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Abstract

Neural networks have shown good results for detecting a certain pattern in a given image. In this paper, fast neural networks for
pattern detection are presented. Such processors are designed based on cross correlation in the frequency domain between the input
image and the input weights of neural networks. This approach is developed to reduce the computation steps required by these fast neu-
ral networks for the searching process. The principle of divide and conquer strategy is applied through image decomposition. Each image
is divided into small in size sub-images and then each one is tested separately by using a single fast neural processor. Furthermore, faster
pattern detection is obtained by using parallel processing techniques to test the resulting sub-images at the same time using the same
number of fast neural networks. In contrast to fast neural networks, the speed up ratio is increased with the size of the input image when
using fast neural networks and image decomposition. Moreover, the problem of local sub-image normalization in the frequency domain
is solved. The effect of image normalization on the speed up ratio of pattern detection is discussed. Simulation results show that local sub-
image normalization through weight normalization is faster than sub-image normalization in the spatial domain. The overall speed up
ratio of the detection process is increased as the normalization of weights is done offline.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Pattern detection is a fundamental step before pattern
recognition. Its reliability and performance have a major
influence in a whole pattern recognition system. Nowa-
days, neural networks have shown very good results for
detecting a certain pattern in a given image [2,4,6,8–
10,12]. Among other techniques [3,5,7], neural networks
are efficient pattern detectors [2,4,6,9]. But the problem
with neural networks is that the computational complexity
is very high because the networks have to process many
small local windows in the images [5,7]. The main objective
of this paper is to reduce the detection time using neural
networks. Our idea is to fast the operation of neural net-
works by performing the testing process in the frequency

domain instead of spatial domain. Then, cross correlation
between the input image and the weights of neural net-
works is performed in the frequency domain. This model
is called fast neural networks. Compared to conventional
neural networks, fast neural networks show a significant
reduction in the number of computation steps required to
detect a certain pattern in a given image under test. Fur-
thermore, another idea to increase the speed of these fast
neural networks through image decomposition is pre-
sented. Moreover, the problem of sub-image (local) nor-
malization in the Fourier space which presented in [4] is
solved. The number of computation steps required for
weight normalization is proved to be less than that needed
for image normalization. Also, the effect of weight normal-
ization on the speed up ratio is theoretically and practically
discussed. Mathematical calculations prove that the new
idea of weight normalization, instead of image normaliza-
tion, provides good results and increases the speed up ratio.
This is because weight normalization requires fewer com-
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putation steps than sub-image normalization. Moreover,
for neural networks, normalization of weights can be eas-
ily done off line before starting the search process. In Sec-
tion 2, fast neural networks for pattern detection are
described. The details of conventional neural networks,
fast neural networks, and the speed up ratio of pattern
detection are given. In addition, a clearer explanation
more than those presented in [44–46] for the fast neural
theory is given. A faster searching algorithm for pattern
detection which reduces the number of the required com-
putation steps through image decomposition is presented
in Section 3. Accelerating the new approach using parallel
processing techniques is also introduced. Sub-image nor-
malization in the frequency domain through normaliza-
tion of weights is introduced in Section 4. The effect of
weight normalization on the speed up ratio is presented
in Section 5.

2. Fast pattern detection using MLP and FFT

Here, we are interested only in increasing the speed of
neural networks during the test phase. By the words ‘‘Fast
Neural Networks’’ we mean reducing the number of com-
putation steps required by neural networks in the detection
phase. First neural networks are trained to classify face
from non-face examples and this is done in the spatial
domain. In the test phase, each sub-image in the input
image (under test) is tested for the presence or absence of
the required face/object. At each pixel position in the input
image each sub-image is multiplied by a window of
weights, which has the same size as the sub-image. This
multiplication is done in the spatial domain. The outputs
of neurons in the hidden layer are multiplied by the weights
of the output layer. When the final output is high this
means that the sub-image under test contains the required
face/object and vice versa. Thus, we may conclude that this
searching problem is cross correlation in the spatial domain
between the image under test and the input weights of neu-
ral networks.

In this section, a fast algorithm for face/object detection
based on two dimensional cross correlations that take place
between the tested image and the sliding window
(20 · 20 pixels) is described. Such window is represented
by the neural network weights situated between the input
unit and the hidden layer. The cross correlation theorem
in mathematical analysis says that a cross correlation
between f and h is identical to the result of the following
steps: let F and H be the results of the Fourier transforma-
tion of f and h in the frequency domain. Compute the con-
jugate of H (H*). Multiply F and H* in the frequency
domain point by point and then transform this product
into spatial domain via the inverse Fourier transform [1].
As a result, these cross correlations can be represented by
a product in the frequency domain. Thus, by using cross
correlation in the frequency domain a speed up in an order
of magnitude can be achieved during the detection process
[6,8–16].

In the detection phase, a sub-image X of size m · n (slid-
ing window) is extracted from the tested image, which has a
size P · T, and fed to the neural network as shown in
Fig. 1. Let Wi be the vector of weights between the input
sub-image and the hidden layer. This vector has a size of
m · z and can be represented as m · n matrix. The output
of hidden neurons hi can be calculated as follows:

hi ¼ g
Xm

j¼1

Xz

k¼1

W iðj; kÞX ðj; kÞ þ bi

 !
ð1Þ

where g is the activation function and b(i) is the bias of
each hidden neuron (i). Eq. (1) represents the output of
each hidden neuron for a particular sub-image I. It can
be computed for the whole image W as follows:

hiðu; vÞ ¼ g
Xm=2

j¼�m=2

Xz=2

k¼�z=2

W iðj; kÞ Wðuþ j; vþ kÞ þ bi

 !

ð2Þ
Eq. (2) represents a cross correlation operation. Given any
two functions f and g, their cross correlation can be ob-
tained by [1]:

gðx; yÞ � f ðx; yÞ ¼
X1

m¼�1

X1
z¼�1

f ðxþ m; y þ zÞgðm; zÞ
 !

ð3Þ

Therefore, Eq. (2) can be written as follows [10–14]:

N
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Fig. 1. Pattern detection using conventional neural networks.
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hi ¼ g W i �Wþ bið Þ ð4Þ

where hi is the output of the hidden neuron (i) and hi(u,v) is
the activity of the hidden unit (i) when the sliding window
is located at position (u,v) in the input image W and
(u,v) 2 [P � m + 1,T � n + 1].

Now, the above cross correlation can be expressed in
terms of the Fourier Transform [1]:

W i �W ¼ F �1 F Wð Þ � F � W ið Þð Þ ð5Þ

(*) means the conjugate of the FFT for the weight matrix.
Hence, by evaluating this cross correlation, a speed up ra-
tio can be obtained comparable to conventional neural net-
works. Also, the final output of the neural network can be
evaluated as follows:

Oðu; vÞ ¼ g
Xq

i¼1

W oðiÞhiðu; vÞ þ bo

 !
ð6Þ

where q is the number of neurons in the hidden layer.
O(u,v) is the output of the neural network when the sliding
window located at the position (u,v) in the input image W.
Wo is the weight matrix between hidden and output layer.

The complexity of cross correlation in the frequency
domain can be analyzed as follows:

1. For a tested image of N · N pixels, the 2D-FFT requires
a number equal to N2 log2N2 of complex computation
steps. Also, the same number of complex computation
steps is required for computing the 2D-FFT of the
weight matrix for each neuron in the hidden layer.

2. At each neuron in the hidden layer, the inverse 2D-FFT

is computed. So, q backward and (1 + q) forward trans-
forms have to be computed. Therefore, for an image
under test, the total number of the 2D-FFT to compute
is (2q + 1)N2 log2N2.

3. The input image and the weights should be multiplied in
the frequency domain. Therefore, a number of complex
computation steps equal to qN2 should be added.

4. The number of computation steps required by fast neu-
ral networks is complex and must be converted into a
real version. It is known that the two dimensions Fast
Fourier Transform requires (N2/2) log2N2 complex mul-
tiplications and N2 log2N2 complex additions [20,21].
Every complex multiplication is realized by six real float-
ing point operations and every complex addition is
implemented by two real floating point operations. So,
the total number of computation steps required to
obtain the 2D-FFT of an N · N image is:

q ¼ 6ððN 2=2Þ log2N 2Þ þ 2ðN 2 log2N 2Þ ð7Þ

which may be simplified to:

q ¼ 5N 2 log2N 2 ð8Þ

Performing complex dot product in the frequency do-
main also requires 6qN2 real operations.

5. In order to perform cross correlation in the frequency
domain, the weight matrix must have the same size as
the input image. Assume that the input object/face has
a size of (n · n) dimensions. So, the search process will
be done over sub-images of (n · n) dimensions and the
weight matrix will have the same size. Therefore, a num-
ber of zeros = (N2 � n2) must be added to the weight
matrix. This requires a total real number of computation
steps = q(N2 � n2) for all neurons. Moreover, after com-
puting the 2D-FFT for the weight matrix, the conjugate
of this matrix must be obtained. So, a real number of
computation steps = qN2 should be added in order to
obtain the conjugate of the weight matrix for all neu-
rons. Also, a number of real computation steps equal
to N is required to create butterflies complex numbers
(e�jk(2Pn/N)), where 0 < K < L. These (N/2) complex
numbers are multiplied by the elements of the input
image or by previous complex numbers during the com-
putation of the 2D-FFT. To create a complex number
requires two real floating point operations. So, the total
number of computation steps required for fast neural
networks becomes:

r¼ð2qþ1Þð5N 2 log2N 2Þþ6qN 2þqðN 2�n2ÞþqN 2þN

ð9Þ
which can be reformulated as:

r ¼ ð2qþ 1Þð5N 2 log2N 2Þ þ qð8N 2 � n2Þ þ N ð10Þ
6. Using a sliding window of size n · n for the same image

of N · N pixels, q(2n2 � 1)(N � n + 1)2 computation
steps are required when using traditional neural net-
works for face/object detection process. The theoretical
speed up factor g can be evaluated as follows:

g ¼ qð2n2 � 1ÞðN � nþ 1Þ2

ð2qþ 1Þð5N 2 log2N 2Þ þ qð8N 2 � n2Þ þ N
ð11Þ

The theoretical speed up ratio Eq. (11) with different sizes
of the input image and different in size weight matrices is
listed in Table 1. Practical speed up ratio for manipulating
images of different sizes and different in size weight matri-
ces is listed in Table 2 using 700 MHz processor and MAT-

LAB ver 5.3. An interesting property with fast neural
networks is that the number of computation steps does
not depend on either the size of the input sub-image or
the size of the weighth matrix (n). The effect of (n) on the
number of computation steps is very small and can be
ignored. This is in contrast to conventional networks in
which the number of computation steps is increased
with the size of both the input sub-image and the weight
matrix (n).

