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A Method for Computing the 2-D Stability Margin

Nikos E. Mastorakis

Abstract—In this brief, the margin of stability of two-dimensional (2-
D) discrete systems is considered. A new method to compute the stability
margin of 2-D continuous systems is provided. Illustrative examples are
also included.

Index Terms—Multidimensional systems, stability, stability margin, 2-D
filters, 2-D systems.

I. INTRODUCTION

Stability testing of the two-dimensional (2-D) andm-D (m> 2)

discrete systems is of much importance [1]. A shift-invariant causal
single-input single-output 2-D system can be described by the transfer
function

G(z1; z2) =
A(z1; z2)

B(z1; z2)
(1)

where A(z1; z2) and B(z1; z2) are coprime polynomials in the
independent complex variablesz1 and z2. It is assumed that there
are no nonessential singularities of the second kind on the closed unit
bidisk, i.e., there are no points(z1; z2) with jz1j � 1 and jz2j � 1

such that

A(z1; z2) = B(z1; z2) = 0:

It is well known that system (1) is bounded input bounded output
(BIBO) Stableif and only if

B(0; z2) 6=0; for jz2j � 1 (2.1)

B(z1; z2) 6=0; for jz1j � 1 jz2j = 1: (2.2)

Condition (2.1) is relatively easy to check using any 1-D stability
test. Condition (2.2) is more difficult since it includes two variables.
We denote the following:

B(z1; z2) = �
N
i =0

�
N
i =0

bi ;i z
i
1
z
i
2
:

Additionally, the polynomialB(z1; z2) is said to be (BIBO) Stable
if and only if (2.1) and (2.2) are fulfilled.

There exist several algebraic methods for testing the stability of
2-D discrete systems or, equivalently, checking the BIBO character
of 2-D polynomials [1].

In the study of 2-D systems, we are interested not only in whether
the system is stable, but also whether the system will remain stable
in the presence of system-parameter deviations.

For this reason, for a stable 2-D (discrete) system, the following
definitions have been introduced [3]:

Definition 1: Given a 2-D discrete system described by the trans-
fer function (1), we call stability margin�1 the supremum (i.e.,
the lower upper bound) of the positive real numbers for which
B((1 + �1) � z1; z2) is a (BIBO) Stable Polynomial.
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Definition 2: Given a 2-D discrete system described by the trans-
fer function (1), we call stability margin�2 the supremum of the
positive real numbers for which

B(z1; (1 + �2) � z2)

is a (BIBO) Stable Polynomial.
Definition 3: Given a 2-D discrete system described by the trans-

fer function (1), we call stability margin� the supremum of the
positive real numbers for which

B((1 + �) � z1; (1 + �) � z2)

is a (BIBO) Stable Polynomial.
One should notice that the special case where the stable system

has nonessential singularities of the second kind on the closed unit
bidisk is excluded, since all three stability margins will be zero.

For the evaluation of the stability margin, several methods already
exist [3]–[8]. In this brief, a new method is proposed. It is based on a
recently proposed method for checking the stability of a 2-D system
via inners determinants [9].

II. COMPUTATION OF THE STABILITY

MARGINS FOR A 2-D (DISCRETE) SYSTEM

In this paragraph, a method of computing the stability margins of
2-D systems is presented. First, we introduce the notation

k1 = 1 + �1: (3)

The method is based on checking the inners matrix of the character-
istic polynomialB(z1; z2) of a stable system described by (1). For a
stable 2-D discrete system, we recall that the polynomialB(z1; z2)

is a (BIBO) Stable Polynomial if and only if (2.1) holds and the
inners matrix

�2N (z2)

associated with

z
N
1
B(z

�1

1 ; z2)

is positive innerwise for all

z2; z2 = e
j�

and �2 2 [0; 2�] [9]. Therefore,

B(k1z1; z2)

remains (BIBO) Stable Polynomial if and only if (2.1) holds and the
inners matrix

�2N (k1; z2)

associated with

z
N
1
B(k1z

�1

1 ; z2)

remains positive innerwise for all

z2; z2 = e
j�

and

�2 2 [0; 2�]:
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However, because of the assumed stability of the considered system,
(2.1) holds independent ofk1. (Note that (2.1) does not containz1,
consequently it does not containk1.) Thus,B(k1z1; z2) remains a
(BIBO) Stable Polynomial if and only if the inners matrix

�2N (k1; z2)

associated with

z
N
1

B(k1z
�1

1 ; z2)

remains positive innerwise for all

z2; z2 = e
j�

and

�2 2 [0; 2�]:

Considering the inners matrix

�2N (k1; z2)

associated withzN
1

B(k1z
�1

1
; z2), we obtain that for the supremum

of k1 for which B(k1z1; z2) is (BIBO) Stable the inners matrix

�2N (k1; z2)

will be singular, i.e.,

det�2N (k1; z2) = 0

(for somez2; z2 = ej� and �2 2 [0; 2�]). For a detailed justifi-
cation, see the Appendix. Therefore, the supremum ofk1 for which
B(k1z1; z2) is (BIBO) Stable is simultaneously theminimumof all
k1 with

det�2N (k1; z2) = 0

(for some z2; z2 = ej� and �2 2 [0; 2�]). This implies that
the computation ofk1 can be achieved by solving the following
minimization problem:

min k1 (4.1)

under the constraint

det�2N (k1; z2) = 0 (4.2)

where

�2N (k1; z2)

is the inners matrix associated with

z
N
1

B(k1z
�1

1 ; z2)

In the sequel, we easily obtain�1 from (3).
By interchanging the roles of the variablesz1 andz2, a completely

analogous method for the computation of�2 is obtained.
Analogously, for the computation of�, we denote

k = 1 + �: (5)

Here, instead of (2.1) and (2.2), we use the equivalent condition [1]

B(z1; z2) 6= 0

for jz1j � 1; jz2j � 1 Thus,k is the supremum of the real numbers
(�1) for which

B(kz1; kz2) 6= 0; for jz1j � 1; jz2j � 1

Varying only z2, one can obtain that this condition is equivalent to

B(kz1; kz2) 6= 0; for jz1j � 1; jz2j = 1

This latter equation is analogous to (2.2). Therefore, following exactly
the same steps as in the case of the stability margin�1, we formulate
the following method for the stability margin�:

min k (6.1)

under the constraint

det�2N (k; z2) = 0 (6.2)

where �2N (k;2 ) is the inners matrix associated with
z
N
1

B(kz�1
1

; kz2). The following example illustrates the
implementation of this method.

Example 1 [3]–[8]: Consider the general first-order characteristic
polynomial of a stable system

B(z1; z2) = 1 + az1 + bz2 + cz1z2 (7)

where a, b, c are real numbers. It is always assumed that the
corresponding 2-D system has no nonessential singularities of the
second kind. For the computation of the stability margin�1, one
forms the inners matrix ofzN

1
B(k1z

�1

1
; z2) (here,N1 = 1). This is

�2N (k1; z2) =
(a+ cz2)k1 1 + bz2
1 + bz2 (a+ cz2)k1

(8)

where z2 = ej� and �2 2 [0; 2�] and the overbar denotes a
complex conjugate. Then

det�2N (k1; z2) = (a
2
+ c

2
+ 2acx)k

2

1 � (1 + b
2
+ 2bx) (9)

wherex = cos�2(x 2 [�1; 1]). One obtains thatdet�2N (k1; z2)

is linear in x. Thus, for a certaink1, the minimum value of
det�2N (k1; z2) is obtained forx = �1 (if ack21 � b � 0) or
for x = +1 (if ack21 � b< 0). Thus, for theminimum k1 with
det�2N (k1; z2) = 0, the determinantdet�2N (k1; z2) will be
zero forx = �1. Therefore, for the minimumk1, we obtain

(a
2
+ c

2
+ 2ac)k

2

1 � (1 + b
2
+ 2b) = 0 (10.1)

or

(a
2
+ c

2
� 2ac)k

2

1 � (1 + b
2
� 2b) = 0: (10.2)

Solving (10.1) and (10.2), we find

k1 = min [j1 + bj=ja+ cj; j1� bj=ja� cj]

From which

�1 = min
j1 + b

ja+ cj
;
j1� bj

ja� cj
� 1: (11)

Consequently, interchanging the variablesz1 andz2, one evaluates

�2 = min
j1 + aj

jb+ cj
;
j1� aj

jb� cj
� 1: (12)

The results agree with those of [3]–[8]. Note that here they are derived
in a very simple manner. Let us also compute�. We form the inners
matrix of

z
N
1

B(kz
�1

1 ; kz2)

This is

�2N (k; z2) =
ak + ck2z2 1 + bkz2
1 + bkz2 ak + ck2z2

: (13)
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Then

det�2N (k; z2) = k
2
(a

2
+c

2
k
2
+2ackx)�(1+b

2
k
2
+2bkx)

(14)

where x = cos�1. One also obtains thatdet�2N (k; z2) is
also linear in x. Thus, for a certaink, the minimum value of
det�N (k; z1) is obtained forx = �1. Thus, for the minimum
k with det�2N (k; z2) = 0 the determinantdet�2N (k; z2) will
be zero forx = �1. Therefore, we obtain the following for the
minimum k:

k
2
(a

2
+ c

2
k
2
+ 2ack)� (1 + b

2
k
2
+ 2bk) = 0 (15.1)

or

k
2
(a

2
+ c

2
k
2
� 2ack)� (1 + b

2
k
2
� 2bk) = 0: (15.2)

