
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 6, JUNE 2002 869

Transactions Briefs__________________________________________________________________

A New Method for Computing the Stability Margin of
Two-Dimensional Continuous Systems

Nikos E. Mastorakis and M. N. S. Swamy

Abstract—This paper presents a new method for computing the stability
margin of two-dimensional (2-D) continuous systems. The method is based
on the computation of the Hermite matrix in 2-D continuous systems, one
of its partial derivatives and their resultant. The theoretical result is illus-
trated by examples.

Index Terms—2-D continuous systems, stability margin.

I. INTRODUCTION

Even in our digital computer era, continuous systems play a very
important role in the development of modern electronic technology. In
particular, two-dimensional (2-D) continuous systems ([1]–[10], [17],
[30], [41]–[45]) have attracted the interest of many scientists and en-
gineers for several reasons: In the design of 2-D andm-D (m > 2)

discrete filters, the corresponding analog filters play a dominant role.
In particular, it is possible using appropriate transformations to obtain
the desirable 2-D discrete filter from the corresponding analog (2-D)
filter [2]–[9], [41]. On the other hand, in the study of distributed pa-
rameter systems which are described by partial differential equations
(PDEs), each PDE actually corresponds to anm-D continuous system.
So, for networks which include transmission lines as well as passive
lumped elements, for networks containing semiconductor elements, for
acoustic filters, the description with 2-D continuous systems is neces-
sary as one can see in [1], [4], [7], [8]. A third reason is the need of
the introduction of the 2-D continuous systems theory in control sys-
tems where the coefficients are functions of the parameters, as well
as in systems whose inputs and outputs are functions of a time vari-
able and a discrete spatial variable [8], [42]–[44]. Continuous models
are also investigated in the so-called linear repetitive processes [46],
[47]. For these reasons, there exists an importance of the subject of
them-D continuous systems from a practical point of view ([1]–[10],
[17], [23], [30], [41]–[45]). Recently, in [48] two methods investigating
the problem of stability margin computation for 2-D continous systems
have been proposed. In the first method, an optimization problem has
to be solved, whereas the second method is geometrical. In the present
paper, a more “analytical” method based on an appropriate resultant
computation will be presented.

It is known that a linear shift invariant 2-D continuous system can
be described by the following transfer function:

G(s1; s2) =
P (s1; s2)

F (s1; s2)
(1)
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whereP (s1; s2) andF (s1; s2) are coprime polynomials in the inde-
pendent complex variabless1 and s2, where we have assumed that
there are no nonessential singularities of the second kind on the double
imaginary axis, i.e., there are no pointss1; s2 with s1 = j!1 or 1;

s2 = j!2 or1 such thatP (s1; s2) = F (s1; s2) = 0.
The system (1) is bounded input bounded output (BIBO) stable (or

equivalently Hurwitz stable) if and only if

F (1; s2) 6= 0; for Refs2g � 0 or s2 =1 (2.1)

and

F (s1; j!2) 6= 0; for (Refs1g � 0 or s1 =1) and

�1 � !2 � 1: (2.2)

Additionally, the polynomialF (s1; s2) is said to be a BIBOstable
polynomial or a Hurwitz stable polynomialif and only if (2.1) and
(2.2) are fulfilled. Condition (2.1) is relatively easy to check using any
one-dimensional (1-D) stability test. Checking condition (2.2) is a more
difficult task.

Also, in [48], analogous to the definition of thestability threshold
[23] or stability margin[31] for a 2-D discrete system, the following
definitions have been recently introduced for a 2-D continuous system.

Definition 1: Given a 2-D continuous system described by the
transfer function (1), we call stability margin�1 the greater non posi-
tive real number for whichF (s1 + �1; s2) is aHurwitz Polynomial.

Definition 2: Given a 2-D continuous system described by the
transfer function (1), we call stability margin�2 the greater non posi-
tive real number for whichF (s1; s2 + �2) is aHurwitz Polynomial.