The authors in [17–19] have proposed a multilayer per-
ceptron (MLP) algorithm for fast face/object detection.
The same authors claimed incorrect equation for cross cor-
relation between the input image and the weights of the
neural networks. They introduced formulas for the number
of computation steps needed by conventional and fast neu-
ral networks. Then, they established an equation for the
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speed up ratio. Unfortunately, these formulas contain
many errors which lead to invalid speed up ratio. Other
authors developed their work based on these incorrect
equations [47]. So, the fact that these equations are not
valid must be cleared to all researchers. It is not only very
important but also urgent to notify other researchers not to
do research based on wrong equations. Some of these mis-
takes were corrected in [22–46]. In this paper, complete cor-
rections are given.

The authors in [17–19] analyzed their proposed fast neu-
ral network as follows: for a tested image of N · N pixels,
the 2D-FFT requires O(N2(log2N)2) computation steps. For
the weight matrix Wi, the 2D-FFT can be computed offline
since these are constant parameters of the network inde-
pendent of the tested image. The 2D-FFT of the tested
image must be computed. As a result, q backward and
one forward transforms have to be computed. Therefore,
for a tested image, the total number of the 2D-FFT to com-
pute is (q + 1)N2(log2N)2 [17,19]. In addition, the input
image and the weights should be multiplied in the fre-
quency domain. Therefore, computation steps of (qN2)
should be added. This yields a total of O((q + 1)
N2(log2N)2 + qN2) computation steps for the fast neural
network [17,18].

Using sliding window of size n · n, for the same image of
N · N pixels, qN2n2 computation steps are required when
using traditional neural networks for the face detection
process. They evaluated theoretical speed up factor g as fol-
lows [17]:

g ¼ qn2

ðqþ 1Þ log2N
ð12Þ

The speed up factor introduced in [17] and given by Eq.
(14) is not correct for the following reasons:

(a) The number of computation steps required for the
2D-FFT is O(N2 log2N2) and not O(N2 log2N) as pre-
sented in [17,18]. Also, this is not a typing error as the
curve in Fig. 2 in [17] realizes Eq. (7), and the curves
in Fig. 15 of [18] realizes Eqs. (31) and (32) in [18].

(b) Also, the speed up ratio presented in [17] not only
contains an error but also is not precise. This is
because for fast neural networks, the term (6qN2) cor-
responds to complex dot product in the frequency
domain must be added. Such term has a great effect
on the speed up ratio. Adding only qN2 as stated in
[18] is not correct since a one complex multiplication
requires six real computation steps.

(c) For conventional neural networks, the number of
operations is (q(2n2 � 1)(N � n + 1)2) and not
(qN2n2). The term n2 is required for multiplication
of n2 elements (in the input window) by n2 weights
which results in another new n2 elements. Adding
these n2 elements, requires another (n2 � 1) steps.
So, the total computation steps needed for each win-
dow is (2n2 � 1). The search operation for a face in
the input image uses a window with n · n weights.
This operation is done at each pixel in the input
image. Therefore, such process is repeated
(N � n + 1)2 times and not N2 as stated in [17,19].

(d) Before applying cross correlation, the 2D-FFT of the
weight matrix must be computed. Because of the dot
product, which is done in the frequency domain,
the size of weight matrix should be increased to be
the same as the size of the input image. Computing

Table 1
The theoretical speed up ratio for images with different sizes

Image size Speed up ratio
(n = 20)

Speed up ratio
(n = 25)

Speed up ratio
(n = 30)

100 · 100 3.67 5.04 6.34
200 · 200 4.01 5.92 8.05
300 · 300 4.00 6.03 8.37
400 · 400 3.95 6.01 8.42
500 · 500 3.89 5.95 8.39
600 · 600 3.83 5.88 8.33
700 · 700 3.78 5.82 8.26
800 · 800 3.73 5.76 8.19
900 · 900 3.69 5.70 8.12
1000 · 1000 3.65 5.65 8.05
1100 · 1100 3.62 5.60 7.99
1200 · 1200 3.58 5.55 7.93
1300 · 1300 3.55 5.51 7.93
1400 · 1400 3.53 5.47 7.82
1500 · 1500 3.50 5.43 7.77
1600 · 1600 3.48 5.43 7.72
1700 · 1700 3.45 5.37 7.68
1800 · 1800 3.43 5.34 7.64
1900 · 1900 3.41 5.31 7.60
2000 · 2000 3.40 5.28 7.56

Table 2
Practical speed up ratio for images with different sizes Using MATLAB ver

5.3

Image size Speed up ratio
(n = 20)

Speed up ratio
(n = 25)

Speed up ratio
(n = 30)

100 · 100 7.88 10.75 14.69
200 · 200 6.21 9.19 13.17
300 · 300 5.54 8.43 12.21
400 · 400 4.78 7.45 11.41
500 · 500 4.68 7.13 10.79
600 · 600 4.46 6.97 10.28
700 · 700 4.34 6.83 9.81
800 · 800 4.27 6.68 9.60
900 · 900 4.31 6.79 9.72
1000 · 1000 4.19 6.59 9.46
1100 · 1100 4.24 6.66 9.62
1200 · 1200 4.20 6.62 9.57
1300 · 1300 4.17 6.57 9.53
1400 · 1400 4.13 6.53 9.49
1500 · 1500 4.10 6.49 9.45
1600 · 1600 4.07 6.45 9.41
1700 · 1700 4.03 6.41 9.37
1800 · 1800 4.00 6.38 9.32
1900 · 1900 3.97 6.35 9.28
2000 · 2000 3.94 6.31 9.25
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the 2D-FFT of the weight matrix off line as stated in
[17–19] is not practical. In this case, all of the input
images must have the same size. As a result, the input
image will have only a one fixed size. This means that,
the testing time for an image of size 50 · 50 pixels will
be the same as that image of size 1000 · 1000 pixels
and of course, this is unreliable.

(e) It is not valid to compare number of complex compu-
tation steps by another of real computation steps
directly. The number of computation steps given by
pervious authors [17–19] for conventional neural net-
works is for real operations while that is required by
fast neural networks is for complex operations. To
obtain the speed up ratio, the authors in [17–19] have
divided the two formulas directly without converting
the number of computation steps required by fast
neural networks into a real version.

(f) Furthermore, there is critical error in the activity of
hidden neurons given in Section 3.1 in [19] and also
by Eq. (2) in [17]. Such activity given by those authors
in [17,19] as follows:

hi ¼ gðW� W i þ biÞ ð13Þ

is not correct and should be written as Eq. (4) given
here in this paper. This is because the fact that the
operation of cross correlation is not commutative
(W � W „ W �W). As a result, Eq. (13) (Eq. (4)
of [17]) does not give the same correct results as con-

ventional neural networks. This error leads the
researchers who consider the references [17–19] to
think about how to modify the operation of cross
correlation so that Eq. (13) (Eq. (4) of [17]) can give
the same correct results as conventional neural net-
works. Therefore, errors in these equations must be
cleared to all the researchers. In [23–30], the authors
proved that a symmetry condition must be found in
input matrices (images and the weights of neural net-
works) so that fast neural networks can give the same
results as conventional neural networks. In case of
symmetry W � W = W �W, the cross correlation be-
comes commutative and this is a valuable achieve-
ment. In this case, the cross correlation is
performed without any constrains on the arrange-
ment of matrices. A practical proof for this achieve-
ment is explained by examples shown in Appendix
A. As presented in [24–30], this symmetry condition
is useful for reducing the number of patterns that
neural networks will learn. This is because the image
is converted into symmetric shape by rotating it down
and then the up image and its rotated down version
are tested together as one (symmetric) image. If a pat-
tern is detected in the rotated down image, then, this
means that this pattern is found at the relative posi-
tion in the up image. So, if conventional neural net-
works are trained for up and rotated down
examples of the pattern, fast neural networks will
be trained only to up examples. As the number of
trained examples is reduced, the number of neurons
in the hidden layer will be reduced and the neural net-
work will be faster in the test phase compared with
conventional neural networks.

(g) Moreover, the authors of [17–19] stated that the
activity of each neuron in the hidden layer defined
by Eq. (13) (Eq. (4) of [17]) can be expressed in terms
of convolution between a bank of filter (weights) and
the input image. This is not correct because the activ-
ity of the hidden neuron is a cross correlation
between the input image and the weight matrix. It
is known that the result of cross correlation between
any two functions is different from their convolution.
As we proved in [24–30] the two results will be the
same, only when the two matrices are symmetric or
at least the weight matrix is symmetric. A practical
example which proves that for any two matrices
the result of their cross correlation is different from
their convolution unless that they are symmetric or
at least the second matrix is symmetric as shown in
Appendix B.

