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A Genetic Algorithm Approach to the Problem
of Factorization of General Multidimensional
Polynomials
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Abstract—in this paper, a solution to the problem of the b(is,... %) € R.If B(z1,...,2m) @andA(z,...,z,) can be
multidimensional (m-D) polynomial factorization is attempted by  factorized as
using genetic algorithms (GAs). The proposed method is based
on an appropriate minimization of the norm of the difference B(zi,...,2m) =DBi(z1,. .., 2m) - By(21, ..., 2m)
between the original polynomial and its desirable factorized form. A(
Using GAs, we can obtain better results than with other methods

of minimization (numerical techniques, neural networks, etc.). whereB’s and 4;s (i = 1,...,m) are obviously simpler than
. '3 RS
The present methodology, which can also be used for every type OfB and A, then our original system or filter can be realized by a

m-D factorization, is illustrated by means of a numerical example. . . .
) ] o ) cascade connection of simplerD systems with transfer func-
Index Terms—&Genetic algorithm (GA), multidimensional (m-D)

. e . , tions
polynomial factorization, multivariate polynomials.
Bi(z1,. .., %m
Gl(zl...zm):M..
A1(2’1 e Zm)
|. INTRODUCTION
. . o ) G _BN(Zl...Zm)
T HE factorization of a general multidimensionah{D) N = An(z1.-zm)
(multivariable) polynomial into polynomial factors of
lower order is a difficult problem, since the fundamental Moreover, since all the stability tests are in the form:
theorem of algebra holds only for one-dimensional (1-D) (otheck if A(z,...,2,) = 0 in appropriate regions of
one-variable) polynomials. The problem of factorization of, ... " if A(z,...,z,) is written as a product of
a real-coefficientm-D polynomial into real-coefficientn-D A, (zy,...,2,) - Ax(21,...,2zy), then, the initial stability

polynomial factors of lower order has great technical interesést can be checked by checkifgsimpler (i.e. of lower order)
even though it is still unsolved in the general case. It has gregbility tests.

technical interest because of its many applications in the studyrhe factorization results ofi-D polynomials are also useful

of m-D systems, distributed-parameter systems, and, of courgethe theory of distributed—parameter systems (DPS), which
in m-D signal processing. For example, a linear, shift-invariagfe described by partial differential equations, since the char-
(m — D) system is described by a transfer function, which is gteristic polynomials of DPS are actually-D polynomials.

ratio of twom-D polynomials Some of the properties af — D systems such as controllability

Bz, 2m) and observability, may be studied in a straightforwar_d manner
G211y 2m) = A(z’—’m) if B(z1,...,%nm) andA(z,...,z,) arem — D factorizable
N L 'A’TZ"‘ polynomials.
Zl Z‘[ b(iy, .. __/,L-m)zil L Zim It should be noted that, up to now, the general factorization
i1=0  4p=0 problem, i.e., the factorization of any factorizable polynomial,
M Ny Ny ; has not yet to be fully solved. For this reason, some more or

2 e 2 alin e im)2 ez less special types ofi-D polynomial factorization have been

11 =0 T =0

studied by Tzafestast al. [1]-[3], Chakrabartiet al. [4], [5],
where Ny, ..., N, (positive integers) are the degrees of th&lusser [6], Wang [7], Ekstrorst al. [8]-[10], and Mastorakis

polynomiéIsB/, A with respecttoy, . . ., z, anda(i, . . ., im), [11]-[14].
In this paper, the efficient technique of genetic algorithms
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considered) one is attempted. So, an unknown factorizable 01100[100...11 ~ 01100101...10

polynomial A(z1,...,zm), the coefficients of which fulfil 00011/101...10°  00011100...11

some conditions, is considered parents children
Ny N Fig. 1. Crossover.

A(zryeoszm) = Yo Y alin, i)zt 2 (1)

iz o In an attempt to “factorize’A(z1, ..., z,) approximately,
an unknown factorizable polynomial(z, ..., z,) of the fol-
and the nornﬂA — AH is minimized, where lowing type is consldere(jivz
2 1 M

2 - 2 i1=0  im=0
HA—AH :HA(zl,....zm)—A(zl ..... Zm) ‘ m

2 2

N1 Ny Ny n2 Nm
:ZZ(a’(zh,zm)_a’(zh,zm))z :H z1+ ZZ
oy e i=1 i2=0  ip,=0
(i1, yim )#(0,...,0)
If we are not interested in a certain type of factorization, we X @iy« i ze o 2l 4 ;) 4)

can select the type of factorization for which the approximation S
is better, i.e.J A — Al| is minimum. Work in approximate:-D and the norny = HA B AHZ 's minimized, where

polynomial actorization can be found in Mastorakis [13], [14]. 2oa- AHZ
In this paper, we suppose that the-D polynomial A = 2

