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New Necessary Stability Conditions for 2-D Systems

Nikos E. Mastorakis

Abstract—In this paper, some interesting necessary conditions for the
stability of two-dimensional (2-D) systems are presented. The inversion of
these conditions gives sufficient conditions for the instability of the same
systems. The proof of these conditions is given. A comparison with some
other known criteria is given.

Index Terms—Multidimensional systems, stability, stability test, two-di-
mensional system.

I. INTRODUCTION

Two-dimensional (2-D) systems theory has recently attracted
increasing attention in the areas of analysis, synthesis, stability,
factorizability, controllability, observability, minimality, feedback
control, and filter design.

Stability of 2-D systems arises in many applications. Two-dimen-
sional signal processing, realization of 2-D networks and distributed
parameter systems, stability of 2-D difference/differential equations,
processing of radar data are among these applications.

In [1], an excellent overview of the stability problem and of the the-
orems and the tests associated with it has been made by Jury. Some of
these theorems check if some one-dimensional (1-D) or 2-D polyno-
mials is devoid of zeros in appropriate regions ofCCC orCCCxxxCCC, respec-
tively. For this reason, the factorization problem of 2-D polynomials is
all important [3]–[6].

In the literature, several tests exist which check various conditions
of the coefficients off(z1; z2) [1], [6]–[8]. From another standpoint,
we obtain that most of tests check sufficient conditions for stability
[6]–[14], while other tests check necessary stability conditions [15],
[17]. The inversion of the latter conditions gives sufficient conditions
for instability. Other recent relevant studies can be found in [18]–[22].

A shift-invariant causal single-input single-output (SISO) 2-D
system can be described by the transfer function

G(z1; z2) =
g(z1; z2)

f(z1; z2)
(1)

whereg(z1; z2) andf(z1; z2) are coprime polynomials in the inde-
pendent complex variablesz1 andz2, It is assumed that there are no
nonessential singularities of the second kind on the closed unit bidisk
[1], i.e., there are no points(z1; z2) with jz1j � 1 andjz2j � 1 such
thatg(z1; z2) = f(z1; z2) = 0.

It is well known that the system (1) is BIBO stable, if and only if

f(z1; 0) 6=0; jz1j � 1 (2a)

f(z1; z2) 6=0; jz1j = 1; jz2j � 1 (2b)

Condition (2a) is relatively easy to check using any 1-D stability test.
Checking (2b) is a more difficult task.

In the present paper, some interesting necessary conditions for 2-D
system stability are presented. The inversion of these conditions gives
sufficient conditions for 2-D systems instability. These can be used as
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a quick check if the 2-D system is unstable. The main result is given
by Theorem 1. Some numerical examples are also included via which
a comparison with other necessary stability conditions is given.

II. M AIN RESULTS

Consider the 1-D polynomial

f(z) =

N

i=0

�f(i) � z
i with �f (i); z 2 CCC: (3)

The reciprocal (or reverse) polynomial is defined as the reversed and
conjugated one.

f(z) =

N

i=0

�
�

f (N � i) � zi (4)

or in a more convenient notation

f(z) =

N

i=0

�
f
(i)zi with �

f
(i) = �

�

f (N � i) (5)

where� means the complex conjugate. The partial energy of the poly-
nomialf(z) is defined as

PEf (n) =
n

i=0

j�f (i)j
2
; n = 0; 1; . . . ; N � 1 (6)

while the total energy is defined by

TEf(N) =

N

i=0

j�f (i)j
2
: (7)

Note that

TEf(N) = TE
f
(N): (8)

If the polynomialf(z) corresponds to a stable 1-D system, i.e., it is
the characteristic polynomial of a stable 1-D system, then

PEf (n) > PE
f
(n) 8n; n = 0; 1; . . . ; N � 1: (9)

Relations (9) express the so-called minimal delay property. That
means that the stable polynomialf(x) has most of its energy concen-
trated at the earlier times, whilef(z) has most of its energy concen-
trated at the later times. A detailed proof is given in [2]. In fact, equa-
tions (9) are necessary stability conditions and therefore they can be
used as a quick check if the 1-D system is unstable.