(h) Images are tested for the presence of a face (object) at
different scales by building a pyramid of the input
image which generates a set of images at different res-
olutions. The face detector is then applied at each res-
olution and this process takes much more time as the
number of processing steps will be increased. In [17–
19], the authors stated that the Fourier transforms of

α1 α2

α3 α4

L

N

Image Under Test 

Ψ

Face         O/p=1 
Non-Face O/p=-1

O/p

Input
Layer

Hidden
Layer

Fig. 2. Image decomposition into four sub-images and testing each sub-
image separately.
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the new scales do not need to be computed. This is
due to a property of the Fourier transform. If
z(x,y) is the original and a(x,y) is the sub-sampled
by a factor of 2 in each direction image then:

aðx; yÞ ¼ zð2x; 2yÞ ð14Þ
Zðu; vÞ ¼ FTðzðx; yÞÞ ð15Þ

FTðaðx; yÞÞ ¼ Aðu; vÞ ¼ 1

4
Z

u
2
;
v
2

� �
ð16Þ

This implies that we do not need to recompute the Fourier
transform of the sub-sampled images, as it can be directly
obtained from the original Fourier transform. But experi-
mental results have shown that Eq. (16) is valid only for
images in the following form:

W ¼

A A B B C C . . .

A A B B C C . . .

..

.

S S X X Y Y . . .

S S X X Y Y . . .

2
6666664

3
7777775

ð17Þ

In [17], the authors claimed that the processing needs
O((q + 2)N2 log2N) additional number of computation
steps. Thus the speed up ratio will be [17]:

g ¼ qn2

ðqþ 2Þlog2N
ð18Þ

Of course this is not correct, because the inverse of the
Fourier transform is required to be computed at each neu-
ron in the hidden layer (for the resulted matrix from the
dot product between the Fourier matrix in two dimensions
of the input image and the Fourier matrix in two dimen-
sions of the weights, the inverse of the Fourier transform
must be computed). So, the term (q + 2) in Eq. (18) should
be (2q + 1) because the inverse 2D-FFT in two dimensions
must be done at each neuron in the hidden layer. In this
case, the number of computation steps required to perform
2D-FFT for the fast neural networks will be:

u ¼ ð2qþ 1Þð5N 2log2N 2Þ þ ð2qÞ5ðN=2Þ2log2ðN=2Þ2 ð19Þ
In addition, a number of computation steps equal to 6q(N/
2)2 + q((N/2)2 � n2) + q(N/2)2 must be added to the num-
ber of computation steps required by fast neural networks.

3. A new faster algorithm for pattern detection based on
image decomposition

In this section, a new faster algorithm for face/object
detection is presented. The number of computation steps
required for fast neural networks with different image sizes
is listed in Tables 3 and 4. From these tables, we may notice
that as the image size is increased, the number of computa-
tion steps required by fast neural networks is much
increased. For example, the number of computation steps
required for an image of size (50 · 50 pixels) is much less
than that needed for an image of size (100 · 100 pixels).

Also, the number of computation steps required for an
image of size (500 · 500 pixels) is much less than that
needed for an image of size (1000 · 1000 pixels). As a
result, for example, if an image of size (100 · 100 pixels)
is decomposed into 4 sub-images of size (50 · 50 pixels)
and each sub-image is tested separately as shown in
Fig. 2, then a speed up factor for face/object detection
can be achieved. The number of computation steps
required by fast neural networks to test an image after
decomposition can be calculated as follows:

Table 3
The number of computation steps required by fast neural networks (FNN)
for images of sizes (25 · 25–1000 · 1000 pixels), q = 30, n = 20

Image size No. of computation steps in case of using FNN

25 · 25 1.9085e+006
50 · 50 9.1949e+006
100 · 100 4.2916e+007
150 · 150 1.0460e+008
200 · 200 1.9610e+008
250 · 250 3.1868e+008
300 · 300 4.7335e+008
350 · 350 6.6091e+008
400 · 400 8.8203e+008
450 · 450 1.1373e+009
500 · 500 1.4273e+009
550 · 550 1.7524e+009
600 · 600 2.1130e+009
650 · 650 2.5096e+009
700 · 700 2.9426e+009
750 · 750 3.4121e+009
800 · 800 3.9186e+009
850 · 850 4.4622e+009
900 · 900 5.0434e+009
950 · 950 5.6623e+009
1000 · 1000 6.3191e+009

Table 4
The number of computation steps required by FNN for images of sizes
(1050 · 1050–2000 · 2000 pixels), q = 30, n = 20

Image size No. of computation steps in case of using FNN

1050 · 1050 7.0142e+009
1100 · 1100 7.7476e+009
1150 · 1150 8.5197e+009
1200 · 1200 9.3306e+009
1250 · 1250 1.0180e+010
1300 · 1300 1.1070e+010
1350 · 1350 1.1998e+010
1400 · 1400 1.2966e+010
1450 · 1450 1.3973e+010
1500 · 1500 1.5021e+010
1550 · 1550 1.6108e+010
1600 · 1600 1.7236e+010
1650 · 1650 1.8404e+010
1700 · 1700 1.9612e+010
1750 · 1750 2.0861e+010
1800 · 1800 2.2150e+010
1850 · 1850 2.3480e+010
1900 · 1900 2.4851e+010
1950 · 1950 2.6263e+010
2000 · 2000 2.7716e+010
2050 · 2050 2.9211e+010
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1. Assume that the size of the image under test is (N · N

pixels).
2. Such image is decomposed into a(L · L pixels) sub-

images. So, a can be computed as:

a ¼ ðN=LÞ2 ð20Þ

3. Assume that, the number of computation steps required
for testing one (L · L pixels) sub-image is b. So, the total
number of computation steps (T) required for testing
these sub-images resulting after the decomposition pro-
cess is:

T ¼ ab ð21Þ

The speed up ratio in this case (gd) can be computed as
follows:

gd ¼
qð2n2 � 1ÞðN � nþ 1Þ2

ðqðaþ 1Þ þ aÞð5N 2
s log2N 2

s Þ þ aqð8N 2
s � n2Þ þ N 2

s þ D

ð22Þ

where, Ns, is the size of each small sub-image.
D, is a small number of computation steps required to

obtain the results at the boundaries between sub-images
and depends on the size of the sub-image.

The results of the detection before image decomposition
(presented in Section 2) and after image decomposition are
the same. A practical example which proves that the results
of cross correlation before and after the decomposition are
the same is listed in Appendix C. To detect a face/object of
size 20 · 20 pixels in an image of any size by using fast neu-
ral networks after image decomposition into sub-images,
the optimal size of these sub-images must be computed.
From Table 3, we may conclude that, the most suitable size
for the sub-image which requires the smallest number of
computation steps is 25 · 25 pixels. Also, the fastest speed
up ratio can be achieved using this sub-image size (25 · 25)
as shown in Fig. 3. It is clear that the speed up ratio is
reduced when the size of the sub-image (L) is increased.
A comparison between the speed up ratio for fast neural
networks and fast neural networks after image decomposi-
tion with different sizes of the tested images is listed in
Tables 5 and 6. It is clear that the speed up ratio is
increased with the size of the input image when using fast

neural networks and image decomposition. This is in con-
trast to using only fast neural networks. As shown in
Fig. 4, the number of computation steps required by fast
neural networks is increased rapidly with the size of the
input image. Therefore the speed up ratio is decreased with
the size of the input image. While in case of using fast neu-
ral networks and image decomposition, the number of
computation steps required by fast neural networks is
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Fig. 3. The speed up ratio for images decomposed into different in size
sub-images (L).

Table 5
The speed up ratio in case of using FNN and FNN after image
decomposition into sub-images (25 · 25 pixels) for images of different sizes
(from N = 50 to 1000, n = 25, q = 30)

Image size Speed up ratio in
case of using FNN

Speed up ratio in case of using FNN
after image decomposition

50 · 50 2.7568 5.0713
100 · 100 5.0439 12.4622
150 · 150 5.6873 15.6601
200 · 200 5.9190 17.3611
250 · 250 6.0055 18.4073
300 · 300 6.0301 19.1136
350 · 350 6.0254 19.6218
400 · 400 6.0059 20.0047
450 · 450 5.9790 20.3034
500 · 500 5.9483 20.5430
550 · 550 5.9160 20.7394
600 · 600 5.8833 20.9032
650 · 650 5.8509 21.0419
700 · 700 5.8191 21.1610
750 · 750 5.7881 21.2642
800 · 800 5.7581 21.3546
850 · 850 5.7292 21.4344
900 · 900 5.7013 21.5054
950 · 950 5.6744 21.5689
1000 · 1000 5.6484 21.6260

Table 6
The speed up ratio in case of using FNN and FNN after image
decomposition into sub-images (25 · 25 pixels) for images of different sizes
(from N = 1050 to 2000, n = 25, q = 30)

Image size Speed up ratio in
case of using FNN

Speed up ratio in case of using FNN
after image decomposition

1050 · 1050 5.6234 21.6778
1100 · 1100 5.5994 21.7248
1150 · 1150 5.5762 21.7678
1200 · 1200 5.5538 21.8072
1250 · 1250 5.5322 21.8434
1300 · 1300 5.5113 21.8769
1350 · 1350 5.4912 21.9079
1400 · 1400 5.4717 21.9366
1450 · 1450 5.4528 21.9634
1500 · 1500 5.4345 21.9884
1550 · 1550 5.4168 22.0118
1600 · 1600 5.3996 22.0338
1650 · 1650 5.3830 22.0544
1700 · 1700 5.3668 22.0738
1750 · 1750 5.3511 22.0921
1800 · 1800 5.3358 22.1094
1850 · 1850 5.3209 22.1257
1900 · 1900 5.3064 22.1412
1950 · 1950 5.2923 22.1559
2000 · 2000 5.2786 22.1699

H.M. El-Bakry, N. Mastorakis / Image and Vision Computing 25 (2007) 1767–1784 1773



Author's personal copy

increased smoothly. Thus, the linearity of the computation
steps required by fast neural networks in this case is better.
As a result, the speed up ratio is increased. Increasing the
speed up ratio with the size of the input image is considered
an important achievement. Furthermore, for very large size
matrices, while the speed up ratio for fast neural networks
is decreased, the speed up ratio still increase in case of using
fast neural networks and matrix decomposition as listed in
Table 7. Moreover, as shown in Fig. 5, the speed up ratio in
case of fast neural networks and image decomposition is
increased with the size of the weight matrix which has the
same size (n) as the input window. For example, it is clear
that the speed up ratio is for window size of 30 · 30 is lar-
ger than that of size 20 · 20. Simulation results for the
speed up ratio in case of using fast neural networks and
image decomposition is listed in Table 8. It is clear that
simulation results confirm the theoretical computations
and the practical speed up ratio after image decomposition

is faster than using only fast neural networks. In addition,
the practical speed up ratio is increased with the size of the
input image.