A(z1,...,2my) is written as follows: NAGr e —m) — A i )Hz

Y 7 ) m 2

A:A(zl./...,zm) Ny no Nom
Ni—1 Ny = A(Zl./...,Zm)— zZ1 +
=2 + Z Z aliv, ... im)2t .. 2 (2). i=1 igz::(] z-;::o
(i15eyim ) #(0,...,0)

11=0 1m =0
5. i im YK
X Qiyin..im 22 """ Pm + Cl) 2

. . ; : N N
is that there exists at least one independent variable; sauch Z Z (alix . o i)’

that the only existing monomial including the maximum power - eeerim) = (i,

of 21 Is Z{Vl ) 21 1s selected as the variable for which the onl¥he S mb(/)ii(l]oeinm:soed for the corresponding quantities of the
existing monomial including the maximum powa of z; is Y 9 Orresp 9q

2N, that is,a(Ny,0,...,0) # 0 (= 1, without loss of gener- unknown factorizable polynomial(z, .. ., zm).
ality) anda(Ny,ia,...,im) = Owhen(ia + ... +4,) > 0

(In other words, the only restriction placed upéfe:, . . ., z.,)

In [13] the minimization has been attempted by using the
Levenberg-Marquardt routine [15]. In this paper, we use a new

If this does not hold, another variable of {z,,...,z,} can timization techni g an ropriate GA
be selected as;, and the variables, andz; interchanged. If OpA bri:f gverevﬁewcg)ﬁhuesm%t?logglg Opo?gAs ié as follows
none of the variablesy, zs, . . ., z,, satisfies this requirement, 9y '

I§u_ppose we have to maximize (minimize) a functipfx),

the attempted approximation—as one can see carrying out ny- ' . . . ; ;
merical experiments—has a great error and this type of appro\fyl"}—]ICh Is not necessarily continuous or differentiable. GAs are
g\rch algorithms that were initially inspired by the process

mate factorization is not recommended. In that case, other ty : . - ;
of natural genetics (reproduction of an original population,

of factorization may be more successful. . .
. . 0performance of crossover and mutation, selection of the best).
Two theorems [12] provide the necessary and sufficient c JF o N )
- - he main idea for an optimization problem is to start our search
ditions for the exact factorization of . A . . . L .
not with one initial point, but with a population of initial points.
The 2n numbers (points) of this initial set (called population,
A=A(z1,...,2m) quite analogous to biological systems) are converted to the
~ . . binary system. In the sequel, they are considered as chromo-
1 . i ; somes (actually sequences of 0 and 1). The next step is to form
1:[1 art Z_:O Z::O iz wsim 22 e (3) pairs of these points, which will be considered as parents for a
a (ilf___yim)#gl_,_”o) “reproduction” (Fig. 1). “Parents” go through “reproduction”
where they interchange parts of their “genetic material”. (This
and simultaneously provide the values of the unknown coeffs achieved by the so-callentossovey Fig. 1). However, there
cientsa; ;. .., C1- is always a very small probability for a mutation to exist.
Suppose now the:-D polynomial, given in (2), cannot be (Mutation is the phenomenon where quite randomly—though
factorized into a product of generad-D factors as in (3), i.e., with a very small probability—a 0 becomes a 1 or a 1 becomes
the necessary and sufficient conditions formulated in [12], age0). We assume that every pair of “parents” gives risé to
not satisfied. children.
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Fig. 2. The evolution op, q, r, s, t, u, and their final values of convergence.

By the process of reproduction, the population of the “par- °f
ents” is enhanced by the “children” and we have an increase i s,
the original population because new members have been add ;
(parents always belong to the population considered). The ne ‘
population has nov2n + kn members. Then, the process of 35}
natural selectionis applied. According the concept of natural g ,,
selection, from th&n + kn members, onlgn survive. These § [}
2n members are selected as the members with a higher value g [
f, if we attempt to achieve maximization ¢f(or with a lower £ 2.
value of f, if we attempt to achieve minimization ¢). By re- = L
peated iterations of reproduction (under crossover and mutatiol
and natural selection, we can find the maximum (or minimum, 10
of f as the point to which the best values of our populationcon :
verge. The termination criterion is fulfilled if the mean value of W‘“‘“‘T
f in the2n-members population is no longer improved (maxi- %50 100 150 200 250 300 350 400 450 500
mized or minimized). More detailed overviews of GAs can be Number of iterations
found in [16]-{19]. Fig. 3. Convergence of the optimum valuefoin every generation (___), as

