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Transactions Briefs

A New Method for Computing the Stability Margin of where P(s1, s2) and F(s1, s2) are coprime polynomials in the inde-

Two-Dimensional Continuous Systems pendent complex variables and sz, where we have assumed that
there are no nonessential singularities of the second kind on the double
Nikos E. Mastorakis and M. N. S. Swamy imaginary axis, i.e., there are no points s with s; = jw; or oo,

s9 = jws Or oo such thatP(s1, s2) = F(s1,s2) = 0.
The system (1) is bounded input bounded output (BIBO) stable (or

Abstract—This paper presents a new method for computing the stability equivalently Hurwitz stable) if and only if

margin of two-dimensional (2-D) continuous systems. The method is based
on the computation of the Hermite matrix in 2-D continuous systems, one
of its partial derivatives and their resultant. The theoretical result is illus- F(1,s2) #0, for Re{s2} >0 or s;=occ (2.1)
trated by examples. and

Index Terms—2-D continuous systems, stability margin. F(s1,jws) # 0 for (Re{s1} > 0ors; = o) and

—o0 < wp <00 (2.2)
I. INTRODUCTION
ditionally, the polynomialF'(s1, s2) is said to be a BIBGstable
lynomial or a Hurwitz stable polynomidl and only if (2.1) and
.2) are fulfilled. Condition (2.1) is relatively easy to check using any

Even in our digital computer era, continuous systems play a ver
important role in the development of modern electronic technology. {5
particular, two-dimensional (2-D) continuous systems ([1-[10], [17\ ~ o cional (1-D) stability test. Checking condition (2.2) is a more
[30], [41]-[45]) have attracted the interest of many scientists and elicult task
gineers for several reasons: In the design of 2-DanD (m > 2) Also, in [48], analogous to the definition of theability threshold

dlscret.e fllter.s,.the correspondlng analog filters play a d'omlnant rofe 3] or stability margin[31] for a 2-D discrete system, the following
In particular, it is possible using appropriate transformations to obt

’ : - . finitions have been recently introduced for a 2-D continuous system.
the desirable 2-D discrete filter from the corresponding analog (Z'D)Definition 1: Given a 2-D continuous system described by the

filter [2]-[9], [41]. On the other hand, in the study of distributed pagangfer function (1), we call stability margin the greater non posi-
rameter systems which are described by partial differential equatiqRg real number for whict (s, + o+, s») is aHurwitz Polynomial
(PDEs), each PDE actually corresponds taaid continuous system.  pefinition 2: Given a 2-D continuous system described by the
So, for networks which include transmission I_|nes as well as passiygnsfer function (1), we call stability margin, the greater non posi-
lumped elements, for networks containing semiconductor elements, {igk real number for Whicl (s, s2 + o2 is aHurwitz Polynomial
acoustic filters, the description with 2-D continuous systems is necespefinition 3: Given a 2-D continuous system described by the
sary as one can see in [1], [4], [7], [8]. A third reason is the need @fnsfer function (1), we call stability marginthe greater non positive

the introduction of the 2-D continuous systems theory in control sygeal number for whiclF'(s; + o, s2 + o) is aHurwitz Polynomial
tems where the coefficients are functions of the parameters, as well

as in systems whose inputs and outputs are functions of a time vari-
able and a discrete spatial variable [8], [42]-[44]. Continuous models
are also investigated in the so-called linear repetitive processes [46],
[47]. For these reasons, there exists an importance of the subject JrReCeNtly, in [48], two methods for the computation of the stability
the m-D continuous systems from a practical point of view ([1]-[10]M&rgin of 2-D continous systems have been proposed. In the first
[17], [23], [30], [41]-[45]). Recently, in [48] two methods investigatinngthOd' a constralnec_i optlmlzatlon_problem has to be solved, Wh'ereas
the problem of stability margin computation for 2-D continous systent@€ Sécond method is a geometrical method. A more “analytical”
have been proposed. In the first method, an optimization problem HHEthOd based on an appr(_)prlate resultant computatlon will be devel-
to be solved, whereas the second method is geometrical. In the preggﬁtd here and we will test it on the same numerical examples of [48].

paper, a more “analytical” method based on an appropriate resultankn [48], the following Proposition has been stated and used. Here, a

computation will be presented. more detailed proof is given.

It is known that a linear shift invariant 2-D continuous system can Proposition 1: For the supremum of, for which F'(s: + 41, 52)
. . - remains adurwitz stable polynomiaH w; with —oo < w, < oo such
be described by the following transfer function:

that the Hermite matrid, (o1, w2 ) associated withF'(s; + o1, jws)
P(s1,52) is singular, i.e.de‘g Hy(o1,wz) = 0.
= (1) Proof: Consider the mapping: : o1 — h(s,) where
h(o\) = Hi(o,ws) for which F(s, + o1, s2) remains a Hurwitz
stable polynomial. This is @ontinuousmapping since the matrix
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II. COMPUTATION OF THE STABILITY MARGINS FOR
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S is anopenset and because of the continuity of the mappingnd
h, the corresponding set of, will also be open(see [11]). Thus, O{det H(o,w2)}
the supremum ofbr;, for which F(s; + o1,s2) remains a Hur- Ows
witz stable polynomial, is a limit point of this set and becaus
of the continuity of the mappind:, for this ¢¢,h(s1) is also a
limit point of S. Furthermore, by the continuity of the mapping
det: h{o1) — det h(o1),det h(o1) is limit point in the setdet{S},
for thisa+ . Since the only limit point oflet{ S} is the 0, we conclude P
that for thiso, we havedet h(o1) = 0. R {det H(o,w2), W} =0 (10)
As a result, we obtain that for the supremum aof for which w2
F(s1 + 01,52) remains aHurwitz stable polynomialthe Hermite \yhereR{-, -} denotes the resultant of two polynomials.

matrix Hi(o,w2) associated with"(s) + o1, jwo) will be singular  gyample 1: Consider the first-degree two-variable polynomial
for somews with —oo < we < oo, |

=0 9)

e
for some realvs (—oc < we < 00).

