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A New Method for Computing the Stability Margin of 2-D
Discrete Systems

Nikos E. Mastorakis

Abstract—This brief presents a new contribution in the problem of com-
puting the stability margin of two-dimensional (2-D) discrete systems. The
method, using the “resultant technique” instead of a typical minimization
procedure , is actually an improvement of the method of .

Index Terms—2-D Systems, multidimensional systems, stability, stability
margin.

I. INTRODUCTION

A single-input single-output, shift-invariant, causal two-dimensional
(2-D) system can be described by the transfer function,G(z1; z2) =
(A(z1; z2))=(B(z1; z2)) whereA(z1; z2) andB(z1; z2) are coprime
polynomials in the independent complex variablesz1 andz2. It is as-
sumed that there are no nonessential singularities of the second kind on
the closed unit bidisk, i.e., there are no points(z1; z2) with jz1j � 1
andjz2j � 1 such thatA(z1; z2) = B(z1; z2) = 0. In the study and
design of 2-D systems, we are interested not only in whether the system
is stable but also whether the system will remain stable in the presence
of system parameter deviations.

For this reason, for a stable 2-D (discrete) system, the following def-
initions have been given [3], [9].
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Definition 1: Given a 2-D discrete system described by the transfer
functionG(z1; z2), we call stability margin�1 the supremum (i.e., the
lower upper bound) of the positive real numbers for whichB((1+�1)�
z1; z2) is a(Bounded Input Bounded Output, BIBO) Stable Polynomial.

Definition 2: Given a 2-D discrete system described byG(z1; z2),
we call stability margin�2 the supremum of the positive real numbers
for whichB(z1; (1 + �2) � z2) is a(BIBO) Stable Polynomial.

Definition 3: Given a 2-D discrete system described byG(z1; z2),
we call stability margin� the supremum of the positive real numbers
for whichB((1+�) � z1; (1+�) � z2) is a(BIBO) Stable Polynomial.

The concept of the margin of stability was originally due to Swamy,
Roytman and Delansky who in their paper [2] discussed the effect of
finite wordlength on the stability of multidimensional digital filters and
defined the term “stability threshold”, which later was redefined as
“margin of stability” for 2-D filters [3].

Definition 4: Definition of the general stability margin� with
weights�1; �2 (�1 + �2 = 1; �1 � 0 and�2 � 0): Given a 2-D
discrete system described by the transfer functionG(z1; z2), we call
stability margin� = �(�1; �2) the supremum of the positive real
numbers for whichB((1 + �1�) � z1; (1 + �2�) � z2) is a (BIBO)
Stable Polynomial.

It is also reminded that the system described byG(z1; z2) as well as
its characteristic polynomialB(z1; z2) are called BIBO stable if and
only if

B(0; z2) 6= 0; for jz2j � 1 (1)

B(z1; z2) 6= 0; for jz1j � 1; jz2j = 1: (2)

Condition (1) requires a 1-D stability test while condition (2) requires
a 2-D stability test. An overview of the various 2-D stability tests can
be found in [1]. It is also known, that for the evaluation of the stability
margin, several methods already exist [3]–[9].

II. A N EW COMPUTATIONAL METHOD FOR THESTABILITY MARGINS

OF A 2-D SYSTEM

First, the following notation is used:

k1 = 1 + �1: (3)

For a stable 2-D discrete system, we recall that the polynomial
B(z1; z2) is a (BIBO) Stable Polynomialif and only if: (1) holds
and the inners matrix�2N (z2) associated withzN

1
B(z�1

1
; z2)

is positive innerwise for allz2; z2 = ej� and�2 2 [0; 2�], [10].
So, B(k1z1; z2) remains (BIBO) Stable Polynomialif and only
if (1) holds and the inners matrix�2N (k1; z2) associated with
zN
1

B(k1z
�1

1
; z2) remains positive innerwise for allz2; z2 = ej�

and�2 2 [0; 2�]. However, because of the assumed stability of the
considered system, (1) holds independent ofk1. (Note that (1) does not
containz1, consequently it does not containk1.) Thus,B(k1z1; z2)
remains(BIBO) Stable Polynomialif and only if the inners matrix
�2N (k1; z2) associated withzN