Also, to detect small in size matrices such as 5 · 5 or
10 · 10 using only fast neural networks, the speed ratio
becomes less than one as shown in Tables 9–12. On the
other hand, from the same tables it is clear that using fast
neural networks and image decomposition, the speed up
ratio becomes higher than one and increased with the
dimensions of the input image. The dimensions of the
new sub-image after image decomposition (L) must not
be less than the dimensions of the face/object which is
required to be detected and has the same size as the weight
matrix. Therefore, the following equation controls the rela-
tion between the sub-image and the size of weight matrix
(face/object to be detected) in order not to loss any infor-
mation in the input image.

L P n ð23Þ
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Fig. 4. A comparison between the number of computation steps required
by FNN before and after Image decomposition.

Table 7
The speed up ratio in case of using FNN and FNN after matrix
decomposition into sub-matrices (25 · 25 elements) for very large matrices
(from N = 100,000 to 2,000,000, n = 25, q = 30)

Matrix size Speed up ratio in
case of using
FNN

Speed up ratio in case of using
FNN after matrix
decomposition

100,000 · 100,000 3.6109 22.7038
200,000 · 200,000 3.4112 22.7092
300,000 · 300,000 3.3041 22.7110
400,000 · 400,000 3.2320 22.7119
500,000 · 500,000 3.1783 22.7125
600,000 · 600,000 3.1357 22.7128
700,000 · 700,000 3.1005 22.7131
800,000 · 800,000 3.0707 22.7133
900,000 · 900,000 3.0448 22.7134
1,000,000 · 1,000,000 3.0221 22.7136
1,100,000 · 1,100,000 3.0018 22.7137
1,200,000 · 1,200,000 2.9835 22.7138
1,300,000 · 1,300,000 2.9668 22.7138
1,400,000 · 1,400,000 2.9516 22.7139
1,500,000 · 1,500,000 2.9376 22.7139
1,600,000 · 1,600,000 2.9245 22.7140
1,700,000 · 1,700,000 2.9124 22.7140
1,800,000 · 1,800,000 2.9011 22.7141
1,900,000 · 1,900,000 2.8904 22.7141
2,000,000 · 2,000,000 2.8804 22.7141
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Fig. 5. The speed up ratio in case of image decomposition and different
window size (n), (L = 25 · 25).

Table 8
The practical speed up ratio in case of using FNN and FNN after image
decomposition into sub-images (25 · 25 pixels) for images of different sizes
(from N = 100 to 2000, n = 25, q = 30)

Image size Speed up ratio in
case of using FNN

Speed up ratio in case of using FNN
after image decomposition

100 · 100 10.75 34.55
200 · 200 9.19 35.65
300 · 300 8.43 36.73
400 · 400 7.45 37.70
500 · 500 7.13 38.66
600 · 600 6.97 39.61
700 · 700 6.83 40.56
800 · 800 6.68 41.47
900 · 900 6.79 42.39
1000 · 1000 6.59 43.28
1100 · 1100 6.66 44.14
1200 · 1200 6.62 44.95
1300 · 1300 6.57 45.71
1400 · 1400 6.53 46.44
1500 · 1500 6.49 47.13
1600 · 1600 6.45 47.70
1700 · 1700 6.41 48.19
1800 · 1800 6.38 48.68
1900 · 1900 6.35 49.09
2000 · 2000 6.31 49.45
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For example, in case of detecting 5 · 5 pattern, the image
must be decomposed into sub-images of size no more 5 · 5.

To further reduce the running time as well as increase
the speed up ratio of the detection process, a parallel pro-
cessing technique is used. Each sub-image is tested using a
fast neural network simulated on a single processor or a
separated node in a clustered system. The number of oper-

ations (x) performed by each processor/node (sub-images
tested by one processor/node):

x ¼The total number of sub-images

Number of Processors=nodes
ð24Þ

x ¼ a
Pr

ð25Þ

where Pr is the number of processors or nodes.

Table 9
The speed up ratio in case of using FNN and FNN after image
decomposition into sub-images (5 · 5 pixels) for images of different sizes
(from N = 50 to 1000, n = 5, q = 30)

Image size Speed up ratio in
case of using FNN

Speed up ratio in case of using FNN
after image decomposition

50 · 50 0.3361 1.3282
100 · 100 0.3141 1.4543
150 · 150 0.2985 1.4965
200 · 200 0.2872 1.5177
250 · 250 0.2785 1.5303
300 · 300 0.2716 1.5388
350 · 350 0.2658 1.5448
400 · 400 0.2610 1.5493
450 · 450 0.2568 1.5529
500 · 500 0.2531 1.5557
550 · 550 0.2498 1.5580
600 · 600 0.2469 1.5599
650 · 650 0.2442 1.5615
700 · 700 0.2418 1.5629
750 · 750 0.2396 1.5641
800 · 800 0.2375 1.5652
850 · 850 0.2356 1.5661
900 · 900 0.2339 1.5669
950 · 950 0.2322 1.5677
1000 · 1000 0.2306 1.5683

Table 11
The speed up ratio in case of using FNN and FNN after image
decomposition into sub-images (10 · 10 pixels) for images of different sizes
(from N = 50 to 1000, n = 10, q = 30)

Image size Speed up ratio in
case of using FNN

Speed up ratio in case of using FNN
after image decomposition

50 · 50 1.1202 3.1369
100 · 100 1.1503 3.9558
150 · 150 1.1303 4.2397
200 · 200 1.1063 4.3829
250 · 250 1.0842 4.4691
300 · 300 1.0647 4.5267
350 · 350 1.0474 4.5678
400 · 400 1.0321 4.5987
450 · 450 1.0185 4.6228
500 · 500 1.0063 4.6420
550 · 550 0.9952 4.6578
600 · 600 0.9851 4.6709
650 · 650 0.9758 4.6820
700 · 700 0.9672 4.6915
750 · 750 0.9593 4.6998
800 · 800 0.9519 4.7070
850 · 850 0.9451 4.7133
900 · 900 0.9386 4.7190
950 · 950 0.9325 4.7241
1000 · 1000 0.9268 4.7286

Table 10
The speed up ratio in case of using FNN and FNN after image
decomposition into sub-images (5 · 5 pixels) for images of different sizes
(from N = 50 to 1000, n = 5, q = 30)

Image size Speed up ratio in
case of using FNN

Speed up ratio in case of using FNN
after image decomposition

1050 · 1050 0.2292 1.5689
1100 · 1100 0.2278 1.5695
1150 · 1150 0.2265 1.5700
1200 · 1200 0.2253 1.5704
1250 · 1250 0.2241 1.5709
1300 · 1300 0.2230 1.5713
1350 · 1350 0.2219 1.5716
1400 · 1400 0.2209 1.5720
1450 · 1450 0.2199 1.5723
1500 · 1500 0.2189 1.5726
1550 · 1550 0.2180 1.5728
1600 · 1600 0.2172 1.5731
1650 · 1650 0.2163 1.5733
1700 · 1700 0.2155 1.5735
1750 · 1750 0.2148 1.5738
1800 · 1800 0.2140 1.5740
1850 · 1850 0.2133 1.5742
1900 · 1900 0.2126 1.5743
1950 · 1950 0.2119 1.5745
2000 · 2000 0.2112 1.5747

Table 12
The speed up ratio in case of using FNN and FNN after image
decomposition into sub-images (10 · 10 pixels) for images of different sizes
(from N = 1050 to 2000, n = 10, q = 30)

Image size Speed up ratio in
case of using FNN

Speed up ratio in case of using FNN
after image decomposition

1050 · 1050 0.9214 4.7328
1100 · 1100 0.9163 4.7365
1150 · 1150 0.9114 4.7399
1200 · 1200 0.9068 4.7431
1250 · 1250 0.9023 4.7460
1300 · 1300 0.8981 4.7486
1350 · 1350 0.8941 4.7511
1400 · 1400 0.8902 4.7534
1450 · 1450 0.8865 4.7555
1500 · 1500 0.8829 4.7575
1550 · 1550 0.8795 4.7594
1600 · 1600 0.8762 4.7611
1650 · 1650 0.8730 4.7628
1700 · 1700 0.8699 4.7643
1750 · 1750 0.8669 4.7658
1800 · 1800 0.8640 4.7672
1850 · 1850 0.8613 4.7685
1900 · 1900 0.8586 4.7697
1950 · 1950 0.8559 4.7709
2000 · 2000 0.8534 4.7720
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The total number of computation steps (c) required to
test an image by using this approach can be calculated as:

c ¼ xb ð26Þ

By using this algorithm, the speed up ratio in this case (gdp)
can be computed as follows:

gdp ¼
qð2n2 � 1ÞðN � nþ 1Þ2

ceilðððqðaþ 1Þ þ aÞð5N 2
s log2N 2

s Þ þ aqð8N 2
s � n2Þ þ N sÞ=PrÞ

ð27Þ

where ceil(x) is a MATLAB function rounds the elements
of x to the nearest integers towards infinity.