Definition 3: Given a 2-D continuous system described by the
transfer function (1), we call stability margin� the greater non positive
real number for whichF (s1 + �; s2 + �) is aHurwitz Polynomial.

II. COMPUTATION OF THE STABILITY MARGINS FOR

2-D CONTINUOUS SYSTEMS

Recently, in [48], two methods for the computation of the stability
margin of 2-D continous systems have been proposed. In the first
method, a constrained optimization problem has to be solved, whereas
the second method is a geometrical method. A more “analytical”
method based on an appropriate resultant computation will be devel-
oped here and we will test it on the same numerical examples of [48].

In [48], the following Proposition has been stated and used. Here, a
more detailed proof is given.

Proposition 1: For the supremum of�1 for whichF (s1 + �1; s2)
remains aHurwitz stable polynomial, 9 !2 with�1 � !2 � 1 such
that the Hermite matrixH1(�1; !2) associated withF (s1 + �1; j!2)
is singular, i.e.,detH1(�1; !2) = 0.

Proof: Consider the mappingh : �1 ! h(�1) where
h(�1) = H1(�1; !2) for which F (s1 + �1; s2) remains a Hurwitz
stable polynomial. This is acontinuousmapping since the matrix
H1(�1; !2) is a two-variable polynomial in�1; !2. Also, the mapping
det : h(�1)! deth(�1) is a continuous mapping and therefore, their
synthesisdeth: �1 ! deth(�1) is also a continuous mapping. LetS
be the setS = fh(�1) with h(�1) > 0g, where> denotes positive
definite matrix8!2 with �1 � !2 � 1. We also denotedetfSg
the subset of the real numbers which consists of all the determinants
of h(�1) that belong toS. As one can see, 0 is the unique limit point
for the setdetfSg.
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S is an open set and because of the continuity of the mapping
h, the corresponding set of�1 will also be open (see [11]). Thus,
the supremum of�1, for which F (s1 + �1; s2) remains a Hur-
witz stable polynomial, is a limit point of this set and because
of the continuity of the mappingh, for this �1; h(�1) is also a
limit point of S. Furthermore, by the continuity of the mapping
det : h(�1) ! deth(�1);deth(�1) is limit point in the setdetfSg,
for this�1. Since the only limit point ofdetfSg is the 0, we conclude
that for this�1, we havedeth(�1) = 0.

As a result, we obtain that for the supremum of�1 for which
F (s1 + �1; s2) remains aHurwitz stable polynomial, the Hermite
matrix H1(�;!2) associated withF (s1 + �1; j!2) will be singular
for some!2 with �1 � !2 � 1.

Based on this Proposition, one can prove the following Theorem.
Theorem 1: For the supremum of�1 for whichF (s1 + �1; s2) re-

mains a Hurwitz stable polynomial, we have

detH1(�1; !2) = 0 (3)

and
@fdetH1(�1; !2)g

@!2

= 0 (4)

for some real!2 (�1 � !2 � 1).
Proof: We have to prove only (4). EquationdetH1(�1; !2) = 0

defines a nonexplicit function of�1 in !2, i.e.,�1 = �1(!2). Note
that the supremum of�1 for which F (s1 + �1; s2) remains a Hur-
witz stable polynomial, is simultaneously the infimum of�1 for which
detH1(�1; !2) = 0 has a solution, therefore is an infimum for the
function�1 = �1(!2). So

@�1
@!2

= 0: (5)

On the other hand, for�1 and!2 for which (3) holds, we have

@fdetH1(�1; !2)g

@�1
d�1 +

@fdetH1(�1; !2)g

@!2

d!2 = 0: (6)

Combining (5) and (6), (4) is easily proved.
Since (5) and (6) are polynomial equations with respect to!2, the

existence of common roots is possible if and only if the resultant of
detH1(�1; !2) and(@fdetH1(�1; !2)g)=@!2 (which will be a poly-
nomial in�1) is 0. Therefore, the computation of�1 is achieved by the
solution of

