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A Method for Computing the 2-D Stability Margin Definition 2: Given a 2-D discrete system described by the trans-
) ) fer function (1), we call stability margim; the supremum of the
Nikos E. Mastorakis positive real numbers for which

B(z1,(1+02) - 22)
Abstract—In this brief, the margin of stability of two-dimensional (2- . .
D) discrete systems is considered. A new method to compute the stability iS & (BIBO) Stable Polynomial.
margin of 2-D continuous systems is provided. lllustrative examples are  Definition 3: Given a 2-D discrete system described by the trans-

also included. fer function (1), we call stability margiw the supremum of the
Index Terms—Multidimensional systems, stability, stability margin, 2-D  POsitive real numbers for which

filters, 2-D systems. )
Y B((1+0) 21, (1+0)-2)

is a (BIBO) Stable Polynomial.

- ] ] ) One should notice that the special case where the stable system
Stability testing of the two-dimensional (2-D) amd-D (1 >2)  pas nonessential singularities of the second kind on the closed unit

discrete systems is of much importance [1]. A shift-invariant causgljisk is excluded, since all three stability margins will be zero.

single-input single-output 2-D system can be described by the transfefq the evaluation of the stability margin, several methods already

. INTRODUCTION

function exist [3]-[8]. In this brief, a new method is proposed. It is based on a
Gz, 20) = A(z1, 22) N recently proposed method for checking the stability of a 2-D system
o B(z1,22) via inners determinants [9].
where A(z,z2) and B(z1,z2) are coprime polynomials in the
independent complex variables and z». It is assumed that there [l. COMPUTATION OF THE STABILITY
are no nonessential singularities of the second kind on the closed unit MARGINS FOR A 2-D (DISCRETE) SYSTEM
bidisk, i.e., there are no points, z2) with [z1] < 1 and|zz| <1 In this paragraph, a method of computing the stability margins of
such that 2-D systems is presented. First, we introduce the notation
A(z1,22) = B(z1,22) = 0. ki =140 (3)
It is well known that system (1) is bounded input bounded outpgthe method is based on checking the inners matrix of the character-
(BIBO) Stableif and only if istic polynomial B(z1, z2) of a stable system described by (1). For a
B(0, z) £0, for |=| <1 (2.1) _stable 2-D discrete system, we _recall that the polynorBigd; , z2)
is a (BIBO) Stable Polynomial if and only if (2.1) holds and the
B(z1,22) #0, for |z1] <1 |z =1 (2.2) inners matrix
Condition (2.1) is relatively easy to check using any 1-D stability Ao, (22)
test. Condition (2.2) is more difficult since it includes two variables. B
We denote the following: associated with
B(z1,22) = Ef\lrlzo Zf\;zzo biy,ip2it2a. 2Bz 2)

Additionally, the polynomialB(z1, z2) is said to be BIBO) Stable is positive innerwise for all
if and only if (2.1) and (2.2) are fulfilled.

There exist several algebraic methods for testing the stability of
2-D discrete systems or, equivalently, checking the BIBO characigid ¢, e [0,2x] [9]. Therefore,
of 2-D polynomials [1]. ‘

In the study of 2-D systems, we are interested not only in whether B(kyz1,22)
the system is stable, but also whether the system will remain staplg.ins (B1BO) Stable Polynomial if and only if (2.1) holds and the
in the presence of system-parameter deviations. inners matrix

For this reason, for a stable 2-D (discrete) system, the following
definitions have been introduced [3]: Aop, (K1, z2)

Definition 1: Given a 2-D discrete system described by the trans- iated with
fer function (1), we call stability marginr; the supremum (i.e., assoclated wi
the lower upper bound) of the positive real numbers for which z‘l'\rlB(h 27, 2)
B((1+ 1) - z1,22) is a (BIBO) Stable Polynomial. ] o )

. ) i ) remains positive innerwise for all
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However, because of the assumed stability of the considered syst&imis latter equation is analogous to (2.2). Therefore, following exactly
(2.1) holds independent df;. (Note that (2.1) does not contain, the same steps as in the case of the stability margjiwe formulate
consequently it does not contain.) Thus, B(k;z1, z2) remains a the following method for the stability margin:

(BIBO) Stable Polynomial if and only if the inners matrix

Aoy (K1, 22)

min k (6.1)

under the constraint
associated with det Ao, (k. 22) = 0 6.2)
) et / ang (R, 22) = .
zi,\lB(klzrlalz) . . . - ;
where Asgn, (k,2) is the inners matrix associated with

remains positive innerwise for all U B(kz7 ', kz). The following example illustrates the
29, 29 = 192 implementation of this method.
i Example 1 [3]-[8]: Consider the general first-order characteristic
and polynomial of a stable system
o2 € 10,2m]. B(z1,z2) =14+ az1 + bza + cz122 ©)
Considering the inners matrix where a, b, ¢ are real numbers. It is always assumed that the
Ao, (k1. 2) corresponding 2-D system has no nonessential singularities of the
2N » <

] second kind. For the computation of the stability margin one
associated with:\" B(k; 2,1, 22 ), we obtain that for the supremumforms the inners matrix of "' B(k, 2", z2) (here, N, = 1). This is
of k&, for which B(k;z1,22) is (BIBO) Stable the inners matrix

Aoy (1, 22) Ao, (k ) (a+ cz2)k: 14 bz
2N i1y 22 ) = — _
will be singular, i.e., ' 1+0Z2 (a+cZ2)k

®)

det Ao, (K1, 22) =0 wherez, = ¢’*2 and ¢» € [0,2x] and the overbar denotes a

(for somezy, 2o = ¢’2 and ¢, € [0,27]). For a detailed justifi- complex conjugate. Then

cation, see the Appendix. Therefore, the supremurh;dfor which N2 2 2 2 | o7
B(kiz1, z2) is (BIBO) Stable is simultaneously thmainimumof all det Aoy (b, 22) = (@ + ¢ + Zaca)ky — (1457 + 2b2) (9)
k1 with wherez = cos ¢2(x € [—1,1]). One obtains thaflet Asn, (k1, 22)
det Ay, k1, 22) = 0 is linear in z. T_hus, fqr a certaink, th(_a min‘imum value of
R det Agn, (K1, 22) is obtained fore = —1 (if acki —b > 0) or

(for some z,.2; = ¢’*2 and ¢, € [0,2n]). This implies that for = = +1 (if acki — b<0). Thus, for theminimum k; with
the computation oft; can be achieved by solving the followingdet Azn, (k1,22) = 0, the determinantlet Aan, (ki, 22) will be

minimization problem: zero forx = £1. Therefore, for the minimunt,, we obtain
min kq (4.1)
under the constraint (a® 4 ¢* + 2ac)ki — (140" 4 2b) =0 (10.1)
det Aony (k1,22) =0 (4.2) or
where (a® + ¢ = 2ac)ki — (1 +b° = 2b) = 0. (10.2)

A;‘ 7. (k ) 2
na (- 22) Solving (10.1) and (10.2), we find
is the inners matrix associated with
S B(kiz ' 20)

ki =min[|l +0|/|a + ¢/, |1 = b|/|a — ¢|]

From which
In the sequel, we easily obtain, from (3). T4b |1—b
By interchanging the roles of the variablesandz., a completely 01 = min { , } - 1. (11)
analogous method for the computationeof is obtained. ja el fa —c]
Analogously, for the computation of, we denote Consequently, interchanging the variablesand =2, one evaluates
k=1+o. (5) s = min “i jrr :||_/ ||}, - f;||} 1 (12)

Here, instead of (2.1) and (2.2), we use the equivalent condition [1]

Bz, = 0 The results agree with those of [3]-[8]. Note that here they are derived
@, 2) # in a very simple manner. Let us also compuatéWNVe form the inners

for |z1| < 1,]z2| < 1 Thus, k is the supremum of the real numbergnatrix of

(>1) for which

B(k21,k22) ;& 0, fOI’|Z1| <1, |z2| <1

MB(kzt kzy)
This is
Varying only z», one can obtain that this condition is equivalent to ak 4+ ck?z 1+ bk

AZNI (7{,, Zg) =

- =, 2 (13)
B(kz1, k) #0,  for|z| < 1,]5| =1 L4+ bkz  ak 4 ck’=
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Then The method of thénners determinant has the same multiplexity
s s ) as the method of the Schur—Cohn ([9]), but it is actually an essential
det Aon, (k, z2) = k(0" +c k" +2ackr) — (1+D0" k" +2bkx) simplification of the Schur—-Cohn method as far as the formulation