In order to extend the above ideas to the 2-D case, let us consider the
2-D polynomial

f(z1; z2) =

N

i =0

N

i =0

�f (i1; i2)z
i
1
z
i
2

(10)

with �f (i1; i2); z1; z2 2 CCC.
It should be noted that in 2-D circuits, 2-D filters, and other engi-

neering applications, we have�f (i1; i2) 2 RRR.
The reciprocal (reverse) polynomial, with respect toz2, is defined as

f(z1; z2) =

N

i =0

N

i =0

�
�

f (i1; N2 � i2)z
i
1
z
i
2

(11)
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or

f(z1; z2) =

N

i =0

N

i =0

�
f
(i1; i2)z

i
1 zi2 (12)

with �
f
(i1; i2) = ��f (i1; N2 � i2), i1 = 0; 1; � � � ; N1 and i2 =

0; 1; � � � ; N2. The reciprocal polynomial, with respect toz1, is defined
analogously.

The partial energy PEf (n2) and the total energy TEf(N2) can be
defined as follows:

PEf (n2) =
n

i =0

N

i =0

�f (i1; i2)z
i
1

2

(13)

with 0 � n2 < N2,

TEf(N2) =

N

i =0

N

i =0

�f (i1; i2)z
i
1

2

(14)

Obviously

TEf (N2) = TE
f
(N2) with jz1j = 1: (15)

Now, the following theorem is stated.
Theorem 1: If the polynomialf(z1; z2) corresponds to a stable 2-D

system, i.e., it is the characteristic polynomial of a BIBO stable 2-D
system (1), then

PEf (n2) >PE
f
(n2) withjz1j = 1;

8n2; n2 = 0; 1; . . . ; N2: (16)

Proof: It follows directly from (2b). Q.E.D.
Furthermore, in our analysis we assume thataf(i1; i2) 2 R. Then

from (16), after some algebraic manipulation, one finds the equivalent
N2 relations

a
t
(i) � c > 0 where i = 1; . . . ; N2 (17)

whereat(i) is a row-vector withjth element, wherej = 1; � � � ; N1 +
1; i = 1; � � � ; N2

(at

(i))j =

i�1

i =0

N

i =0

(a2f(i1; i2)� a2
f
(i1; i2)) for j = 1

2

i�1

i =0

N

i =j�1

(af(i1; i2)af (i1 � j + 1; i2)

�a
f
(i1; i2)af (i1 � j + 1; i2)) for j > 1:

(18)

ccc is a column vector withcj = cos((j � 1)�). Furthermore, using the
following transformation:

cos(j�) =
1

2
(2 cos �)j �

j

1
(2 cos �)j�2

+
j

2

j � 3

1
(2 cos �)j�4

�
j

3

j � 4

2
(2 cos �)j�6 + . . . (19)

one can write

ccc = TTT � xxx (20)

wherexxxt = [1 x x2; � � � ; xN ] with x = cos �. For example

1

cos �

cos 2�

cos 3�

cos 4�

cos 5�

=

1 0 0 0 0 0

0 1 0 0 0 0

�1 0 2 0 0 0

0 �3 0 4 0 0

1 0 �8 0 8 0

0 5 0 �20 0 16

�

1

cos �

cos2 �

cos3 �

cos4 �

cos5 �

: (21)

Therefore, from (17) one finds

a
t
(i) �T � x > 0 where i = 1; . . . ; N2 (22)

or

F1(x) > 0; F2(x) > 0; . . . ; FN (x) > 0 (23)

whereFi(x) = a
t
(i) � T � x is a polynomial inx and�1 � x � 1. In

order to check this local positivity of the above polynomials, we recall
that a polynomialF (x) is positive for�1 � x � 1 when the following
two conditions are satisfied:

1. for an arbitraryx0 2 [�1; 1]; F (x0) > 0;
2. F (x) is devoid of zeros in�1 � x � 1.

As a conclusion, Theorem 1, provides us a set ofN2 necessary condi-
tions for 2-D systems stability. As sufficient conditions for instability,
one can use

9x0 2 [�1; 1] and9i; i = 1; . . . ; N2 such thatFi(x0) � 0: (24)

1) Remark: It is clear that conditions analogous to (16)–(18) and
(22)–(24) can be obtained by interchangingz1 with z2.

III. EXAMPLES

Example 1: Suppose that

f(z1; z2) = 1:56� 2z1 + z21 � 0:5z2 + z1z2 � z22 : (25)

The 1-D conditionf(z1; 0) 6= 0 or 1:56�2z1+z21 6= 0 8z1; jz1j � 1
is checked by an 1-D test or by finding the rootsz1 = �1� 0:7843i.
Then, the condition PEf (0) > PE

f
(0) is examined withjz1j = 1 or

a
t
(1) � T � x = 3:3136� 10:24x+ 6:24x2 > 0 8x: � 1 � x � 1.