R detH1(�1; !2);
@fdetH1(�1; !2)g

@!2

= 0 (7)

whereRf�; �g denotes the resultant of two polynomials.
The stability margin�2 can be determined by interchanging the in-

dices 1 and 2.
Similar steps can lead to an analogous method for the stability

margin�. In this case, the polynomialF (s1 + �; s2 + �) is consid-
ered. SimilarlyF (s1 + �; s2 + �) remains Hurwitz stable if and only
if the Hermite matrixH(�;!2) associated withF (s1+�; j!2+�) is
positive definite for all!2 with �1 � !2 � 1. Now, the following
two theorems are proved in a similar manner to those of Proposition
1 and Theorem 1.

Proposition 2: For the supremum of� for whichF (s1+�; s2+�)
remains a Hurwitz stablepolynomial, 9 !2 with�1 � !2 � 1 such
that the Hermite matrixH(�;!2) associated withF (s1 + �1; j!2) is
singular i.e.,detH(�;!2) = 0.

Proof: Analogous to the proof of Proposition 1.
Theorem 2: For the supremum of� for whichF (s1 + �; s2 + �)

remains a Hurwitz stable polynomial, we have

detH(�;!2) = 0 (8)

and
@fdetH(�;!2)g

@!2

= 0 (9)

for some real!2 (�1 � !2 � 1).
Proof: Analogous to the proof of Theorem 2.

Therefore, the stability margin� is computed by the solution of

R detH(�;!2);
@fdetH(�;!2)g

@!2

= 0 (10)

whereRf�; �g denotes the resultant of two polynomials.
Example 1: Consider the first-degree two-variable polynomial

F (s1; s2) = 7 + s1 + 2s2 + 2s1s2: (11)

It is always assumed that the corresponding 2-D system has no
nonessential singularities of the second kind. Obviously, condition
(2.1) holds while condition (2.2) can be easily checked via the positive
definiteness of the Hermitian matrix which isH1(!1) = 7 + 4!2

2 .
Therefore,F (s1; s2) is Hurwitz stable polynomial. For the com-
putation of the stability margin�1, one findsdetH1(�1; !2) =
(7 + �1) + (4 + 4�1)!

2

2 . Therefore

@fdetH1(�1; !2)g

@!2

= (8 + 8�1)!2:

So, their resultant is given as follows:

R detH1(�1; !2);
@fdetH1(�1; !2)g

@!2

= det

7 + �1 0 4 + 4�1
0 0 8 + 8�1
0 8 + 8�1 0

= �64(�1 + 1)2(�1 + 7):

Hence, the equation RfdetH1(�1; !2); (@fdetH1(�1; !2)g=
@!2)g = 0 yields �1 = �1; �1 = �7. Obviously, following the
definition of the stability margin, the solution�1 = �1 is selected.
Quite analogously, for the computation of the stability margin�, one
has

detH(�;!2) = (7 + 3� + 2�2)(1 + 2�) + 4(1 + �)!2

2 :

Therefore

@fdetH(�;!2)g

@!2

= (8 + 8�)!2:

Hence, their resultant is given as follows:

R detH(�;!2);
@fdetH(�;!2)g

@!2

= det

(7 + 3� + 2�2)(1 + 2�) 0 4 + 4�

0 0 8 + 8�

0 8 + 8� 0

= �64(1 + �)2(7 + 3� + 2�2)(1 + 2�):

Thus, the equationRfdetH1(�1; !2); (@fdetH1(�1; !2)g=@!2)g =
0 yields�1 = �1; �1 = �1=2. Obviously, the solution�1 = �1=2
is selected.