As shown in Tables 13 and 14, using a symmetric multi-
processing system with 16 parallel processors or 16 nodes
in either a massively parallel processing system or a clus-
tered system, the speed up ratio (with respect to conven-
tional neural networks) for face/object detection is
increased. A further reduction in the computation steps
can be obtained by dividing each sub-image into groups.
For each group, the neural operation (multiplication by
weights and summation) is performed for each group by
using a single processor. This operation is done for all of
these groups as well as other groups in all of the sub-images
at the same time. The best case is achieved when each
group consists of only one element. In this case, one oper-
ation is needed for multiplication of the one element by its
weight and also a small number of operations (e) is
required to obtain the over all summation for each sub-
image. If the sub-image has n2 elements, then the required
number of processors will be n2. As a result, the number of
computation steps will be aq(1+e), where e is a small num-
ber depending on the value of n. For example, when n = 20,

then e = 6 and if n = 25, then e = 7. The speed up ratio can
be calculated as:

g ¼ ð2n2 � 1ÞðN � nþ 1Þ2=að1þ eÞ ð28Þ

Moreover, if the number of processors = an2, then the
number of computation steps will be q(1+e), and the speed
up ratio becomes:

g ¼ ð2n2 � 1ÞðN � nþ 1Þ2=ð1þ eÞ ð29Þ

Furthermore, if the number of processors = qan2, then the
number of computation steps will be (1 + e), and the speed
up ratio can be calculated as:

g ¼ qð2n2 � 1ÞðN � nþ 1Þ2=ð1þ eÞ ð30Þ

In this case, as the length of each group is very small, then
there is no need to apply cross correlation between the in-
put image and the weights of the neural network in fre-
quency domain.

4. Sub-image centering and normalization in the frequency

domain

In [4], the authors stated that image normalization to
avoid weak or strong illumination could not be done in
the frequency space. This is because the image normaliza-
tion is local and not easily computed in the Fourier space
of the whole image. Here, a simple method for image nor-
malization is presented. In [17–19], the authors stated that
centering and normalizing the image can be obtained by
centering and normalizing the weights as follows [17–19]:

Let �X rc be the centered sub-image located at (r,c) in the
input image w:

Table 13
The speed up ratio in case of using FNN after image decomposition into
sub-images (25 · 25 pixels) for images of different sizes (from N = 50 to
1000, n = 25, q = 30) using 16 parallel processors or 16 nodes

Image size Speed up ratio

50 · 50 81.1403
100 · 100 199.3946
150 · 150 250.5611
200 · 200 277.7780
250 · 250 294.5171
300 · 300 305.8174
350 · 350 313.9482
400 · 400 320.0748
450 · 450 324.8552
500 · 500 328.6882
550 · 550 331.8296
600 · 600 334.4509
650 · 650 336.6712
700 · 700 338.5758
750 · 750 340.2276
800 · 800 341.6738
850 · 850 342.9504
900 · 900 344.0856
950 · 950 345.1017
1000 · 1000 346.0164

Table 14
The speed up ratio in case of using FNN after image decomposition into
sub-images (25 · 25 pixels) for images of different sizes (from N = 1050 to
2000, n = 25, q = 30) using 16 parallel processors or 16 nodes

Image size Speed up ratio

1050 · 1050 346.8442
1100 · 1100 347.5970
1150 · 1150 348.2844
1200 · 1200 348.9147
1250 · 1250 349.4946
1300 · 1300 350.0300
1350 · 1350 350.5258
1400 · 1400 350.9862
1450 · 1450 351.4150
1500 · 1500 351.8152
1550 · 1550 352.1896
1600 · 1600 352.5406
1650 · 1650 352.8704
1700 · 1700 353.1808
1750 · 1750 353.4735
1800 · 1800 353.7500
1850 · 1850 354.0115
1900 · 1900 354.2593
1950 · 1950 354.4943
2000 · 2000 354.7177
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�X rc ¼ X rc � �xrc ð31Þ

where �X rc is the mean value of the sub-image located at
(r,c). We are interested in computing the cross correlation
between the sub-image �X rc and the weights Wi that is:

�X rc � W i ¼ X rc � W i � �xrc � W i ð32Þ

where

�xrc ¼
X rc

n2
ð33Þ

Combining Eqs. (32) and (33), the following expression can
be obtained:

�X rc � W i ¼ X rc � W i �
X rc

n2
� W i ð34Þ

which is the same as:

�X rc � W i ¼ X rc � W i � X rc �
W i

n2
ð35Þ

The centered weights are given by:

�W i ¼ W i �
W i

n2
ð36Þ

Also, Eq. (35) can be written as:

�X rc � W i ¼ X rc � W i �
W i

n2

� �
ð37Þ

So, it can be concluded that:

�X rc � W i ¼ X rc � �W i ð38Þ

which means that cross-correlating a normalized sub-image
with the weight matrix is equal to the cross-correlation of
the non-normalized sub-image with the normalized weight
matrix [17–19]. However, this proof which presented in
[17–19] is not correct at all because it is proved here math-
ematically and practically that cross-correlating a normal-
ized sub-image with the weight matrix is not equal to the
cross-correlation of the non-centered image with the nor-
malized weight matrix

During the test phase, each sub-image in the input image
is multiplied (dot multiplication) by the weight matrix and
this operation is repeated for all possible sub-images in the
input image. Repeating this process for all sub-images in
the input image is equivalent to the cross correlation oper-
ation. Therefore, there is no cross correlation between each
sub-image and the weight matrix. The cross correlation is
done between the weight matrix and the whole input image.
Thus, this proves that there is no need to the proof of Eq.
(38) (presented in [17–19] which is mathematically wrong.
The result of Eq. (38) is correct only for the center value
which equals to the dot product between the two matrices
(sub-image and weight matrices). For all other values
except the center value:

�X rc � W i 6¼ X rc � �W i ð39Þ

This fact is true for all types and values of matrices
except symmetric matrices and our new technique of image
decomposition presented in Section 3. A practical example
is given in Appendix D.

Furthermore, the definition of the mean value, Eq. (34)
which presented in [17–19] is not correct and must be :

�xrc ¼
Pn

i;j¼1X rcði; jÞ
n2

ð40Þ

which leads to the conclusion that the proof of Eq. (38)
(presented in [17–19]) not true.

Moreover, the operation performed between the weight
matrix and each sub-image is dot multiplication. Our new
idea is to normalize each sub-image in the frequency
domain by normalizing the weight matrix. The dot product
of two matrices is defined as follows:

X � W ¼
Xn2

i;j¼1

X ijW ij ð41Þ

The result of dot product is only one value. We have also
the following definitions:

1n�n � X ¼ X � 1n�n ¼
Xn2

i;j¼1

X ij ð42Þ

Where 1n · n is a n · n matrix where every element is 1.

1n�n � W ¼ W � 1n�n ¼
Xn2

i;j¼1

W ij ð43Þ

Lemma 1. w1n�n � X ¼ x1n�n � W .

Proof. From Eqs. (40)–(43), we can conclude that:

w1n�n � X ¼ w
Xn2

i;j¼1

X ij ¼
1

n2

Xn2

i;j¼1

W ij �
Xn2

i;j¼1

X ij ð44Þ

Which can be reformulated as:

w1n�n � X ¼
1

n2

Xn2

i;j¼1

W ij �
Xn2

i;j¼1

X ij ð45Þ

Also,

x1nxn � W ¼ x
Xn2

i;j¼1

W ij ¼
1

n2

Xn2

i;j¼1

X ij �
Xn2

i;j¼1

W ij ð46Þ

Which is the same as:

x1nxn � W ¼
1

n2

Xn2

i;j¼1

X ij �
Xn2

i;j¼1

W ij ð47Þ

It is clear that Eq. (45) is the same as Eq. (47), which
means:

w1nxn � X ¼ x1nxn � W � ð48Þ
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Theorem

�X � W ¼ �W � X

Proof

�X � W ¼ ðX � x1n�nÞ � W
¼ X � W � x1n�n � W
¼ X � W � X � 1n�nw
¼ X ðW � w � 1n�nÞ
¼ X � �W

So, we may conclude that:

�X rc � W i ¼ X rc � �W i ð49Þ
which means that multiplying a normalized sub-image with a
non-normalized weight matrix dot multiplication is equal to
the dot multiplication between the non-normalized sub-
image and the normalized weight matrix. The validation of
Eq. (49) and a practical example is given in Appendix E. h

As proved in our previous paper [22], the relation defined
by Eq. (38) is true only for the resulting middle value. This is
under two conditions. The first is to apply the technique of
fast neural networks and image decomposition. In this case,
the cross correlation is performed between each input sub-
image and the weight matrix which has the same size as
the resulting sub-image after image decomposition. The
resulting middle value equals to the dot product between
the input sub-image and the weight matrix (the value which
we were interested in). The second is that the required face/
object is completely located in one of these sub-images
(not between two sub-images). However applying cross
correlation consumes more computation steps than apply-
ing dot product which makes Eq. (38) useful less.

5. Effect of weight normalization on the speed up ratio

Normalization of sub-images in the spatial domain (in
case of using traditional neural networks) requires
2n2(N � n + 1)2 computation steps. On the other hand,
normalization of sub-images in the frequency domain
through normalizing the weights of the neural networks
requires 2qn2 operations. This proves that local image nor-
malization in the frequency domain is faster than that in
the spatial one. By using weight normalization, the speed
up ratio for image normalization C can be calculated as:

C ¼ ðN � nþ 1Þ2

q
ð50Þ

The speed up ratio of the normalization process for images
of different sizes is listed in Table 15. As a result, we may
conclude that:

1. Using this technique, normalization in the frequency
domain can be done through normalizing the weights
in spatial domain.