1
B(k1z

�1

1
; z2) remains positive

innerwise for allz2; z2 = ej� and�2 2 [0; 2�].
Furthermore, if we consider the inner matrix�2N (k1; z2) associ-

ated withzN
1

B(k1z
�1

1
; z2), we obtain that for the supremum ofk1 for

which B(k1z1; z2) is (BIBO) Stablethe inners matrix�2N (k1; z2)
will be singular i.e.,det�2N (k1; z2) = 0 (for somez2; z2 = ej�

and�2 2 [0; 2�]). A complete justification can be found in [9]. There-
fore, the supremum ofk1 for whichB(k1z1; z2) is (BIBO) Stableis
simultaneously theminimumof all k1 with det�2N (k1; z2) = 0 (for
somez2; z2 = ej� and�2 2 [0; 2�]).
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The equationdet�2N (k1; z2) = 0 is a rational equation which
its denominator is a power ofz2. Sincez2 = ej� i.e., 6=0, this
equation rendersA1(k1; z2) = 0 whereA1(k1; z2) is the numer-
ator of det�2N (k1; z2). The equationA1(k1; z2) = 0 defines a
function of k1 with respect toz2 if (@A1)=(@k1) 6= 0. Therefore,
(@k1)=(@z2) = �(@A1=@z2)=(@A1=@k1). For the minimum ofk1,
we have(@k1)=(@z2) = 0 i.e.,(@A1(k1; z2))=(@z2) = 0. Therefore,
the minimum ofk1 fulfils simultaneously, the following equations:

A1(k1; z2) = 0 (4)
@A1(k1; z2)

@z2
= 0 (5)

whereA1(k1; z2) is the numerator ofdet�2N (k1; z2) = 0. Their
common solution, with respect tok1, can be found using the resultant
of the above polynomials, [12]

Rz A1(k1; z2);
@A1(k1; z2)

@z2
= 0: (6)

Then, the stability margin�1 can be obtained from (3).
Remark 1: If (@A1)=(@k1) = 0 then, fromA1(k1; z2) = 0, we

verify that(@A1)=(@z2) = 0 also. ThereforeA1(k1; z2) is separable
and can be written as followsA1(k1; z2) = A11(k1)A12(z2). There-
fore,�1 = k1 � 1, wherek1 is the minimum positive rootk1 of the
equationA11(k1) = 0.

A similar method for the computation of�2 can be formulated by
interchanging the roles of the variablesz1 andz2. For the evaluation of
the stability margin�, one defines

k = 1 + �: (7)

For the stability margin�, instead of (1) and (2), one uses the equivalent
conditionB(z1; z2) 6= 0, for jz1j � 1; jz2j � 1, [1]. So,k is the
supremum of the real numbers(�1) for whichB(kz1; kz2) 6= 0, for
jz1j � 1; jz2j � 1. Varying onlyz2, one obtains that this condition is
equivalent toB(kz1; kz2) 6= 0, for jz1j � 1; jz2j = 1. Following the
same steps as in above, we have the equations

A(k; z2) = 0 (8)
@A(k; z2)

@z2
= 0 (9)

whereA(k; z2) is the numerator ofdet�2N (k; z2) and�2N (k; z2)
is the inners matrix associated withzN

1
B(kz�1

1
; kz2). The common

solution of (8) and (9), with respect tok, can be found using the resul-
tant of the above polynomials, i.e.,

Rz A(k; z2);
@A(k; z2)

@z2
= 0: (10)

Afterwards, one can easily obtain� from (7). To illustrate the proposed
computational procedure, we consider the following example.

Remark 2: For the computation of�2 and�, Remarks analogous to
Remark 1 can be stated.

Example: The general first order characteristic polynomial of a
stable system is considered. This example has also been investigated
in [3]–[9].

