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Abstract: - The Takagi-Sugeno Fuzzy Model  (TSF)  is a universal approximator of the continuous 

real functions that are defined in a closed and bounded subset of  
nR .  This strong property of the  

(TSF) can find several applications modeling dynamical systems that can be described by differential 
equations. In the present paper, we apply TFS on dynamical systems (problems from Mathematical 
Ecology) and compare with then usual ODE’s. 
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1 Introduction 
The Takagi-Sugeno Fuzzy Model  (TSF)  is a 
universal approximator of the continuous real 
functions that are defined in a closed and 

bounded subset of  
nR .   That means that for 

each 0>ε  and for each continuous function g 
there exists a TFS such that ε<− )()( xyxg  

where )(xy  is the overall output of the TFS. 
Some definitions and notation will be useful in 
the sequel. More details can be found in [1]. 
We denote the arbitrary Dynamical System as S 
and we can define some operations in the 
Systems’ space.  
Equality: The systems 1S  and 2S  are equal if 
and only if for the same input and the same 
initial conditions, the output of 1S  is equal to 
the output and 2S  ( ),0( +∞∈∀t ).  
We write 1S  = 2S  
Addition: The system S is the sum of 1S  and 

2S , if and only if for the same input and the 
same initial conditions, the output of S is the 
sum of the outputs of 1S  and 2S  ( ),0( +∞∈∀t ). 
Multiplication by a real constant: The system 
S is the product of the real number r and 1S , if 
and only if for the same input and the same 
initial conditions, the output of S is the product 

of the real number r  and  the output of 1S  
( ),0( +∞∈∀t ). 
Product: The system S is the product of 1S  and 

2S , if and only if for the same input and the 
same initial conditions, the output of S is the 
product of the outputs of 1S  and 2S  
( ),0( +∞∈∀t ). 

Before proceeding in our analysis, we need also 
the definition of the term: Logical Expression 
(LE) Logical Expression or Logical Sentence is 
any expression or relation that is characterized 
true with degree µ  of validity where ∈µ [0,1] 
( µ =0 means absolutely false and µ =1 means 
absolutely true).   
 
After these preliminary results and discussion, 
the simple or classical or common Takagi-
Sugeno (TS) model is described as follows: 
 
Suppose that we have the following n separate  
rules (that are independent each other) 
 

ii SthenLEIf         
where i=1,2,…,n 
  
that means, for each rule (separately) if iLE  
holds, then compute the entity y from the output 



of the system iS  with particular input and 
particular initial conditions for i=1,2,…,n. 
 
In case, that we have simultaneously all the 
logical expressions 1LE , 2LE ,…, nLE  with 
validity nµµµ ,...,, 21  , then the entity y is 
computed from the output of the system S 
where: 
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In [1], the author has also presented several 
interesting concepts like Separable Additive 
Fuzzy Systems, Reciprocal Additive Fuzzy 
Systems, Separable Multiplicative Fuzzy 
Systems, Reciprocal Multiplicative Fuzzy 
Systems Differentiable Fuzzy Systems. 
 
 
 
2 Modeling Dynamical Systems 
for Populations’ Evolution using 
ODE’s 
Describing dynamics of population of one 
specie we usually use Ordinary Differential 
Equations. The following models are well 
known: 
 
Malthus Model (Thomas Malthus, 1798): 
We denote as x the population, i.e. the number 
of all individuals of one kind of organism 
(specie).  Then the increase 'x  is proportional 
of  x. 

axx ='                              (2) 
 
where ax is the rate of increase (decrease, if 

a<0) of population. The ratio 
x
x'  is called 

growth rate and in Malthus Model is a constant 
a. 
 
Model of Logistic growth (P. F. Verhust, 1838) 

According to this model, when population size 
becomes high enough, there will be a density at 
which population growth stops altogether since 
real resources are limited. Consequently the 
growth rate cannot be a constant, it depends on 
the existing population and decrease with 
increasing value of population. 
 

xxax )('=                                 (3) 
 
where )(xa is a decreasing function of x. So, the 
growth rate is )(xa  and it is not constant but a 
function of x. 
 
P.F.Verhurst proposed xaxa β−=)(  and so we 
have the model 
 

xxax )(' β−=                          (4) 
 
Model of Populations with age structure 
(Hutchinson Model) 
 
According to Hutchinson model the growth rate 
is considerably dependent on the age structure 
of the population. Therefore, a delay is 
introduced into Verhust equation to describe 
the age structure.  
 