2. Normalization of an image through normalization of
weights is faster than normalization of each sub-
image.

3. Normalization of weights can be done off line. So, the
speed up ratio in the case of weight normalization can
be calculated as follows:

(a) For conventional neural networks:
The speed up ratio equals the number of computation

steps required by conventional neural networks with image
normalization divided by the number of computation steps
needed by conventional neural networks with weight nor-
malization, which is done off line. The speed up ratio gc

in this case can be given by:

gc ¼
qð2n2 � 1ÞðN � nþ 1Þ2 þ 2n2ðN � nþ 1Þ2

qð2n2 � 1ÞðN � nþ 1Þ2
ð51Þ

which can be simplified to:

gc ¼ 1þ 2n2

qð2n2 � 1Þ ð52Þ

(b) For fast neural networks:
The overall speed up ratio equals the number of compu-

tation steps required by conventional neural networks with
image normalization divided by the number of computa-
tion steps needed by fast neural networks with weight nor-
malization, which is done off line. The over all speed up
ratio go can be given by:

Table 15
The speed up ratio of the normalization process for images of different
sizes (n = 20, q = 100)

Image size Speed up ratio

100 · 100 62
200 · 200 328
300 · 300 790
400 · 400 1452
500 · 500 2314
600 · 600 3376
700 · 700 4638
800 · 800 6100
900 · 900 7762
1000 · 1000 9624
1100 · 1100 11686
1200 · 1200 13948
1300 · 1300 16410
1400 · 1400 19072
1500 · 1500 21934
1600 · 1600 24996
1700 · 1700 28258
1800 · 1800 31720
1900 · 1900 35382
2000 · 2000 39244
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go ¼
qð2n2 � 1ÞðN � nþ 1Þ2 þ 2n2ðN � nþ 1Þ2

ð2qþ 1Þð5N 2 log2N 2Þ þ qð8N 2 � n2Þ þ N
ð53Þ

which can be simplified to:

go ¼
ðN � nþ 1Þ2ðqð2n2 � 1Þ þ 2n2Þ

ð2qþ 1Þð5N 2 log2N 2Þ þ qð8N 2 � n2Þ þ N
ð54Þ

The relation between the speed up ratio before (g) and after
(go) the normalization process can be summed up as:

go ¼ gþ 2n2ðN � nþ 1Þ2

ð2qþ 1Þð5N 2 log2N 2Þ þ qð8N 2 � n2Þ þ N
ð55Þ

The overall speed up ratio Eq. (55) with images of different
sizes and different sizes of windows is listed in Table 16. We
can easily note that the speed up ratio in case of image nor-
malization through weight normalization is larger than the
speed up ratio (without normalization) listed in Table 1.
This means that the search process with fast normalized
neural networks is done faster than conventional neural net-
works with or without normalization of the input image.
The overall practical speed up ratio Eq. (55) after off line
normalization of weights is listed in Table 17.

6. Conclusions

Normalized neural networks for fast pattern detection in
a given image have been presented. It has been proved
mathematically and practically that the speed of the detec-
tion process becomes faster than conventional neural net-
works. This has been accomplished by applying cross
correlation in the frequency domain between the input
image and the normalized input weights of the neural net-
works. New general formulas for fast cross correlation as
well as the speed up ratio have been given. A faster neural
network approach for pattern detection has been intro-
duced. Such approach has decomposed the input image
under test into many small in size sub-images. Further-
more, a simple algorithm for fast pattern detection based
on cross correlations in the frequency domain between
the sub-images and the weights of neural networks has
been presented in order to speed up the execution time.
Simulation results have shown that, using a parallel pro-
cessing technique, large values of speed up ratio could be
achieved. Moreover, by using fast neural networks and
image decomposition, the speed up ratio has been increased
with the size of the input image. Also, the problem of local
sub-image normalization in the frequency space has been
solved. It has been generally proved that the speed up ratio
in the case of image normalization through normalization
of weights is faster than sub-image normalization in the
spatial domain. This speed up ratio is faster than the one
obtained without normalization. Simulation results have
confirmed theoretical computations by using MATLAB.
The proposed approach can be applied to detect the pres-
ence/absence of any other object in an image.

Appendix A. An example proves that the cross correlation

between any two matrices is not commutative

Let X ¼
5 1

3 7

� �
and W ¼

6 5

9 8

� �

Then, the cross correlation between W and X can be
obtained as follows:

Table 16
Theoretical results for the speed up ratio in case of image normalization by
normalizing the input weights

Image size Speed up ratio
(n = 20)

Speed up ratio
(n = 25)

Speed up ratio
(n = 30)

100 · 100 3.7869 5.2121 6.5532
200 · 200 4.1382 6.1165 8.3167
300 · 300 4.1320 6.2313 8.6531
400 · 400 4.0766 6.2063 8.7031
500 · 500 4.0152 6.1467 8.6684
600 · 600 3.9570 6.0796 8.6054
700 · 700 3.9039 6.0132 8.5334
800 · 800 3.8557 5.9502 8.4603
900 · 900 3.8120 5.8915 8.3891
1000 · 1000 3.7723 5.8369 8.3212
1100 · 1100 3.7360 5.7862 8.2568
1200 · 1200 3.7027 5.7391 8.1961
1300 · 1300 3.6719 5.6952 8.1389
1400 · 1400 3.6434 5.6542 8.0849
1500 · 1500 3.6169 5.6158 8.0340
1600 · 1600 3.5922 5.5798 7.9858
1700 · 1700 3.5690 5.5458 7.9403
1800 · 1800 3.5472 5.5138 7.8971
1900 · 1900 3.5266 5.4835 7.8560
2000 · 2000 3.5072 5.4547 7.8169

Table 17
Practical speed up ratio for images with different sizes in case of image
normalization by normalizing the input weights

Image size Speed up ratio
(n = 20)

Speed up ratio
(n = 25)

Speed up ratio
(n = 30)

100 · 100 8.91 12.03 16.74
200 · 200 7.43 10.42 15.39
300 · 300 6.72 9.72 14.45
400 · 400 5.99 8.61 13.59
500 · 500 5.75 8.32 12.94
600 · 600 5.61 8.09 11.52
700 · 700 5.49 7.97 11.04
800 · 800 5.41 7.83 10.74
900 · 900 5.32 7.71 10.56
1000 · 1000 5.29 7.58 10.45
1100 · 1100 5.41 7.83 10.81
1200 · 1200 5.36 7.77 10.76
1300 · 1300 5.32 7.71 10.71
1400 · 1400 5.28 7.65 10.66
1500 · 1500 5.24 7.60 10.62
1600 · 1600 5.21 7.56 10.58
1700 · 1700 5.18 7.52 10.52
1800 · 1800 5.14 7.48 10.47
1900 · 1900 5.11 7.44 10.43
2000 · 2000 5.08 7.41 10.38
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W � X ¼ 6 5

9 8

� �
� 5 1

3 7

� �

¼
8� 5 8� 1þ 9� 5 9� 1

5� 5þ 8� 3 6� 5þ 5� 1þ 9� 3þ 8� 7 6� 1þ 9� 7

5� 3 6� 3þ 5� 7 6� 7

2
4

3
5

¼
40 53 9

49 118 63

15 53 42

2
4

3
5

On the other hand, the cross correlation the cross correla-
tion between X and W can be computed as follows:

X �W ¼ 5 1

3 7

� �
� 6 5

9 8

� �

¼
7� 6 3� 6þ 7� 5 3� 5

1� 6þ 7� 9 5� 6þ 1� 5þ 3� 9þ 7� 8 5� 5þ 3� 8

1� 9 5� 9þ 1� 8 5� 8

2
4

3
5

¼
42 53 15

69 118 49

9 53 40

2
4

3
5

which proves that X �W „ W � X.
Also, when one of the two matrices is symmetric the

cross correlation between the two matrices is non-commu-
tative as shown in the following example:

Let X ¼
5 3

3 5

� �
and W ¼

6 5

9 8

� �

Then, the cross correlation between W and X can be ob-
tained as follows:

W � X ¼ 6 5

9 8

� �
� 5 3

3 5

� �

¼
8� 5 8� 3þ 9� 5 9� 3

5� 5þ 8� 3 6� 5þ 5� 3þ 9� 3þ 8� 5 6� 3þ 9� 5

5� 3 6� 3þ 5� 5 6� 5

2
4

3
5

¼
40 69 27

49 112 63

15 43 30

2
4

3
5

On the other hand, the cross correlation the cross correla-
tion between X and W can be computed as follows:

X �W ¼
5 3

3 5

� �
�

6 5

9 8

� �

¼
5� 6 3� 6þ 5� 5 3� 5

3� 6þ 5� 9 5� 6þ 3� 5þ 3� 9þ 5� 8 5� 5þ 3� 8

3� 9 5� 9þ 3� 8 5� 8

2
64

3
75

¼
30 43 15

63 112 49

27 69 40

2
64

3
75

which proves that X �W „ W � X.
The cross correlation between any two matrices is com-

mutative only when the two matrices are symmetric as
shown in the following example.

Let X ¼
5 3

3 5

� �
and W ¼

8 9

9 8

� �

Then, the cross correlation between W and X can be ob-
tained as follows:

W � X ¼
8 9

9 8

� �
�

5 3

3 5

� �

¼
8� 5 9� 5þ 8� 3 9� 3

9� 5þ 8� 3 8� 5þ 9� 3þ 9� 3þ 8� 5 9� 5þ 8� 3

9� 3 5� 9þ 3� 8 8� 5

2
64

3
75

¼
40 69 27

69 122 69

27 69 40

2
64

3
75

On the other hand, the cross correlation between X and W

can be computed as follows:

X � W ¼
5 3

3 5

� �
�

8 9

9 8

� �

¼
5� 8 5� 9þ 3� 8 3� 9

5� 9þ 3� 8 5� 8þ 3� 9þ 3� 9þ 5� 8 5� 9þ 3� 8

3� 9 5� 9þ 3� 8 5� 8

2
64

3
75

¼
40 69 27

69 122 69

27 69 40

2
64

3
75

which proves that the cross correlation is commutative
(X �W = W � X) only under the condition when the
two matrices X and W are symmetric.