In our problem ofm-D polynomial factorization, we wish Well as of the mean value gfin every generation (__).
© minimize / wheNre.f N ,ﬂA - A g OV alin, - Lr_n>' By this reproduction, a new population f + kn members
To this end, eveny(iy, ..., im) is converted to the binary .y e formed, since each pair of parents give birth ko

system and is considered as part of a big chromoson&%

100110 010/001 000111."';'1.11001 0.10’ where every part members (here “better” means ti2e lower values of f,
corresponds to a particulai(iy, .. .,%,). If we assume that

o N S f=14- A‘ ) are retained in the population, and the others
everya(iy,...,i,) IS converted to &-bits binary number, for a2 )
the “chromosome” ofi(iy, .. ., im) we needMt bits, where deleted. This is the so-called “natural selection”. By repeated
M is the number ofi(i ' im). OUr search starts with g lterations of reproduction (under crossover and mutation) and
yeeeylm)e

randomly generated population of suzh chromosomes. In natural selection, we can find the minimum pt= HA - AH2

a quite random manner, this population is split into pairs @fs the point to which the best values of our population converge.
parents that will be crossed, i.e., they will interchange thelthe termination criterion is: “the mean value pfin the pop-
genetic material (with: crossovers) always under a very smallilation is no longer improved”. The algorithm is summarized
probability P for mutation (for examplé® = 0.01). as follows.

ildren. The new population is filtered and only the better
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TABLE |
CONVERGENCE OF THECOEFFICIENTSp, ¢, T, 8, t, t AND THE OPTIMUM VALUE OF f IN EVERY GENERATION

Step p q r. S t u Optimum f

2511.62304688| -1.64355469| 4.59667969| 0.53613281| 1.48535156] -0.19042969{ 15.67708910
50|1.76074219| -1.65820313| 1.70214844( 1.28320313(2.61035156| -0.21386719| 2.59311650
7511.52636719] -1.64648438(1.87792969| 1.283203132.61035156| -0.21386719] 2.03506183
100{1.50292969{ -1.64648438| 1.88964844| 1.28320313}2.61035156| -0.59472656{ 0.17265512
1251 1.50292969| -1.55273438| 1.91308594( 1.28320313(2.61035156] -0.60058594| 0.13109452
150( 1.50292969| -1.59960938| 1.88964844| 1.28320313| 2.61035156| -0.69433594| 0.09673949
175|1.50292969{ -1.55273438| 1.88964844{ 1.37695313}2.61035156] -0.64746094; 0.05720788
200] 1.50292969| -1.55273438| 1.88964844| 1.37695313(2.61035156| -0.64746094| 0.05720788
22511.50292969| -1.55273438 1.88964844| 1.37695313|2.61035156| -0.64746094{ 0.05720788
250/ 1.50292969| -1.55273438| 1.88964844| 1.37695313| 2.61035156| -0.64746094| 0.05720788
27511.50292969| -1.55273438| 1.88964844| 1.37695313|2.61035156| -0.64746094| 0.05720788
300} 1.50292969| -1.55273438| 1.88964844| 1.35351563|2.61035156| -0.69433594| 0.04796740
325 1.50292969( -1.55273438| 1.88964844| 1.35351563| 2.56347656| -0.69433594| 0.03003242
350]1.50292969| -1.55273438| 1.88964844| 1.35351563| 2.56347656| -0.69433594| 0.03003242
3751 1.50292969( -1.55273438| 1.88964844| 1.35351563| 2.56347656( -0.69433594] 0.03003242
400( 1.50292969| -1.55273438| 1.88964844| 1.35351563| 2.56347656| -0.69433594| 0.03003242
42511.50292969; -1.55273438| 1.88964844 1.35351563| 2.56347656| -0.69433594( 0.03003242
450]1.50292969( -1.55273438| 1.88964844| 1.35351563| 2.56347656| -0.69433594| 0.03003242
475(1.50292969( -1.55273438( 1.88964844| 1.35351563| 2.56347656| -0.69433594| 0.03003242
500( 1.50292969| -1.55273438| 1.88964844| 1.35351563| 2.56347656| -0.69433594| 0.03003242

STEP AFind (randomly) the initial population of2n After the calculations, it is seen that the necessary and suf-
members ficient conditions for factorization into general factors given in

STEP B:Split the population (randomly) into pairs. [12] are not satisfied. So, the approximationA(z,, z2) by a

STEP C:Make ¢ crossovers and from each pair of parent§actorizable polynomial(zy, z2) in the following form will be
takek children. Every bit of every child had prob-  attempted:

ability for a mutation 2 2
STEP D:Find the new populatio®n+2k (parents+children) A(z1,20) = H <21 + Z ivin 2 + 5,) (6)
STEP E:From the new population select tte members i=1 =1

with a lower value off compared to the previous g i a simpler notation

value off.