)())(( txtxa
dt
dx τβ −−=             (5) 

 
Harvesting Models 
Harvesting models have played an important 
role in the “exploitation of renewable 
resources”. An example is a fisherman. When 
fisherman has no way of locating the fish, 
fishing is a ‘blind’ way, the model takes the 
form 

)()())(( tExtxtxa
dt
dx

−−= β         (6) 

where E is a proportionality constant, usually 
called the effort. The other way is ‘purposeful’, 
the fisherman knows precisely where the fish is 
and is able to decide how many fish he can 
catch, the model now takes the form 
 

Etxtxa
dt
dx

−−= )())(( β         (7) 

 



where E is the harvesting rate. 
 
We can have also models of more than one 
species. Let’s start with models of  2 species. 
Lotka-Volterra  Model (A.Lotka and V.Volterra 
1926). According this model we have in a 
predator-prey community: 

)( byax
dt
dx

−=                   (8.1) 

 

)( dxcy
dt
dy

+−=                   (8.2) 

 
 
where y denotes the population of predator and 
x the population of prey. dcba ,,, are appropriate 
positive constants. 
 
Model of Competitive Species 
If instead if predator-prey relation, we have 
mutual competion, the model must be modified 
as follows 
 

)( 1211 yaxaax
dt
dx

−−=                   (9.1) 

 

)( 2221 yaxaby
dt
dy

−−=                   (9.2) 

 
 
where x,y are the two populations and ijaba ,,  
i,j = 1,2 are positive constants. 
 
Generalizing the previous models, we can have 
the following general model of Kolmogorov. 
 
Kolmogorov’s model 
 

),( yxxf
dt
dx

=                   (10.1) 

 

),( yxyg
dt
dy

=                   (10.2) 

 
 
where x,y are the two populations and f,g are 
appropriate differentiable (with respect x,y) 

functions. Some other models in [3] and [4] can 
be considered as special cases of the 
Kolmogorov’s model. The sign of the partial 
derivatives of f,g determine the biological 
behaviour of the model and therefore the 
classification of the particular community. 
 
 
3 Modeling Dynamical Systems 
using TFS. Comparison with ODE’s 
 
In this section, we use TSF for dynamical 
systems’ description. As examples we consider 
populations’ systems (ecological systems) and 
we compare the TSF modeling with ODE’s. 
 
Malthus Model 
Suppose that we have a population x and the 
following n separate fuzzy rules (we can 
consider them as result of our statistics or 
measurements) 
 

Rule 0:  If  ],[ 10 xxx ∈ , then 0a
dt
dx

=  

Rule 1:  If  ],[ 20 xxx ∈ , then 1a
dt
dx

=  

Rule 2:  If  ],[ 31 xxx ∈ , then 2a
dt
dx

=  

Rule 3:  If  ],[ 42 xxx ∈ , then 3a
dt
dx

=  

 
 

Rule i:  If  ],[ 11 +−∈ ii xxx , then ia
dt
dx

=  

 
 
 

Rule n-1:  If  ],[ 2 nn xxx −∈ , then 1−= na
dt
dx  

Rule n:  If  ],[ 1 nn xxx −∈ , then na
dt
dx

=  

For the Rule 0, i.e. ],[ 10 xxx ∈ , the membership 
function (that is the degree of validity  of the 
rule) is: 
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For the Rule 1, the membership function (that is 
the degree of validity  of the rule) is: 
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In general, for the Rule i (i=2,3,…n-1), the 
membership function is: 
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For the Rule n, the membership function is: 
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So, according the TSF, the overall model is: 
 

 
n

nnaaa
dt
dx
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Since nµµµ ,...,, 10  vanishes in several intervals 
we can find that 
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or after some simple algebraic manipulation 
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Quite similarly 

].[)( 2112
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1
1 xxxforaa

xx
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a
dt
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and in general we can obtain: 
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for i=1,2,…,n 
 
 
Equation (2), i.e. the Malthus model can be 
considered now as a special case of (11) when 

00 =x , 00 =a  and the 
1
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aa  = constant for 

all i (suppose a). Then,  the right-hand side of 
(11) can be simplified to ax  because of the 
continuity of the straight lines of   
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We consider now the so-called growth rate: 

x
dt
dx

x
  

=
~

 and suppose that our statistics 

(measurements) yields the following rules: 
 
 

Rule 0:  If  ],[ 10 xxx ∈ , then 0

~
ax =  

Rule 1:  If  ],[ 20 xxx ∈ , then 1

~
ax =  

Rule i:  If  ],[ 11 +−∈ ii xxx , then iax =
~

 
 

The conclusion is that the Takagi-Sugeno 
model gives a more realistic and more reliable 
model as well as the Malthus model (2) can be 
considered now as a special case. 



