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A New Method for Computing the Stability Margin of 2-D

. Condition (1) requires a 1-D stability test while condition (2) requires
Discrete Systems (1) req y (2) req

a 2-D stability test. An overview of the various 2-D stability tests can
be found in [1]. It is also known, that for the evaluation of the stability

Nikos E. Mastorakis ) .
! I margin, several methods already exist [3]-[9].

Abstract—This brief presents a new contribution in the problem of com-  [I. A NEw COMPUTATIONAL METHOD FOR THESTABILITY MARGINS
puting the stability margin of two-dimensional (2-D) discrete systems. The OF A 2-D SYSTEM
method, using the “resultant technique” instead of a typical minimization
procedure , is actually an improvement of the method of . First, the following notation is used:
Index Terms—2-D Systems, multidimensional systems, stability, stability
margin. ki=1+0. 3)
| INTRODUCTION For a stable 2-D discrete system, we recall that the polynomial

B(z1,z2) is a (BIBO) Stable Polynomialf and only if: (1) holds
Asingle-input single-output, shift-invariant, causal two-dimensionaind the inners matrixAsn, (z2) associated withz't B(z;%, z0)
(2-D) system can be described by the transfer functiéfs. 22) = is positive innerwise for alks, zo = ¢’*2 and¢. € [0, 2x], [10].
(A(z1,22))/(B(21, 22)) whereA(zy, 22) and B(z,, z2) are coprime  So, B(k;z1,z2) remains (BIBO) Stable Polynomiaif and only
polynomials in the independent complex variablesandz>. Itis as- if (1) holds and the inners matrix\sn, (ki, 22) associated with
sumed that there are no nonessential singularities of the second kind §nB (%, z; %, =) remains positive innerwise for ath,z, = /%2
the closed unit bidisk, i.e., there are no poifs, z2) with |z1] < 1 andé. € [0,2x]. However, because of the assumed stability of the
and|zz| < 1 suchthatd(zi,z2) = B(z1,22) = 0. Inthe study and considered system, (1) holds independeritio{Note that (1) does not
design of 2-D systems, we are interested not only in whether the systeshtain z;, consequently it does not contain.) Thus, B (ki 21, 22)
is stable but also whether the system will remain stable in the presefemains(BIBO) Stable Polynomiaif and only if the inners matrix

of system parameter deviations. Ao, (k1, z2) associated Withz]wlB(lm 271, z0) remains positive
For this reason, for a stable 2-D (discrete) system, the following définerwise for allzs, z» = ¢’#2 and¢. € [0, 27].
initions have been given [3], [9]. Furthermore, if we consider the inner matrh v, (k1, z2) associ-

ated with=1* B(k1 ;L. z2), we obtain that for the supremum/of for

which B(k: 21, z2) is (BIBO) Stablethe inners matrixAq x, (ki, z2)

will be singular i.e.det Auy, (k1,22) = 0 (for somezz, zo = /92
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recommended by Editor M. N. S. Swamy. f th o f hich B(k: - is (BIBO) Stablei
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The equationlet Axn, (k1,22) = 0 is a rational equation which compute the stability margim , the inners matrix of 1 B(k1z7 ", 20)
its denominator is a power of,. Sincez, = e’®2 i.e., #0, this is formed (hereV; = 1). This matrix is
equation rendersi; (k,z2) = 0 where 4, (ki,zz2) is the numer-

ator of det Az, (k1,22). The equationd; (k1,z2) = 0 defines a Aoy, (ki 20) = {(a + czz_)1k1 1+ b_zlz } (12)
function of &, with respect toz if (9A:)/(0k1) # 0. Therefore, 1+ bz (atcz ')k
(Ok1)/(02z2) = —(0A1/Dz2)/(8A/dky). For the minimum ofk:, wherez» = ¢i%2 ande. 0.2x1. Then
we have(dk1)/(9z2) = 0i.e.,(0A1(k1,22))/(dz2) = 0. Therefore, 1= ¢2 € [0, 27].
the minimum ofk; fulfils simultaneously, the following equations: . . 22 .
! Y geq det Aon, (K1, 22) = <a2 + 2+ a2 * 1) I’
22
441(]{1,/52):0 (4) . "z—}—l
Y o — (140" +022 : 13
AL (k1. zo) —o ) ( O b= ) (13)

Jzo

S0,41 (k1, 22) = (ack? =b)25 +((a®+ )k = (14b%)) 2o+ (acki —

where A; (k1, z2) is the numerator oflet Az, (k1,22) = 0. Their &) and(9A; (1, 22))/(922) = 2(acki —b)z2 + ((a® + )k — (1 +

common solution, with respect fa, can be found using the resultanth?)). If we denotexr = acki —b andy = (a® +c*)kf — (1 +b7%) then
of the above polynomials, [12]

r oy
6&11(1&‘1,22)
AL (K, 2) R., |}41(k1,22),% =det| 0 2r y| =0
R., Al(kl,gz),léfl =0. (6) 9z % y 0

which finally yields—y? 4+ 422 = 0 from which one obtaing = +2z.
After simple algebraic manipulation, one can find that= min[|1 +
bl/|la + ¢|,|1 — b]/]a — ¢|]. From which