Example 2: Let us consider the general first order characteristic
polynomial of a 2-D (continuous) system of [48]

F (s1; s2) = 1 + as1 + bs2 + cs1s2 (12)



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 6, JUNE 2002 871

R detH(�; !2);
@fdetH(�;!2)g

@!2

= det

(1 + a� + b� + c�2)(a+ c�) 0 c(b+ c�)

0 0 2c(b+ c�)

0 2c(b+ c�) 0

= �4c2(b+ c�)2(1 + a� + b� + c�2)(a+ c�)

� =
max

�(a+b)+
p

(a+b) �4c

2
;� b

c
;�a

c
; if (a+ b)2 � 4c � 0

max � b

c
;�a

c
; otherwise

(15)

wherea; b; c > 0. By verifying the same conditions as in the previous
example, one can easily see that this is a Hurwitz stable polynomial.
Similarly one finds

detH1(�1; !2) = (1 + a�1)a+ (b+ c�1)c!
2
2

and
@fdetH1(�1; !2)g

@!2
= 2(b+ c�1)c!2:

Therefore

R detH1(�1; !2);
@fdetH1(�1; !2)g

@!2

= det

(1 + a�1)a 0 (b+ c�1)c

0 0 2(b+ c�1)c

0 2(b+ c�1)c 0

= �4ac2(1 + a�1)(b+ c�1)
2:

Thus, the equationRfdetH1(�1; !2); (@fdetH1(�1; !2)g=@!2)g =
0 yields

�1 = max �b

c
;�1

a
: (13)

By cyclic interchange of the indices, we obtain

�2 = max �a

c
;�1

b
: (14)

To obtain �, we form the Hermitian determinant associated with
F (s1 + �; j!2 + �).

detH(�;!2) = (1 + a� + b� + c�2)

� (a+ c�) + c(b+ c�)!2
2

and
@fdetH(�;!2)g

@!2
= 2c(b+ c�)!2:

So, their resultant is given as the equation shown at the top of the page.
Hence, we get (15) shown at the top of the page. One can notice the

symmetry betweena andb. So, we can verify the same result as in [48]
using a simpler procedure. The above results can be extended to the
m-D (m > 2) continuous case after some simple modifications.

III. CONCLUSION

In this paper, a new method for computing the stability margin of 2-D
continuous systems has been proposed. The method is based each time
on the nullification of the resultant of an appropriate Hermite matrix

and its derivative with respect to some frequency. The method seems
to be better than two others recently published ones[48], since we are
not obliged to solve a minimization problem as well as we avoid the
geometrical approach.
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Two-Dimensional Analysis of an Iterative Nonlinear
Optimal Control Algorithm

P. D. Roberts

Abstract—Nonlinear optimal control problems usually require solutions
using iterative procedures and, hence, they fall naturally in the realm of
2-D systems where the two dimensions are response time horizon and it-
eration index, respectively. The paper uses this observation to employ 2-D
systems theory, in the form of unit memory repetitive process techniques, to
investigate optimality, local stability, and global convergence behavior of an
algorithm, based on integrated-system optimization and parameter estima-
tion, for solving continuous nonlinear dynamic optimal control problems.
It is shown that 2-D systems theory can be usefully applied to analyze the
properties of iterative procedures for solving these problems.

Index Terms—2-D systems, convergence, optimal control, stability, unit
memory repetitive processes.

I. INTRODUCTION

The solution of nonlinear optimal control problems is often obtained
in an iterative manner because of the existence of mixed boundary con-
ditions. An algorithm is designed to update a trial solution from iter-
ation to iteration. This falls naturally into the area of 2-D systems as
defined in [1], where one dimension is the time horizon of the dynamic
system under investigation and the other is the progress of the itera-
tions. This was first recognized by Edwards and Owens [2] and then de-
veloped by Roberts [3] to employ linear 2-D system theory techniques
to analyze local stability and convergence behavior of an algorithm
known as DISOPE, which is an acronym for Dynamic System Opti-
mization and Parameter Estimation. DISOPE is designed to achieve the
solution of nonlinear optimal control problems subject to model-reality
differences [4].

The 2-D analysis of optimal control is based on the theory of unit
memory repetitive processes [5]. The optimal control application has
been developed for discrete and continuous DISOPE algorithms and as-
sociated stability theorems have been obtained for local behavior about
a limit profile when linear analysis is valid [3], [6]. An important re-
sult is that the resulting 2-D system contains an initial condition whose
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