(14) of the various matrices is concerned [9], [12]. For this reason, the
proposed method is better than that of [3]-[8].
where &« = cos¢:. One also obtains thatlet Aon, (K, z0) is Work is in progress by the author in the area of 2-D stability-
also linear inz. Thus, for a certaink, the minimum value of margin formulating analogous methods for 2-D continuous systems.
det An,(k,z1) is obtained forz = £1. Thus, for the minimum Other recent results can also be found in [2].
k with det Asn, (K, z2) = 0 the determinantlet Axn, (k, z2) will

be zero forz = +1. Therefore, we obtain the following for the APPENDIX
minimum &: Consider the mapping
E*(a® 4 ¢ k* + 2ack) — (1 + b°E* 4+ 2bk) =0 (15.1) 8 ki — 8(k1)  wheres(ki) = Aan, (K1, 22)
or This is acontinuousmapping since the matrif, v, (k1, z2) consists
of polynomials ink;, z. Also, consider the mapping
E(a® + K = 2ack) — (1 + 07K — 2bk) = 0. (15.2) det: 8(k1) — det 5(k1)

Solving (15.1) and (15.2), we find = minimumof the real positive This is also a continuous mapping.
values of the set Therefore, their synthesis

{a+b:|: (a4+0)?2—4c —a+bx\/(—a+b)?+4c det&: ki — det 6(k1)
ki 2C 2

2c is also a continuous mapping. We dendigthe setS = {6(k)
} with 6(k;) > 0}, where> denotes positive innerwise for alh with

a—bxt\/(a=b)24+4c —a—bx /(—a—10)%—4c

5 5 z = %2 and ¢, € [0, 27] [9]. We also denotelet {S} the subset
ZC &

of the real numbers which consists of all the determinants(éf)

. . . . that belong toS. Evidently, det {S} is the set of all the (strictly)

From whichs =k — 1. All the results agree with those derived ingqitive real numbers. Thus, thi o}nly limit pointait {S} is the 0.

[31-{8]. but here they aré derived in an easier manner. . S is anopenset and because of the continuity of the mapping
Example 2 [6]: ConsiderB(z1,2;) =3 — 21 — 2. Following the 5 "y,0 -5 1responding set df will also be open(see any standard

above procedure, we obtain =1, 0> = 1, as well asr = 0.5. Th.e textbook ofReal Analysisor Topology[11]). Thus, the supremum of

latter can be obtained from (15.1) and (15.2) if we put b = —1/3 ky is a limit point of this set and because of the continuity of the

ande = 0. _ o - mappings, for this k1, (k) is also a limit point ofS. Furthermore,
Remark: An interesting generalization of the definitions ofby the continuity of the mapping

o1,02,0 could be the following:Definition of the stability margin

o with weights det: 6(k1) — det 6(ky), det (k1)

is the limit point in the setlet {S} for this k1. Since the only limit

A1, Ao (A =12 2>20&X >0 . . .
bz (s t= 22 0) point of det {S} is the 0, we conclude that for thik,, we have

Given a 2-D discrete system described by the transfer function (ﬂf,’t b(k1) = 0. . .

we call stability margins the supremum of the positive real numbers AS @ result, we obtain that for the supremum faf for which

for which B(k1z1,22) is (BIBO) Stable the inners matrixAsn, (k1, z2) will
be singular (for some., z2 = €’?2 and¢» € [0, 27]).
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procedure has the property of converging to the global minimum with
a probability of one, as the number of iterations tends to infinity [21].

A Global Least Mean Square One such general method is the stochastic approximation method,
Algorithm for Adaptive IIR Filtering which represents a simple approach to minimizing a nonconvex
function. This method is based on using a randomly distributed
William Edmonson, Jose Principe, process to find the absolute minimum of an objective function [3],
Kannan Srinivasan, and Chuan Wang [10], [16]. In particular, stochastic approximation with convolution

smoothing (SAS) has been successfully used as a global optimization

Abstract—In this brief, we develop an least mean square (LMS) algorithm in several applications [5], [11], [12]. Though similar to
— i ief, w Vi u . ; L