B(z1; z2) = 1 + az1 + bz2 + cz1z2 (11)

wherea; b; c are real numbers. It is assumed that the corresponding
2-D system has no nonessential singularities of the second kind. To

compute the stability margin�1, the inners matrix ofzN
1

B(k1z
�1

1
; z2)

is formed (hereN1 = 1). This matrix is

�2N (k1; z2) =
(a+ cz2)k1 1 + bz2
1 + bz�1

2
a+ cz�1

2
k1

(12)

wherez2 = ej� and�2 2 [0; 2�]. Then

det�2N (k1; z2) = a2 + c2 + ac
z22 + 1

z2
k21

� 1 + b2 + b
z22 + 1

z2
: (13)

So,A1(k1; z2) = (ack21�b)z
2

2+((a2+c2)k21�(1+b2))z2+(ack21�
b) and(@A1(k1; z2))=(@z2) = 2(ack21 � b)z2+((a2+ c2)k21 � (1+
b2)). If we denote:x = ack21�b andy = (a2+c2)k21� (1+b2) then

Rz A1(k1; z2);
@A1(k1; z2)

@z2
= det

x y x

0 2x y

2x y 0

= 0

which finally yields�y2+4x2 = 0 from which one obtainsy = �2x.
After simple algebraic manipulation, one can find thatk1 = min[j1 +
bj=ja + cj; j1 � bj=ja � cj]. From which

�1 = min
j1 + bj

ja+ cj
;
j1� bj

ja � cj
� 1: (14)

By symmetry of the polynomial (11), one evaluates

�2 = min
j1 + aj

jb+ cj
;
j1� aj

jb� cj
� 1: (15)

The results for the stability margins�1 and�2 agree with those in
[3]–[9]. One also should note that the proposed method is simpler than
that of [3]–[9]. In order to compute the third stability margin�, we
form the inners matrix ofzN

1
B(kz�1

1
; kz2). This matrix is

�2N (k; z2) =
ak + ck2z2 1 + bkz2
1 + bkz�1

2
ak + ck2z�1

2

: (16)

Therefore

det�2N (k; z2) = k2(a2 + c2k2 + ack(z22 + 1)=(z2))

�(1 + b2k2 + bk(z22 + 1)=(z2))

and

A(k; z2) = (ack3 � bk)z22 + k2((a2 + c2k2)

�(1 + b2k2))z2 + (ack3 � bk)

and

(@A(k; z2))=(@z2) = 2(ack3�bk)z2+k2((a2+c2k2)�(1+b2k2)):

If we denotex = ack3 � bk andy = k2((a2 + c2k2)� (1 + b2k2))
then

Rz A(k; z2);
@A(k; z2)

@z2
=

x y x

0 2x y

2x y 0

= 0

which finally yields�y2 + 4x2 = 0 from which we obtainy = �2x.
The latter equation renders

k2(a2 + c2k2 + 2ack)� (1 + b2k2 + 2bk) = 0 (17)

and

k2(a2 + c2k2 � 2ack)� (1 + b2k2 � 2bk) = 0: (18)
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From (17) and (18) we findk = minimum of the real positive values
of the set

a+ b� (a+ b)2 � 4c

2c
;
�a+ b� (�a+ b)2 + 4c

2c
;

a� b� (a� b)2 � 4c

2c
;
�a� b� (�a� b)2 � 4c

2c
:

Now,� can be found using (7). The three stability margins agree with
those in [3]–[9]. However, one has to note that here they derived in an
easier manner avoiding anyminimization technique.

III. CONCLUSION

For the margin of stability of 2-systems which was originally intro-
duced in [2] many different methods have recently proposed [3]–[8].
In this brief, a new alternative method for the stability margin for 2-D
discrete systems has been presented. The present method, using the re-
sultant technique, has the advantage—compared with that of [9]—of
avoiding the usual, typical and somewhat inconvenient minimization
procedure which is used in [9].

Moreover, modifying the above method, one can easily derive
a general algorithm for evaluating the general stability margin
� = �(�1; �2). Other recent results and methods related to 2-D
system stability can be found in [14]–[32].
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