Appendix B. An example proves that the cross correlation

between any two matrices is different from their convolution

Let X ¼
5 1

3 7

� �
and W ¼

6 5

9 8

� �
;

the result of their cross correlation can be computed as
illustrated from the previous example (first result) in
Appendix A. The convolution between X and W can be ob-
tained as follows:

W}X ¼
5 1

3 7

� �
}

8 9

5 6

� �

¼
6� 5 5� 5þ 6� 1 5� 1

9� 5þ 6� 3 8� 5þ 9� 1þ 5� 3þ 6� 7 8� 1þ 5� 7

9� 3 8� 3þ 9� 7 8� 7

2
64

3
75

¼
30 31 5

63 106 43

27 87 56

2
64

3
75

which proves that W � X „ W } X.
When the second matrix W is symmetric, the cross cor-

relation between W and X can be computed as follows:

W � X ¼
8 9

9 8

� �
�

5 1

3 7

� �

¼
8� 5 9� 5þ 8� 1 9� 1

9� 5þ 8� 3 8� 5þ 9� 3þ 9� 1þ 8� 7 8� 1þ 7� 9

9� 3 8� 3þ 9� 7 8� 7

2
64

3
75

¼
40 87 9

79 106 71

45 53 56

2
64

3
75

while the convolution between X and W can be obtained as
follows:
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W}X ¼
5 1

3 7

� �
}

8 9

9 8

� �

¼
8� 5 9� 5þ 8� 1 9� 1

9� 5þ 8� 3 8� 5þ 9� 3þ 9� 1þ 8� 7 8� 1þ 7� 9

9� 3 8� 3þ 9� 7 8� 7

2
64

3
75

¼
40 87 9

79 106 71

45 53 56

2
64

3
75

which proves that under the condition that the second ma-
trix is symmetric (or the two matrices are symmetric) the
cross correlation between any the two matrices equals to
their convolution.

Appendix C. An example for cross correlation with matrix

decomposition

Let X ¼

5 1 8 6

3 7 3 4

1 2 9 5

6 5 4 2

2
6664

3
7775and W ¼

6 5

9 8

� �

Then the cross correlation (CC) between W and X can be
computed as follows:

Suppose that X is decomposed into four smaller matri-
ces x1, x2, x3, and x4 as follows:

x1 ¼
5 1

3 7

� �
; x2 ¼

8 6

3 4

� �
; x3 ¼

1 2

6 5

� �
; and x4 ¼

9 5

4 2

� �

Then, the cross correlation between each resulting matrix
and the matrix W can be computed as follows:

CC1 ¼W � x1 ¼
6 5

9 8

� �
�

5 1

3 7

� �

¼
8� 5 9� 5þ 8� 1 9� 1

5� 5þ 8� 3 6� 5þ 5� 1þ 9� 3þ 8� 7 6� 1þ 9� 7

5� 3 6� 3þ 5� 7 6� 7

2
64

3
75

¼
40 53 9

49 118 69

15 53 42

2
64

3
75

CC2 ¼W � x2 ¼
6 5

9 8

� �
�

8 6

3 4

� �

¼
8� 8 9� 8þ 8� 6 9� 6

5� 8þ 8� 3 6� 8þ 5� 6þ 9� 3þ 8� 4 6� 6þ 9� 4

5� 3 6� 3þ 5� 4 6� 4

2
64

3
75

¼
64 120 54

64 137 72

15 38 24

2
64

3
75

CC3 ¼x3�W ¼
6 5

9 8

� �
�

1 2

6 5

� �

¼
8� 1 9� 1þ 8� 2 9� 2

5� 1þ 8� 6 6� 1þ 5� 2þ 9� 6þ 8� 5 6� 2þ 9� 5

5� 6 6� 6þ 5� 5 6� 5

2
64

3
75

¼
8 25 18

53 110 57

30 61 30

2
64

3
75

CC4 ¼x4�W ¼
6 5

9 8

� �
�

9 5

4 2

� �

¼
8� 9 9� 9þ 8� 5 9� 5

5� 9þ 8� 4 6� 9þ 5� 5þ 9� 4þ 8� 2 6� 5þ 9� 2

5� 4 6� 4þ 5� 2 6� 2

2
64

3
75

¼
72 121 45

77 131 48

20 34 12

2
64

3
75

The total result of cross correlating the resulting smaller
matrices with the matrix W can be computed as:

CC ¼ W � X ¼
6 5

9 8

" #
�

5 1 8 6

3 7 3 4

1 2 9 5

6 5 4 2

2
666664

3
777775

¼

8� 5 9� 5þ 8� 1 9� 1þ 8� 8 9� 8þ 8� 6 9� 6

5� 5þ 8� 3 6� 5þ 5� 1þ 9� 3þ 8� 7 6� 1þ 5� 8þ 9� 7þ 8� 3 6� 8þ 5� 6þ 9� 3þ 8� 4 6� 6þ 9� 4

5� 3þ 8� 1 6� 3þ 5� 7þ 9� 1þ 8� 2 6� 7þ 5� 3þ 9� 2þ 8� 9 6� 3þ 5� 4þ 9� 9þ 8� 5 6� 4þ 9� 5

5� 1þ 8� 6 6� 1þ 5� 2þ 9� 6þ 8� 5 6� 2þ 5� 9þ 9� 5þ 8� 4 6� 9þ 5� 5þ 9� 4þ 8� 2 6� 5þ 9� 2

5� 6 6� 6þ 5� 5 6� 5þ 5� 4 6� 4þ 5� 2 6� 2

2
666666664

3
777777775

CC ¼

40 53 73 120 54

49 118 133 137 72

23 78 147 159 69

53 110 134 131 48

30 61 50 34 12

2
666666664

3
777777775
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Which means that CC = CCT. This proves that the
result of cross correlating a large matrix (X) with another
matrix (W) equals to the results of cross correlating the
resulting smaller sub matrices (X1, X2, X3, and X4) after
decomposition.

Appendix D. A cross correlation example between a

normalized matrix and other non-normalized one and vise
versa

LetX ¼
5 1

3 7

� �
and W ¼

6 5

9 8

� �

Then the normalized matrices �X , and �W can b e computed
as:

�X ¼
1 �3

�1 3

� �
and �W ¼

�1 �2

2 1

� �

Now, the cross correlation between a normalized matrix
and the other non-normalized one can be computed as
follows:

�X � W ¼
1 �3

�1 3

" #
6 5

9 8

" #
¼

18 9 �5

9 6 �3

�27 �15 8

2
664

3
775

X � �W ¼
5 1

3 7

" #
�1 �2

2 1

" #
¼

�7 �17 �6

13 6 �7

2 11 5

2
664

3
775

which means that �X � W 6¼ X � �W .
However, the two results are equal only at the center ele-

ment which equals to the dot product between the two
matrices. The value of the center element (2, 2) = 6 as
shown above and also in Appendix E.

Appendix E. A dot product example between a normalized

matrix and other non-normalized one and vise versa

This is to validate the correctness of Eq. (49). The left
hand side of Eq. (49) can be expressed as follows:

�X � W ¼

X 1;1 � �X . . . X 1;n � �X

..

.

X n;1 � �X . . . X n;n � �X

2
664

3
775 �

W 1;1 . . . W 1;n

..

.

W n;1 . . . W n;n

2
664

3
775 ð56Þ

and also the right hand side of the same can be represented
as:

X � �W ¼

X 1;1 . . . X 1;n

..

.

X n;1 . . . X n;n

2
664

3
775 �

W 1;1 � �W . . . W 1;n � �W

..

.

W n;1 � �W . . . W n;n � �W

2
664

3
775 ð57Þ

�X and �W are defined as follows:

�X ¼X 1;1 þ X 1;2 þ . . .þ X n;n

n2
ð58Þ

�W ¼W 1;1 þ W 1;2 þ . . .þ W n;n

n2

By substituting from Eq. (58) in Eqs. (56) and (57), then
simplifying the results we can easily conclude that
�X rc � W i ¼ X rc � �W i. Here is also a practical example:

Let X ¼
5 1

3 7

� �
and W ¼

6 5

9 8

� �

Then the normalized matrices �X , and �W can b e computed
as:

�X ¼
1 �3

�1 3

� �
and �W ¼

�1 �2

2 1

� �

Now, the dot product between a normalized matrix and the
other non-normalized one can be performed as follows:

CCT¼CC1þCC2þCC3þCC4

CCT¼

CC1ð1;1Þ CC1ð1;2Þ CC1ð1;3ÞþCC2ð1;1Þ CC2ð1;2Þ CC2ð1;3Þ
CC1ð2;1Þ CC1ð2;2Þ CC2ð2;3ÞþCC2ð2;1Þ CC2ð2;2Þ CC2ð2;3Þ

CC1ð3;1ÞþCC3ð1;1Þ CC1ð3;2ÞþCC3ð1;2Þ CC1ð3;3ÞþCC2ð3;1ÞþCC3ð1;3ÞþCC4ð1;1Þ CC2ð3;2ÞþCC4ð1;2Þ CC2ð3;3ÞþCC4ð1;3Þ
CC3ð2;1Þ CC3ð2;2Þ CC3ð2;3ÞþCC4ð1;2Þ CC4ð2;2Þ CC4ð2;3Þ
CC3ð3;1Þ CC3ð3;2Þ CC3ð3;3ÞþCC4ð1;3Þ CC4ð3;2Þ CC4ð3;3Þ

2
6666664

3
7777775

CCT¼

40 53 9þ64 120 54

49 118 69þ64 137 72

15þ8 53þ25 42þ15þ18þ72 38þ121 24þ45

53 110 57þ77 131 48

30 61 30þ20 34 12

2
6666664

3
7777775

CCT¼

40 53 73 120 54

49 118 133 137 72

23 78 147 159 69

53 110 134 131 48

30 61 50 34 12

2
6666664

3
7777775
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�X � W ¼
1 �3

�1 3

� �
6 5

9 8

� �
¼ 6� 15� 9þ 24 ¼ 6

�X � �W ¼
5 1

3 7

� � �1 �2

2 1

� �
¼ �5� 2þ 6þ 7 ¼ 6

which means generally that the dot product between a nor-
malized matrix X and non-normalized matrix W equals to
the dot product between the normalized matrix W and
non-normalized matrix X. On the other hand, the cross
correlation results are different as proved in Appendix C.

References

[1] R. Klette, P. Zamperon, Handbook of image processing operators,
John Wiley and Sons, New York, 1996.

[2] H.A. Rowley, S. Baluja, T. Kanade, Neural network-based face
detection, IEEE Transactions on Pattern Analysis and Machine
Intelligence 20 (1) (1998) 23–38.

[3] H. Schneiderman, T. Kanade, Probabilistic modeling of local
appearance and spatial relationships for object recognition, in: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
SantaBarbara, CA, 1998, pp. 45–51.