The roots of this polynomial are 0.443 and 1.198. So, forx = 0:5 the
polynomial is negative. Therefore, the corresponding 2-D system (1) is
unstable. In fact, we havef(0:5; 0:9) = 0 which assures instability.

However, for this example, the method of [17] does not give a result,
since one finds that both the zeros off(z; z) = 1:56 � 2:5z + z2

are outside the unit disk. As well, neither the zeros off1(z; z) =
zN �1f(z; 1=z) = �1 � 0:5z + 2:56z2 � 2z3 + z4 nor those of
f2(z; z) = zN �1f(1=z; z) = 1 � 2z + 2:56z2 � 0:5z3 � z4 are
located entirely inside or outside the unit disk. The zeros off1(z; z)
are�0:4575; 0:7405� 1:3i, 0.9766, whereas the zeros off2(z; z) are
�2:1857;0:3308 � 0:5808i, 1.024. Note also that the 1-D condition
f(0; z2) 6= 0 or 1:56� 0:5z2 + z22 6= 0 8z2; jz2j � 1 is verified.

The method of [15, Theorem 3] cannot prove that this polynomial is
unstable. More specifically, no inequality of this theorem is satisfied.

Example 2: This example is taken from [17].

f(z1; z2) = 8z21 � 7z1z2 � 12z1 � z2 + 13: (26)
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First, the 1-D conditionf(z1; 0) 6= 0, jz1j � 1 is verified. Second,
the condition PEf(0) > PE

f
(0) with jz1j = 1 or at(1) � T � x =

119 � 518x + 416x2 > 0 8x with �1 � x � 1 is examined. The
roots of the last polynomial are 0.3039 and 0.9413, so forx = 0:5 it is
negative. Therefore, the corresponding 2-D system (1) is unstable. One
can obtain thatf(0:4 + 0:8i;�0:186026 � 0:904803i) = 0, which
assures the above result.

Example 3: Consider [15, Example 2].

f(z1; z2) = [1 z1 z
2
1 z

3
1 ]

�

1 0:1 0:25 0:1

0:7 1:25 1:5 1:3

�0:4 �0:85 �2 1:2

�0:25 1:7 �0:9 0:1

1

z2

z22

z32

: (27)

The 1-D stability conditions are satisfied. By using PEf (0) > PE
f
(0)

one finds�1:4375 � 2:58 cos � � 1:65 cos 2� � 0:52 cos 3� > 0
8�, 0 � � � 2�, which directly fails for� = 0. Thus, this 2-D system
is unstable. The same result can be found by examining the equivalent
inequalityat(1) �T � x = 0:2125� 1:02x� 3:3x2 � 2:08x3 > 0 8x
with �1 � x � 1.

IV. CONCLUSION

The minimal delay property gives useful necessary conditions for
stability of a 1-D polynomial. This property can also supply us with
useful necessary conditions for the stability of 2-D polynomials. A
comparison with other necessary stability conditions is given via some
illustrative examples.
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Basic Synchronous Phenomena by Intermittently Coupled
Capacitors

Takanori Matsushita, Toshimichi Saito, and Hiroyuki Torikai

Abstract—We propose a simple coupling method using intermittently
coupled capacitors (ICC’s). We construct a coupling system by applying
the ICC to two piecewise linear nonautonomous chaotic circuits. Then the
ICC changes the two chaotic attractors into a coexisting state of chaos syn-
chronization and periodic synchronization. The system exhibits one of them
depending on the initial states. The system dynamics are reduced into a 3-D
return map with one real and two binary variables and the occurence of
the coexisting phenomenon is guaranteed theoretically. Also, typical phe-
nomena are confirmed in the laboratory.

Index Terms—Chaos, mapping procedure, oscillator, synchronization,
switched capacitor.

I. INTRODUCTION

The study of chaos synchronization is important not only as a basic
nonlinear problem but also for new engineering applications, including
artificial neural networks [1]–[3] and chaos-based communications
[4], [5]. In the studies, there are two basic problems. First, the
nonlinear system exhibits various kinds of synchronous phenomena,
including phase synchronization [6], [7] and they should be classified
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