Solving (15.1) and (15.2), we findk = minimumof the real positive
values of the set

a+ b� (a+ b)2 � 4c

2c
;
�a+ b� (�a+ b)2 + 4c

2c
;

a� b� (a� b)2 + 4c

2c
;
�a� b� (�a� b)2 � 4c

2c
:

From which� = k � 1. All the results agree with those derived in
[3]–[8], but here they are derived in an easier manner.

Example 2 [6]: ConsiderB(z1; z2) = 3� z1� z2. Following the
above procedure, we obtain�1 = 1, �2 = 1, as well as� = 0:5: The
latter can be obtained from (15.1) and (15.2) if we puta = b = �1=3

and c = 0:

Remark: An interesting generalization of the definitions of
�1; �2; � could be the following:Definition of the stability margin
� with weights

�1; �2 (�1 + �2 = 1; �1 � 0 & �2 � 0)

Given a 2-D discrete system described by the transfer function (1),
we call stability margin� the supremum of the positive real numbers
for which

B((1 + �1�) � z1; (1 + �2�) � z2)

is a (BIBO) Stable Polynomial.
Taking into account this definition, we can consider Definitions

1–3 as special cases of the previous definition (Definition 3 needs a
slight modification). Moreover, modifying the above method, one can
easily derive a general algorithm for evaluating the stability margin
� with weights�1; �2.

III. CONCLUSION

In this brief, the stability margin for 2-D discrete systems has been
considered. A new method for computing the stability margins has
been proposed. The method is based on a constrained optimization
problem of a real positive parameter. Since the formulation of the
inners determinant [9] is more “direct” than the formulation of the
Schour–Cohn matrix [1], [12], the method, offering a more direct
computation of the stability margin, is better than the method of [3].

The significance of the proposed computational method and the
improvement with respect to previous work in [3]–[8] is that we use
the inners determinant instead of the method ofSchur–Cohn.

The method of theinners determinant has the same multiplexity
as the method of the Schur–Cohn ([9]), but it is actually an essential
simplification of the Schur–Cohn method as far as the formulation
of the various matrices is concerned [9], [12]. For this reason, the
proposed method is better than that of [3]–[8].

Work is in progress by the author in the area of 2-D stability-
margin formulating analogous methods for 2-D continuous systems.
Other recent results can also be found in [2].

APPENDIX

Consider the mapping

�: k1 ! �(k1) where�(k1) = �2N (k1; z2)

This is acontinuousmapping since the matrix�2N (k1; z2) consists
of polynomials ink1; z2. Also, consider the mapping

det: �(k1)! det �(k1)

This is also a continuous mapping.
Therefore, their synthesis

det �: k1 ! det �(k1)

is also a continuous mapping. We denoteSSS, the setSSS = f�(k1)

with �(k1)> 0g, where> denotes positive innerwise for allz2 with
z2 = ej� and�2 2 [0; 2�] [9]. We also denotedet fSSSg the subset
of the real numbers which consists of all the determinants of�(k1)

that belong toSSS. Evidently, det fSSSg is the set of all the (strictly)
positive real numbers. Thus, the only limit point ofdet fSSSg is the 0.
SSS is an open set and because of the continuity of the mapping

�, the corresponding set ofk1 will also be open (see any standard
textbook ofReal Analysisor Topology[11]). Thus, the supremum of
k1 is a limit point of this set and because of the continuity of the
mapping�, for this k1; �(k1) is also a limit point ofSSS. Furthermore,
by the continuity of the mapping

det: �(k1)! det �(k1);det �(k1)

is the limit point in the setdet fSSSg for this k1. Since the only limit
point of det fSSSg is the 0, we conclude that for thisk1, we have
det �(k1) = 0.

As a result, we obtain that for the supremum ofk1 for which
B(k1z1; z2) is (BIBO) Stable, the inners matrix�2N (k1; z2) will
be singular (for somez2; z2 = ej� and�2 2 [0; 2�]).
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A Global Least Mean Square
Algorithm for Adaptive IIR Filtering

William Edmonson, Jose Principe,
Kannan Srinivasan, and Chuan Wang

Abstract—In this brief, we develop an least mean square (LMS)
algorithm that converge in a statistical sense to the global minimum of
the mean square error (MSE) objective function. This is accomplished by
estimating the gradient as a smoothed version of the MSE. The smoothed
MSE objective begins as a convex functional in the mean. The amount of
dispersion or smoothing is reduced, such that over time it becomes the
true MSE as the algorithm converges to the global minimum. We show
that this smoothing behavior is approximated by appending a variable
noise source to the infinite impulse response (IIR)–LMS algorithm. We
show, experimentally, that the proposed method does converge to the
global minimum in the cases tested. A performance improvement over
the IIR–LMS algorithm and the Steiglitz–McBride algorithm has been
achieved.