algorithm that converge in a statistical sense to the global minimum of S'mqlated anneall_ng [13], SAS was emplrlgally prove.n to be more
the mean square error (MSE) objective function. This is accomplished by €fficient computationally and more accurate in converging to a global
estimating the gradient as a smoothed version of the MSE. The smoothed minimum [5]. The objective of convolution smoothing is to “smooth”
MSE objective begins as a convex functional in the mean. The amount of the nonconvex objective function by convolving it with a noise

dispersion or smoothing is reduced, such that over time it becomes the T ; ; ;
true MSE as the algorithm converges to the global minimum. We show probability density function {pd). The variance on the pdf at the

that this smoothing behavior is approximated by appending a variable start of the optimization procedure is large, which has the effect of
noise source to the infinite impulse response (IIR)-LMS algorithm. We “smoothing” the objective function so that it is convex. Then the
show, experimentally, that the proposed method does converge to the variance is slowly reduced to zero, whereby the smooth functional
gr'IObﬁ:?mL"’:/iI”S"“T in_tr?e Caséeshtessteq- I'A p"\*/l”gr%ancle im_phrovimerg OVEr returns to the original objective function, as the algorithm converges
;cehieve_d. algorithm and the Steiglitz-McBride algorithm has been  *, global minimum,
The SAS method represents an off-line procedure for optimizing

|. INTRODUCTION deterministic objective functions where the data is static and, there-
igre, is not conducive for adaptive filtering. We will develop an on-
i

Adaptive filtering represents a major research area in digital si o ) . .
b g rep J g g e approximation of this method for time-series data. The proposed

processing, communications, and control. There exist many appl ) . . .
tions of adaptive filtering in communications and signal processi ethod is Qevelopgd from the SA.S algorithm by first shgwmg

that require filters that self-modify, based on the signals en(:ountelI at an on-line Version of the algorithm computes the gradient at
within their operating environment. Examples of important applf- N prgsent I0(_:at|on perturbed _by a random value_. Secqndly, we
cations include linear prediction, adaptive differential pulse Codingpproxmate this gradient by an instantaneous function of its Taylor

echo cancellation, channel equalization, and system identification TIES expansion. _Comblnlng t_h's approxun_atlon of the_ grad_lent
Adaptive filters based upon the finite-impulse response (Fl th the LMS algorithm results in a stochastic global optimization

structure have matured to a point of practical implementations. gorithm for adaptive IIR filtering. The resultant global optimization

major drawback of the adaptive FIR filter is that certain applicatiorHvI dst' algorflthm cqnsw;ts of thﬁ standard LMS qlg?rlltrml with th%
will require a very large number of parameters to achieve go ||onho a n0|sether_rtn, V,;I ose varlance_lst_ ni 'e}”):. ?rge Tmt
performance, thus, increasing computational costs. This becori$'0aches z€ro as the iteralion progresses in ime. 1his formufation

evident when the system to be modeled or identified is represenf’ Y .|ncremental!y increases the computational cost of the .LMS
as a pole—zero model, algorithm. Experimentally, we show that the proposed algorithm

On the other hand, adaptive filters based upon the infinite-impul‘é‘(?rnverges to th? global_ mi_nimum, thereby, alleviating a major
blem of adaptive IIR filtering.

response (IIR) structure [4] have the advantage of approximati ) o . . . .

a pole-zero model more accurately than the FIR structure. This his brief is organlze_d as fOHO\.NS: Section Il is an overview of

increased accuracy can be accomplished with an equivalent-orderﬁl general SgSL,\z/TISg;jorllthm_, hSe(;tlon dI” d_evelll?qp; th_e glosbﬁl Iea;t-

filter, thereby reducing the computational cost in terms of the numb ap-sqIL\J/are( h ) ago”t ml or al apt|fve ) Ir:erg%]\as ownhlnd

of coefficients to be estimated. Although adaptive IIR filters requi ec_tlon Vv are the experimental results o using the . met 10
ﬁeldentlfylng an unknown system, along with a comparison of its

less coefficients to be estimated, the system may become unsté%h . he IIR—LMS alaorithm 6 d the Steialitz—McBrid
during adaptation. Another problem area is that the objective functi avior to the 1R~ . agorllt m [6] an .t e Steiglitz-McBride
ggorlthm [17], and Section V gives concluding remarks.

for an adaptive IIR filter can be nonconvex, which implies th
existence of multiple local minima. Adaptive IIR filtering typically
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