ∆ ≤ =                                (6.4.36) 

Then, 
 

 

                         

max0 0

,
1 0

( ( ), ( )) ( )( 2 2 ( ) ) ( )

2 ( ) ( ) ( ) ( )

T T T
n

T T T

V x t x t h x t A P PA kPB B P P I R x t

kx t PB B Px t h x t h Rx t h

αλ− ≤ + − + +

− − − − −
 

3 1 0

1 0

( ) ( )
( ) ( )

( ) ( ) 0
( ) ( )

T T

T

T

R PB B Px t x t
x t h x t hPB B P R

x t x tH
x t h x t h

κ
κ
⎡ ⎤⎡ ⎤ ⎡
⎢ ⎥⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢⎣ ⎦ ⎣⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

= −
− −

= − <
− −

 

⎤
⎥
⎥⎦

                             (6.4.37) 

 
if the conditions (6.4.32) and (6.4.33) are satisfied. 

Therefore, original time-delay system (6.4.7), (6.4.31) is robustly globally asymptotically stable. 

6.4.5 Example 12 

Consider the following input-delayed system with parameters given by (Cheres, Palmer and 
Gutman, 1990) [196]. 

                     (6.4.38) 

Where 

,    ,    

( )
.

1( ) ( ) ( ) 0.2x t A A x t B u t= +∆ + −  

0 1
1.25 3

A ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=
− −

0 0
sin 0

A
tν

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∆ = 1
0
1

B ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= ,    where    sin t νν ρ≤ . 

Design procedure using an easy way for transformed system (6.4.10) can be performed as fallows: 

• Solve algebraic Riccati equation (6.4.12a) and check condition (6.4.12b) by the following 
program written in Matlab: 

•  
clear 
clc 
v=0.21 
t=pi/2 
A=[0 1;-1.25 -3] 
deltaA=[0 0; v*sin(t) 0] 
ro=v*sin(t) 
Q=[1 0; 0 1] 
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h=0.2 
In=Q 
alfa=ro 
k=5 
B1=[0;1]; 
B=expm(-(A+alfa*In)*h)*B1 
B2=2*k*B*B' 
P=ARE(A,B2,Q); 
Peig=eig(P) 
lamda_max=max(Peig) 
R1=1-3*alfa*lamda_max 
 
where 
 

0.2100v =  
 

1.5708t =  
 

0 1.0000
1.2500 3.0000

A ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=
− −

,    0 0
0.2100 0

A ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∆ = , 

 
0.2100ρ =  

 
1 0
0 1

Q ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 
0.2000h =  

 
1 0
0 1nI ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 
0.2100α =  

 
5k =  

 

1
0
1

B ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= ,    0.2606
1.7112

B ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

−= ,    2
0.6.791 4.4594
4.4594 29.2823

B ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

−=
−

,    1.5102 0.3151
0.3151 0.1829

P ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 
( ) 1.5813,     0.1119eig P =  

 
max ( ) 1.5813Pλ =  

 
0.1456
0.2309

TB P ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= ,    1
0.0038 0 0

0 0.0038
R ⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦

= > , 
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which is a symmetric positive definite matrix. Thus, the design parameters are obtained. 

6.4.6 Example 13 

Again consider input-delayed system (6.4.38) stabilizing by controller (6.4.31) with parameters 
given in Example 12. Design procedure using Lyapunov-Krasovskii functional method can be 
performed by following steps: 

• Solve algebraic Riccati equation (6.4.32) and check condition (6.4.33) by the following 
program written in Matlab: 

 
clear 
clc 
v=0.21 
t=pi/2 
A=[0 1;-1.25 -3] 
deltaA=[0 0; v*sin(t) 0] 
ro=v*sin(t) 
Q=[1 0; 0 1] 
h=0.2 
In=Q 
alfa=ro 
k=6 
B1=[0;1] 
B=expm(-(A+alfa*In)*h)*B1 
Aeig=eig(A) 
Bo=[0; 0] 
B3=2*k*Bo*Bo' 
P=ARE(A,B3,Q) 
Peig=eig(P) 
lamda_max=max(Peig) 
Q1=In 
Rline=Q1-2*alfa*lamda_max*Q1 
R=Rline/2 
R3=Rline-R 
 
where 
 

0.2100v =  
 

1.5708t =  
 

0 1.0000
1.2500 3.0000

A ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=
− −

,    0 0
0.2100 0

A ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∆ =  

 
0.2100ρ =  
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1 0
0 1

Q ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 
0.2000h =  

 
1 0
0 1nI ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 
0.2100α =  

 
6k =  

 

1
0
1

B ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 
0.2606

1.7112
B ⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦

−=  

 
0.5000( )
2.5000

eig A ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

−=
−

 

 

0
0
0

B ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= ,    3
0 0
0 0

B ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= ,    1.5750 0.4000
0.4000 0.3000

P ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

 
( ) 1.6901,     0.1849eig P =  

 
max 1.6901λ =  

 

1
1 0
0 1

Q ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= ,    0.2902 0
0 0.2902

R ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

= ,    3
0.1451 0

0 0.1451
R R ⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦

= = . 

 
Note that, the matrices P, R and R B3 B are positive definite. But, varying of parameter k does not 
influence the solution of (6.4.32), because B B0 B is zero vector in this example. 

6.4.7 Simulation results 

A new configuration of modified reduction scheme is shown in Fig. 6.4.1. Time-delay system 
(6.4.7), (6.4.10), (6.4.25), (6.4.11) with parameters of system (6.4.38) is simulated. Time response 
of original open-loop system is shown in Fig. 6.4.2, time response of transformed closed-loop 
system is shown in Fig. 6.4.3 and control function is shown in Fig. 6.4.4. Closed-loop system is 
stable. Block diagram of original closed-loop input-delayed system (6.4.7), (6.4.31) is shown in 
Fig. 6.4.5. Fig. 6.4.6 and Fig. 6.4.7 show that the system is stable. These results are coordinated 
very well. Simulation results show the effectiveness of our design approach. 
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6.4.8 Conclusions 

An easy way to robust stabilization of multivariable input-delayed systems with unmatched 
parameter uncertainties is considered. A new modified reduction method is developed to overcome 
some of inherent issues in the usage of the conventional reduction method. Then, the transformed 
delay-free system can be stabilized by proposed linear controller, which is designed using only 
conventional Lyapunov V-function method. Global stability conditions are formulated in terms of 
algebraic Riccati equations and some matrix inequalities. For the comparison analysis, a simple 
memoryless linear controller for robust stabilization of original time-delay systems with unmatched 
parameter uncertainties is also designed by using a conventional Lyapunov-Krasovskii V-
functional method. This analysis shows that the stability results of both approaches are coordinated. 
Two numerical examples with simulation results are given which show the effectiveness of our 
design approach. 
 
 

 
 

Figure 6.4.1 A new configuration of modified reduction scheme 
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Figure 6.4.2 Time response of original open-loop system 

 
 

                                    
Figure 6.4.3 Time response of transformed closed-loop system 

 
 

 
Figure 6.4.4 Control function 
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Figure 6.4.5 Block diagram of original closed-loop input delayed system 

 

 
Figure 6.4.6 Time response of original closed-loop system 

 

 
Figure 6.4.7 Control function 
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