I. INTRODUCTION

Adaptive filtering represents a major research area in digital signal
processing, communications, and control. There exist many applica-
tions of adaptive filtering in communications and signal processing
that require filters that self-modify, based on the signals encountered
within their operating environment. Examples of important appli-
cations include linear prediction, adaptive differential pulse coding,
echo cancellation, channel equalization, and system identification [6].

Adaptive filters based upon the finite-impulse response (FIR)
structure have matured to a point of practical implementations. A
major drawback of the adaptive FIR filter is that certain applications
will require a very large number of parameters to achieve good
performance, thus, increasing computational costs. This becomes
evident when the system to be modeled or identified is represented
as a pole–zero model.

On the other hand, adaptive filters based upon the infinite-impulse
response (IIR) structure [4] have the advantage of approximating
a pole–zero model more accurately than the FIR structure. This
increased accuracy can be accomplished with an equivalent-order IIR
filter, thereby reducing the computational cost in terms of the number
of coefficients to be estimated. Although adaptive IIR filters require
less coefficients to be estimated, the system may become unstable
during adaptation. Another problem area is that the objective function
for an adaptive IIR filter can be nonconvex, which implies the
existence of multiple local minima. Adaptive IIR filtering typically
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uses gradient search techniques, e.g., the least mean square (LMS) al-
gorithms [6], which are sensitive to initial conditions. Therefore, these
techniques can easily converge to a local minimum, resulting in a
suboptimal solution. Hence, adaptive IIR filters are not used commer-
cially at this time. Additional open problems of adaptive IIR filtering,
such as convergence to an unstable filter, are discussed in [1] and [2].

We propose to address the problem of convergence to a local
minimum of an adaptive IIR filter by investigating the use of sto-
chastic global-optimization methods. This type of global optimization
procedure has the property of converging to the global minimum with
a probability of one, as the number of iterations tends to infinity [21].
One such general method is the stochastic approximation method,
which represents a simple approach to minimizing a nonconvex
function. This method is based on using a randomly distributed
process to find the absolute minimum of an objective function [3],
[10], [16]. In particular, stochastic approximation with convolution
smoothing (SAS) has been successfully used as a global optimization
algorithm in several applications [5], [11], [12]. Though similar to
simulated annealing [13], SAS was empirically proven to be more
efficient computationally and more accurate in converging to a global
minimum [5]. The objective of convolution smoothing is to “smooth”
the nonconvex objective function by convolving it with a noise
probability density function (pdf). The variance on the pdf at the
start of the optimization procedure is large, which has the effect of
“smoothing” the objective function so that it is convex. Then the
variance is slowly reduced to zero, whereby the smooth functional
returns to the original objective function, as the algorithm converges
to the global minimum.

The SAS method represents an off-line procedure for optimizing
deterministic objective functions where the data is static and, there-
fore, is not conducive for adaptive filtering. We will develop an on-
line approximation of this method for time-series data. The proposed
method is developed from the SAS algorithm by first showing
that an on-line version of the algorithm computes the gradient at
the present location perturbed by a random value. Secondly, we
approximate this gradient by an instantaneous function of its Taylor
series expansion. Combining this approximation of the gradient
with the LMS algorithm results in a stochastic global optimization
algorithm for adaptive IIR filtering. The resultant global optimization
LMS algorithm consists of the standard LMS algorithm with the
addition of a noise term, whose variance is initially large and
approaches zero as the iteration progresses in time. This formulation
only incrementally increases the computational cost of the LMS
algorithm. Experimentally, we show that the proposed algorithm
converges to the global minimum, thereby, alleviating a major
problem of adaptive IIR filtering.

This brief is organized as follows: Section II is an overview of
the general SAS algorithm, Section III develops the global least-
mean-square (GLMS) algorithm for adaptive IIR filtering. Shown in
Section IV are the experimental results of using the GLMS method
for identifying an unknown system, along with a comparison of its
behavior to the IIR–LMS algorithm [6] and the Steiglitz–McBride
algorithm [17], and Section V gives concluding remarks.

II. BACKGROUND

SAS is an unconstrained global-optimization algorithm for mini-
mizing a nonconvex function

min
x2R

g(x): (1)
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