1 2 2
STEP F:If the absolute value of is < ¢, then STOP, other- A(2z1,22) = (21 +pz2 +qzy +7)(21 + 522 +tzy +u). (7)

wise go to STEP B . <112 . .
The present GA is the basic GA and one can use more Soprﬁggrefore, the minimum (ﬁA B AHQ Is considered, where
ticated schemata. In many cases, GAs find the global minimum A - Zl||§ —(-1.2— W)Q F(11—7— u)?
of the minimization problem in question, in spite of its slow rate . 9 9
of convergence. In spite of the slow speed, the method is quite +(15—rs —pu)”+ (28 —p—s)

useful, since in most cases, especiallyifD filter design appli- +(8—ps—rt — qu)®
cations, the factorization does not have to be done in real time. +(1—q—1)%*+ (1.7 - gs — pt)?
For the selection of the initial population, we have made also 4 (=4 - qt)%

use of the following improved technique: We start off with ) _ )
random parents, carry out our GA once and then select the Héstnd the Levenberg-Marquardt routine [15] the following so-

two members of the population. This must be denémes. !Ution is obtained:

Thus, we can start from an “improved” initial population of (ini- p=1.57274
tial) parents. ¢ =— 155809
lIl. EXAMPLE " :1471; z:
S =l1.
Consider the following two-dimensional (2-D) polynomial 975002
which can be, for example, the characteristic polynomial of a t=2.75
2-D system: u = — 0.190 665 (8)
2 2 and
A(z1,22) = =124+ 1.121 4+ 27 + 1.529 + 825 2
+2.82120 + 2125 + 1.725 — 425, HA - AH2 =3.774775. ©)

(5) Thisis same as the result found in a previous publication [13].
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Fig. 4. Abs(A) andAbs(A) versuswl, ws : w; € [0,27], Wy € [0,27]. Fig. 5. Abs(A — A versusw, w, : Wy € [0,27], wa[0, 27].

We now use the GA described in Section Il with= 5,
k=4,t =12, M = 6, andP = 0.01. Then, the following
solution is obtained:

p=1.50293

g=— 155273

r =1.88965

s =1.35352

t =2.563 48 N
g

u=—0.69434. (10) =
2

The evolution ofp, q, r, s, t, u, and their final convergence
to the above values is shown in Fig. 2. Using these values, for
q, 7, s, t, andu we obtain

P2 = HA _ AHi —0.03003 (11) E;g2 6] Abs(1/A) and Abs(1/A) versus w, W, : Wy € [0,27], Wy €
,27].

which is an improvement over the result of (9), i.e., [13]. In . . .
Table 1, the eV(l)DIution and the convergence o(f ?[he coéfﬁgientsm Fig. 4, the amplitude of the trar}ifler funcﬂoﬁ;(ih 22)
», ¢, 7, s, t, andu as well as that of the optimum value gfin ~ 9VE" by (5) is sketched whem = e™, z, = ¢* and
every generation are given. Convergence of the optimum valfje € [0’%]’. wy € [0, ZT]' In Fig. 4, _the amplitude of the
of f in every generation, as well as that of the mean valug Oftransfgj[yfunct|on%£);17 z2) given by (12) is also sketche_d when
in every generation is shown in Fig. 3. 21 = e, 23 = e andwy € [0, 27], wy € [0, 27]. In Fig. 5,
Hence the amplitude of the erroA(zy,z2) — A(z_l,z:Q) is sketched
whenz; andz, belong to the same domains.
A(z1, 29) =(21 4 1.502 9425 — 1.552 7322 + 1.88965) In Figs. 6 and 7, the amplitude of the transfer functions,
Ko 4 2 1A2‘172’2,1A21722 andlAZhZQ —1A21722 are
X (21 + 1353522, +2.56348Z; — 0.69434) al/so( sketc)hed/ W(helal z'zmd 29 {)el(ong t()) the/sa(me d())mains.
or in an expanded form Changing the probabilityP?, the number of the parents,
and the number of the childreh, we may achieve better
A(z1,29) =22 4 7.9564522 + 1.010 752120 + 1.75108z5  convergence speed. However, this analysis is not inside the
— 39803924 + 2.856 452125 + 1.195 312, scope of the paper, which is to demonstrate the application of

415141325 — 1.31206, (12) GAs in the factorization ofn-D polynomials.

So, one can writel = A, i.e. IV. CONCLUSION

9 e e 2 N . 3 An m-D polynomial, which is not exactly factorizable into
Az, 20) =21 +7.956 4525 + 1.010 752125 + 1.751 08z, generaln-D polynomials factors, is considered. This polyno-
—3.9803925 + 2.856 452129 + 1.195 312, mial can be approximately factorized into generaD factors
+ 1.514 1329 — 1.31206. in the sense of the least square approach. To minimize the
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