Then, the stability margin, can be obtained from (3).
Remark 1: If (9A1)/(8k1) = 0 then, fromA, (ki,z2) = 0, we
verify that(0A4,)/(8z2) = 0 also. Therefored; (k1, z2) is separable

and can be written as follows (ki, z2) = Ay (ki)A12(22). There- R
fore,o; = ki — 1, wherek, is the minimum positive root; of the o= mm{la +c| |a— CJ -t o
equationAi; (k1) = 0. _
A similar method for the computation of, can be formulated by By symmetry of the polynomial (11), one evaluates

interchanging the roles of the variablgsandz. . For the evaluation of

- . ) [l +al |1 —a
the stability marginr, one defines 09 = min , - (15)

b+el To—cl
k=1+o. (7) The results for the stability margins, and s> agree with those in

[3]-[9]. One also should note that the proposed method is simpler than
For the stability margimr, instead of (1) and (2), one uses the equivaleripat of [3]-[9]. In order to compute the third stability margin we
condition B(z1, 22) # 0, for [z1] < 1,|z2] < 1, [1]. So, % is the form the inners matrix of,"* B(kz; ", kz2). This matrix is
supremum of the real numbefz 1) for which B(kz1, kz2) # 0, for

ek, -
|z1] < 1,|z2| < 1. Varying onlyz;, one obtains that this condition is Aon, (R, 2z2) = {ak + L;k 7 1+ bé ‘2_1} (16)
equivalent toB (kz1, kz») # 0, for |z1| < 1,]22| = 1. Following the L4 bkzy  ak +ck™z,
same steps as in above, we have the equations Therefore
Ak, ) =0 (8) det Aoy, (B, z2) = l<:2((1,2 + 2k 4 ack(zg +1)/(22))
OA(k, z2) —(1 40k + bk(25 4+ 1)/(22))

9., 0 ©)
and

whereA(k, z2) is the numerator odet Ao, (k, z2) andAqn, (k, z2) ( 5 s a9 99

is the inners matrix associated with* B(kz"', kz). The common (ks 22) = (ack™ = bk)zy + k™ ((a” + ¢7k7)

solution of (8) and (9), with respect g can be found using the resul- —(146°E*)) 20 + (ack® — bk)

tant of the above polynomials, i.e.,

and
R A(} OA(k, 22) _ ) . 3 2., 2, 272 2,2
g |4 (1-7,22),T =0. (10)  (0A(Kk,22))/(022) = 2(ack” —bk)zo+k™((a"+c" k7)) = (1+b7K")).
, ) , If we denoter = ack® — bk andy = k*((a* + *k?) — (1 + b*k?))
Afterwards, one can easily obtairfrom (7). To illustrate the proposed then
computational procedure, we consider the following example.
Remark 2: For the computation of, ands, Remarks analogous to DAk, 22) r oy
Remark 1 can be stated. R, | Ak, 22), T‘} =10 2z y|=0
Example: The general first order characteristic polynomial of a . 2¢ y O

stable system is considered. This example has also been investigated . ) 5 . .
in [3]-[9]. which finally yields—y* + 42* = 0 from which we obtairy = £2x.

The latter equation renders

B(z1,20) = 14 az + bz +cz12 11 K2 (a + 2R+ 2ack) — (1+ 62K +20k) =0 (17)

wherea, b, ¢ are real numbers. It is assumed that the correspondif’a}ad
2-D system has no nonessential singularities of the second kind. To E(a” + K — 2ack) — (1 +b°k> — 2bk) = 0. (18)
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From (17) and (18) we find = minimum of the real positive values [14]
of the set

(18]

a+bt J(a+b)?—4c —a+bxJ/(—a+b)?+4c
2¢ ’ 2c ’ [16]
a—bxt\/(a—b)2—4c —a—bxt/(—a—0)%>—4c . [17]
2¢ ’ 2¢
(18]

Now, ¢ can be found using (7). The three stability margins agree with
those in [3]-[9]. However, one has to note that here they derived in ahtol
easier manner avoiding amyinimization technique [20]

[21]

I1l. CONCLUSION [22]

For the margin of stability of 2-systems which was originally intro- [23]
duced in [2] many different methods have recently proposed [3]-[8].
In this brief, a new alternative method for the stability margin for 2-D
discrete systems has been presented. The present method, using thézr‘é]-
sultant technique, has the advantage—compared with that of [9]—qbs;)
avoiding the usual, typical and somewhat inconvenient minimization
procedure which is used in [9].

Moreover, modifying the above method, one can easily derive26]
a general algorithm for evaluating the general stability margin
o = a(Ai,A2). Other recent results and methods related to 2-D[27]
system stability can be found in [14]-[32].

[28]
[29]
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