Proof: Analogous to the proof of Theorem 2. ]
Therefore, the stability margin is computed by the solution of

Based on this Proposition, one can prove the following Theorem. F(s1,89) = T+ 51 + 252 + 251 50. (11)
Theorem 1: For the supremum af; for which F(s, + o1, s2) re-

mains a Hurwitz stable polynomial, we have It is always assumed that the corresponding 2-D system has no
nonessential singularities of the second kind. Obviously, condition
det H1(o1,w2) =0 ®) (2.1) holds while condition (2.2) can be easily checked via the positive

and definiteness of the Hermitian matrix which &, (wi) = 7 + 4w3.

Ofdet Hi(o1,w2)} _ 0 (4) Therefore, F(si.s2) is Hurwitz stable polynomial. For the com-
Ows putation of the stability margir, one findsdet Hi(o1,w2) =

for some reals (—oc < ws < 50). (74 01) + (44 401)w3. Therefore

Proof: We have to prove only (4). Equatiaet H1 (o1,w2) =0 O{det Hy(o1,00)}
defines a nonexplicit function of in ws, i.e., 01 = o (w2). Note % = (84 801 )ws.
that the supremum aof, for which F(s; + o1, s2) remains a Hur- w2
witz stable polynomial, is simultaneously the infimummaffor which  So, their resultant is given as follows:
det Hi(o1,w2) = 0 has a solution, therefore is an infimum for the

functione; = o1 (ws). So R {det Hi(o1, ) O{det H, (m,wz)}}
‘ PR ()wz
a
%ZO- (5) T+ 0 4440,
’ =det| 0 0  8+80
On the other hand, far, andw- for which (3) holds, we have 0 8 + 804 0
O{det Hi(o1,w2)} do + O{det Hi(o1,w2)} dws =0.  (6) = —64(c, + 1)*(01 + 7).
80'1 awz
- . . Hence, the equation R{det Hi(o1,w2),(0{det Hi(o1,w2)}/
Comb'”'”g (5) and (6), (4) is eaS|_|y proved_. . Ows)} = 0yieldso; = —1, 0y = —7. Obviously, following the
Since (5) and (6) are polynomial equations with respect;ipthe definition of the stability margin, the solution, = —1 is selected
existence of common roots is possible if and only if the resultant of . . o . '
det H, (01, w2) and(d{det Hy (1, w2)})/9ws (which will be a poly- h:slte analogously, for the computation of the stability margjrone

nomial ino1) is 0. Therefore, the computation @f is achieved by the

solution of det H(o,w2) = (7T+ 30 + 20%)(1 + 20)+4(1+ J)wg.
((){dOFHl(O'l,LL)g)} _
R {dt‘t Hl (Jl,wz), T = 0 (7) Therefore
whereR{-, -} denotes the resultant of two polynomials. O{det H(o,wa)} _ (8 + 80 )ws.
The stability marginr» can be determined by interchanging the in- Ows

dices 1 and 2. Hence, their resultant is given as follows:
Similar steps can lead to an analogous method for the stability ’ g '

margine. In this case, the polynomidl(s, + o, s2 + o) is consid- d{det H(a,ws)}
ered. SimilarlyF (s, + o, s2 4+ o) remains Hurwitz stable if and only R {det H(o,wa), T}
if the Hermite matrix (o, w2 ) associated witlf'(s; + o, jws + o) is ~

- 5 )
positive definite for allus with —cc < ws < co. Now, the following (T+30 +207)(1+20) U 1+ do
two theorems are proved in a similar manner to those of Proposition = det 0 0 8+ 8¢
1 and Theorem 1. 0 8+ 8¢ 0
Proposition 2: For the supremum af for which F (s 4o, 52+ ) = —64(14 0)*(7T+ 30 +20°)(1 + 20).

remains a Hurwitz stablgolynomial 3 w» with —co < ws < oo such _
that the Hermite matrisH (¢, w» ) associated Wit (s, 4+ a1, jw,)is  Thus,theequatioR{det H: (o1, w2 ), (O{det Hi(o1,w2)}/0w2)} =

singular i.e.det H(o,ws) = 0. 0 yieldso; = —1, 01 = —1/2. Obviously, the solutiorr; = —1/2
Proof: Analogous to the proof of Proposition 1. m s selected.
Theorem 2: For the supremum of for which F (s, + 7, s2 + ) Example 2: Let us consider the general first order characteristic
remains a Hurwitz stable polynomial, we have polynomial of a 2-D (continuous) system of [48]

det H(o,w2) =0 (8) F(s1,52) =1+ asi + bsa + cs152 (12)
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a1, 2 00

6&.()2
(1+ ao +bo + co®)(a+ co) 0 c(b+ co)
= det 0 0 2¢(b+ co)
0 2¢(b+ co) 0

=42 (b+ c0)*(1 4 ao + bo + co”)(a + co)
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max<7(a+b)Jr Vz(a+b)274c, —%, —%) . if(a+b)>—4c>0

max(—2,-2), otherwise

g =

(15)

wherea, b, ¢ > 0. By verifying the same conditions as in the previousnd its derivative with respect to some frequency. The method seems
example, one can easily see that this is a Hurwitz stable polynomial.be better than two others recently published ones[48], since we are
Similarly one finds not obliged to solve a minimization problem as well as we avoid the

9 geometrical approach.
det Hi(o1,w2) = (1 4+ aci)a+ (b+ cor)cwsy

and
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