[4] R. Feraud, O. Bernier, J.E. Viallet, M. Collobert, A fast and accurate
face detector for indexation of face images, in: Proceedings of the
Fourth IEEE International Conference on Automatic Face and
Gesture Recognition, Grenoble, France, 28–30 March, 2000.

[5] Y. Zhu, S. Schwartz, M. Orchard, Fast face detection using subspace
discriminate wavelet features, in: Proceedings of IEEE Computer
Society International Conference on Computer Vision and Pattern
Recognition (CVPR’00), South Carolina, June 13–15, 2000, vol.1, pp.
1636–1643.

[6] H.M. El-Bakry, Automatic human face recognition using modular
neural networks, Machine Graphics & Vision Journal (MG& V) 10
(1) (2001) 47–73.

[7] S. Srisuk, W. Kurutach, A new robust face detection in color images,
in: Proceedings of IEEE Computer Society International Conference
on Automatic Face and Gesture Recognition, Washington D.C.,
USA, May 20–21, 2002, pp. 306–311.

[8] H.M. El-Bakry, Face detection using fast neural networks and image
decomposition, Neurocomputing Journal 48 (2002) 1039–1046.

[9] H.M. El-Bakry, Human iris detection using fast cooperative modular
neural networks and image decomposition, Machine Graphics &
Vision Journal (MG& V) 11 (4) (2002) 498–512.

[10] H.M. El-Bakry, Q. Zhao, Fast object/face detection using neural
networks and fast Fourier transform, International Journal of Signal
Processing 1 (3) (2004) 182–187.

[11] H.M. El-Bakry, Q. Zhao, A modified cross correlation in the
frequency domain for fast pattern detection using neural networks,
International Journal of Signal Processing 1 (3) (2004) 188–194.

[12] H.M. El-Bakry, Q. Zhao, Face detection using fast neural processors
and image decomposition, International Journal of Computational
Intelligence 1 (4) (2004) 313–316.

[13] H.M. El-Bakry, Q. Zhao, Fast complex valued time delay neural
networks, International Journal of Computational Intelligence 2 (1)
(2005) 16–26.

[14] H.M. El-Bakry, Q. Zhao, A fast neural algorithm for serial code
detection in a stream of sequential data, International Journal of
Information Technology 2 (1) (2005) 71–90.

[15] H.M. El-Bakry, Q. Zhao, A new high speed neural model for
character recognition using cross correlation and matrix decompo-
sition, International Journal of Signal Processing 2 (3) (2005) 183–
202.

[16] H.M. El-Bakry, Q. Zhao, Fast pattern detection using normalized
neural networks and cross correlation in the frequency domain,
Special issue on Advances in Intelligent Vision Systems: Methods and

Applications-Part I, EURASIP Journal on Applied Signal Processing
2005 (13) (2005) 2054–2060.

[17] S. Ben-Yacoub, B. Fasel, J. Luettin, Fast face detection using MLP
and FFT, in: Proceedings of the Second International Conference on
Audio and Video-based Biometric Person Authentication (AVB-
PA’99), 1999.

[18] B. Fasel, Fast multi-scale face detection, IDIAP-Com 98-04, 1998.
[19] S. Ben-Yacoub, Fast object detection using MLP and FFT, IDIAP-

RR 11, IDIAP, 1997.
[20] James W. Cooley, John W. Tukey, An algorithm for the machine

calculation of complex Fourier series, Mathematical Computing 19
(1965) 297–301.

[21] J.P. Lewis, Fast normalized cross correlation. Available from: http://
www.idiom.com/~zilla/Papers/nvisionInterface/nip.html.

[22] H.M. El-Bakry, Face detection using fast neural networks and image
decomposition, Neurocomputing Journal 48 (2002) 1039–1046.

[23] H.M. El-Bakry, Comments on Using MLP and FFT for fast object/
face detection, in: Proceedings of IEEE IJCNN’03, Portland, Oregon,
July, 20–24, 2003, pp. 1284–1288.

[24] H.M. El-Bakry, H. Stoyan, Fast neural networks for object/face
detection, in: Proceedings of the 30th Anniversary SOFSEM Con-
ference on Current Trends in Theory and Practice of Computer
Science, 24–30 January, 2004, Hotel VZ MERIN, Czech Republic.

[25] H.M. El-Bakry, H. Stoyan, Fast neural networks for sub-matrix
(object/face) detection, in: Proceedings of IEEE International Sym-
posium on Circuits and Systems, Vancouver, Canada, 23–26 May,
2004.

[26] H.M. El-Bakry, Fast sub-image detection using neural networks and
cross correlation in frequency domain, in: Proceedings of IS 2004:
14th Annual Canadian Conference on Intelligent Systems, Ottawa,
Ontario, 6–8 June, 2004.

[27] H.M. El-Bakry, H. Stoyan, Fast neural networks for code detection
in a stream of sequential data, in: Proceedings of CIC 2004
International Conference on Communications in Computing, Las
Vegas, Nevada, USA, 21–24 June, 2004.

[28] H.M. El-Bakry, Fast neural networks for object/face detection, in:
Proceedings of 5th International Symposium on Soft Computing for
Industry with Applications of Financial Engineering, June 28–July 4,
2004, Sevilla, Andalucia, Spain.

[29] H.M. El-Bakry, H. Stoyan, A fast searching algorithm for sub-image
(object/face) detection using neural networks, in: Proceedings of the
8th World Multi-Conference on Systemics, Cybernetics and Infor-
matics, 18–21 July, 2004, Orlando, USA.

[30] H.M. El-Bakry, H. Stoyan, Fast neural networks for code detection
in sequential data using neural networks for communication appli-
cations, in: Proceedings of the First International Conference on
Cybernetics and Information Technologies, Systems and Applica-
tions: CITSA 2004, 21–25 July, 2004. Orlando, Florida, USA, vol. IV,
pp. 150–153.

[31] H.M. El-bakry, M.A. Abo-elsoud, M.S. Kamel, Fast modular neural
networks for human face detection, in: Proceedings of IEEE-INNS-
ENNS International Joint Conference on Neural Networks, Como,
Italy, vol. III, 24–27 July, 2000, pp. 320–324.

[32] H.M. El-bakry, Fast iris detection using cooperative modular neural
nets, in: Proceedings of the 6th International Conference on Soft
Computing, 1–4 October, 2000, Japan.

[33] H.M. El-Bakry, Automatic human face recognition using modular
neural networks, Machine Graphics & Vision Journal (MG& V) 10
(1) (2001) 47–73.

[34] H.M. El-bakry, Fast iris detection using cooperative modular neural
networks, in: Proceedings of the 5th International Conference on
Artificial Neural Nets and Genetic Algorithms, 22–25 April, 2001,
Sydney, Czech Republic, pp. 201–204.

[35] H.M. El-bakry, Fast iris detection using neural nets, in: Proceedings
of the 14th Canadian Conference on Electrical and Computer
Engineering, 13–16 May, 2001, Canada, pp.1409–1415.

[36] H.M. El-bakry, Human iris detection using fast cooperative modular
neural nets, in: Proceedings of INNS-IEEE International Joint

H.M. El-Bakry, N. Mastorakis / Image and Vision Computing 25 (2007) 1767–1784 1783



Author's personal copy

Conference on Neural Networks, 14–19 July, 2001, Washington, DC,
USA, pp. 577–582.

[37] H.M. El-bakry, Human iris detection for information security using
fast neural nets, Proceedings of the 5th World Multi-Conference on
Systemics, Cybernetics and Informatics, 22–25 July, 2001, Orlando,
Florida, USA.

[38] H.M. El-bakry, Human iris detection for personal identification using
fast modular neural nets, in: Proceedings of the 2001 International
Conference on Mathematics and Engineering Techniques in Medicine
and Biological Sciences, 25–28 July, 2001, Monte Carlo Resort, Las
Vegas, Nevada, USA, pp. 112–118.

[39] H.M. El-bakry, Human face detection using fast neural networks and
image decomposition, in: Proceedings of the fifth International
Conference on Knowledge-Based Intelligent Information & Engi-
neering Systems, 6–8 September, 2001, Osaka-kyoiku University,
Kashiwara City, Japan, pp. 1330–1334.

[40] H.M. El-Bakry, Fast iris detection for personal verification using
modular neural networks, in: Proceedings of the International
Conference on Computational Intelligence, 1–3 October, 2001,
Dortmund, Germany, pp. 269–283.

[41] H.M. El-bakry, Fast cooperative modular neural nets for human face
detection, in: Proceedings of IEEE International Conference on
Image Processing, 7–10 October, 2001, Thessaloniki, Greece.

[42] H.M. El-Bakry, Fast face detection using neural networks and image
decomposition, in: Proceedings of the 6th International Computer
Science Conference, Active Media Technology, December 18–20,
2001, Hong Kong, China, pp. 205–215, 2001.

[43] H.M. El-Bakry, Face detection using fast neural networks and image
decomposition, in: Proceedings of INNS-IEEE International Joint
Conference on Neural Networks, 14–19 May, 2002, Honolulu,
Hawaii, USA.

[44] H.M. El-Bakry, Q. Zhao, Fast normalized neural processors for
pattern detection based on cross correlation implemented in the
frequency domain, Journal of Research and Practice in Information
Technology 38 (2) (2006) 151–170.

[45] H.M. El-Bakry, Q. Zhao, A new high speed neural model for
character recognition using cross correlation and matrix decomposi-
tion, International Journal of Signal Processing 2 (3) (2005) 183–202.

[46] H.M. El-Bakry, Q. Zhao, Speeding-up normalized neural networks
for face/object detection, Machine Graphics & Vision Journal (MG&
V) 14 (1) (2005) 29–59.

[47] K.A. Ishak, S.A. Samad, A. Hussian, B.Y. Majlis, A fast and
robust face detection using neural networks, in: Proceedings of the
international Symposium on Information and Communication
Technologies, Multimedia University, Putrajaya, Malaysia, vol. 2,
2004, pp. 5–8.

1784 H.M. El-Bakry, N. Mastorakis / Image and Vision Computing 25 (2007) 1767–1784