 

Rule n-1:  If  ],[ 2 nn xxx −∈ , then 1

~

−= nax  

Rule n:  If  ],[ 1 nn xxx −∈ , then nax =
~

 
 
(In order to have a real model, useful in 
mathematical ecology, we demand: 00 ≠a  and 

naaa >>> ...10 ) 
For the Rule i (i=2,3,…n-1), the membership 
function is: 
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while: 
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So, according the TSF, the overall model is: 
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Therefore: 
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for i=1,2,…,n 
 
Equation (2), i.e. the Verhurst model, can be 
also considered as a special case of (11) when 

00 =x , 00 ≠a   and  naaa >>> ...10 and the 

1

1

−

−

−
−

ii

ii

xx
aa

 = constant=a. Then, the right-hand 

side of (11) can be simplified to xaxa )( 0 −  
because of the continuity of the straight lines of   
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Working similarly we can formulate now 
similar results for model of populations with 
age structure. 
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for i=1,2,…,n 
 
The conclusion is again that the Takagi-Sugeno 
model gives a more realistic and more reliable 
model as well as the age structure  model (5) 
can be considered now as a special case. 
 
For the  Harvesting Models, suppose  that our 
measurement (statistics) can give us a number 

ia  and a number iE  for each interval. We have 
for the first harvesting model, Eq.(6),  : 

The conclusion is that the Takagi-Sugeno 
model gives a more realistic and more reliable 
model as well as the Verhurst model (4) can be 
considered now as a special case. 
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for i=1,2,…,n 
 
where we considered again the growth rate 

(
x
dt
dx

x
  

=
~

) in the considered TSF model  

 
For the second harvesting model, Eq.(7),  we 
make first some modified consideration: From 
(7), we need to define  as: 
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So, we can find: 
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for i=1,2,…,n 
 
 
In this case, we observe that the Takagi-Sugeno 
model can gives more realistic and reliable 

results. In the special case, where 
1

1
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 = 

constant we have the (simple) harvesting 
models. 
 
We can now examine the general case of 
populations of 2 species, considering the 
general model of Kolmogorov (Eq.10.1 and 
10.2).  The growth rates are now considered  
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We can consider the Takagi-Sugeno model for 
f, y separately. Therefore 
 
Rule i,j:  If  ],[),( 11 +−∈ ii xxyx ],[ 11 +−× jj yy , 
then jiaf ,=  
(where 1<i<n, 1<j<m ) 
 
The membership function (i.e. the validity 
degree) of this rule is ),( yxµ and can be 
considered as the product of  )(1 xiµ  by )(2 yjµ , 
where )(1 xiµ  and )(2 yjµ  are given by 
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while: 
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Applying now the Takagi-Sugeno model, we 
obtain for ],[),( 1 ii xxyx −∈ ],[ 1 jj yy −×  the 
following: 
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(17) 
 
where jia ,  are the values of the values of f 
obtained on (i,j) point by our measurements 
(statistics). 
 
Quite similar expression for g can be obtained 
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(18) 

 
where jib ,  are the values of the values of f 
obtained on (i,j) point by our measurements 
(statistics). 
Analogously the sign of  jia , , jib ,  and the sign 
and their dependence of the differences 
( 1,11, −−− − jiji aa ,  1,11, −−− − jiji bb , …) on x,y, we 
can classified the various models resulting from 
this general model of (10.1) and (10.2) with f, g 
given by (17) and (18). 
 
 
 
4 Conclusion 
The conclusion is that the Takagi-Sugeno 
model can give in all cases a more realistic and 
reliable model for modelling of dynamical 
systems (as an example we modelled 
populations of ecosystems including the general 
case of more than one specie). On the other 
hand, usual dynamical models (for example the 
previously published models of mathematical 
ecology) can be considered now as special cases 
of the Takagi-Sugeno model. 
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