

++++

∑+

=

Rpp
Ro......................R2pRoR1pRo1 Rpp

Roni1 Win1Wpp

A Simple Design and Implementation of Reconfigurable Neural
Networks

Hazem M. El-Bakry, and Nikos Mastorakis

Abstract—There are some problems in hardware

implementation of digital combinational circuits. In
contrast, analog design has the advantages of both
economy and easy to implement compared with the
digital design. In this paper, a simple design and
implementation of analog reconfigurable artificial neural
network is presented. A novel design of arithmetic unit
that including full-adder, full-subtractor , 2-bit digital multiplier and 2-bit digital divider is introduced. The
proposed neural network has been realized by hardware
components and the results are simulated using H-spice
program. Practical results confirm the theoretical
considerations.

I. INTRODUCTION

dvances in MOS VLSI have made it possible to
integrate neural networks of large sizes on a
single-chip [1,2]. Hardware realizations make it

possible to execute the forward pass operation of
neural networks at high speeds, thus making neural
networks possible candidates for real-time
applications. Other advantages of hardware
realizations as compared to software implementations
are the lower per unit cost and small size system.
Analog circuit techniques provide area-efficient
implementations of the functions required in a neural
network, namely, multiplication, summation, and the sigmoid transfer characteristic [3]. In this paper, we
describe the design of a reconfigurable neural network
in analog hardware and demonstrate experimentally
how a reconfigurable artificial neural network
approach is used in implementation of arithmetic unit
that including full-adder, full-subtractor, 2-bit digital multiplier, and 2-bit digital divider.
One of the main reasons for using analog electronics
to realize network hardware is that simple analog
circuits (for example adders, sigmoid, and multipliers)
can realize several of the operations in neural
networks. Nowadays, there is a growing demand for
large as well as fast neural processors to provide
solutions for difficult problems. Designers may use
either analog or digital technologies to implement
neural network models. The analog approach boasts
compactness and high speed. On the other hand,

Manuscript received December 14, 2008.
H. M. El-Bakry is with the Faculty of Computer Science &

Information Systems, Mansoura University, EGYPT (phone: +2-050-2317356; fax: +2-050-2221442; e-mail: helbakry20@yahoo.com).
 N. Mastorakis is with Department of Computer Science,
Military Institutions of University Education (MIUE) -Hellenic
Naval Academy, Greece.

digital implementations offer flexibility and
adaptability, but only at the expense of speed and
silicon area consumption.

II. ANALOG IMPLEMENTATION OF RECONFIGURABLE

NEURAL NETWORKS

A) Implementation of artificial neuron

Implementation of analog neural networks means that using only analog computation [4,6,8]. Artificial
neural network as the name indicates, is the
interconnection of artificial neurons that tend to
simulate the nervous system of human brain [5].
Neural networks are modeled as simple processors
(neurons) that are connected together via weights. The
weights can be positive (excitatory) or negative
(inhibitory). Such weights can be realized by resistors
as shown in Fig. 1.

The computed weights may have positive or negative
values. The corresponding resistors that represent these weights can be determined as follow [6]:

win = -Rf / Rin i = 1, 2, ……, n (1)

 (2)

The exact values of these resistors can be calculated as
presented in [4,8]. The summing circuit accumulates
all the input-weighted signals and then passes to the output through the transfer function [3]. The main
problem with the electronic neural networks is the
realization of resistors which are fixed and have many
problems in hardware implementation [7]. Such
resistors are not easily adjustable or controllable. As a
consequence, they can be used neither for learning,
nor can they be used for recall when another task
needs to be solved. So the calculated resistors
corresponding to the obtainable weights can be
implemented by using CMOS transistors operating in
continuous mode (triode region) as shown in Fig. 2. The equivalent resistance between terminal 1 and 2 is
given by [9]:

Req = 1/[K(Vg – 2Vth)] (3)

A

B) Reconfigurability

The interconnection of synapses and neurons
determines the topology of a neural network.
Reconfigurability is defined as the ability to alter the topology of the neural network [9]. Using switches in
the interconnections between synapses and neurons
permits one to change the network topology as shown in Fig.3. These switches are called "reconfiguration
switches".
The concept of reconfigurability should not be
confused with weight programmability. Weight
programmability is defined as the ability to alter the values of the weights in each synapse. In Fig.3, weight
programmability involves setting the values of the
weights w1, w2, w3, , wn. Although
reconfigurability can be achieved by setting weights of
some synapses to zero value, this would be very
inefficient in hardware.

C) The need for reconfigurable systems Reconfigurability is desirable for several reasons [1]: 1. Providing a general problem-solving environment. 2. Correcting offsets. 3. Ease of testing. 4. Reconfiguration for isolating defects.

III. DESING OF ARITHMETIC UNIT USING

RECONFIGURABLE ANNS In previous paper [12], a neural design for logic
functions by using modular neural networks was
presented. Here, a simple design for the arithmetic
unit using reconfigurable neural networks is presented.
The aim is to have a complete design for ALU by
using the benefits of both modular and reconfigurable
neural networks.

A) Full-Adder/Full-Subtractor Implementation Using

ANN

Full-adder/full-subtractor problem is solved
practically and a neural network is simulated and
implemented using the back-propagation algorithm for the purpose of learning this network [10]. The network
is learned to map the functions of full-adder and full-
subtractor. The problem is to classify the patterns shown in Table 1 correctly.
The computed values of weights and their
corresponding values of resistors are described in Table 2. After completing the design of the network,
simulations are carried out to test both the design and
performance of this network by using H-spice.
Experimental results confirm the proposed theoretical
considerations.
Fig. 4 shows the construction of full-adder/full-
subtractor neural network. The network consists of three neurons and 12-connection weights.

B) 2-Bit Digital Multiplier Implementation 2-bit digital multiplier can be realized easily using the
traditional feed-forward artificial neural network [11].

As shown in Fig. 5, the implementation of 2-bit digital
multiplier using the traditional architecture of a feed-forward artificial neural network requires 4-neurons, 20-synaptic weights in the input-hidden layer, and 4-neurons, 20-synaptic weights in the hidden-output layer. Hence, the total number of neurons is 8-neurons with 40-synaptic weights. In the present work, a new design of 2-bit digital
multiplier has been adopted. The new design requires only 5-neurons with 20-synaptic weights as shown in
Fig. 6. The network receives two digital words, each word has 2-bit, and the output of the network gives the
resulting multiplication. The network is trained by the training set shown in Table 3. During the training
phase, these input/output pairs are fed to the network
and in each iteration; the weights are modified until
reached to the optimal values. The optimal value of
the weights and their corresponding resistance values are shown in Table 4. The proposed circuit has been
realized by hardware means and the results have been
tested using H-spice computer program. Both the
actual and computer results are found to be very close
to the correct results.

C) 2-Bit Digital Divider Implementation 2-bit digital divider can be realized easily using the artificial neural network. As shown in Fig. 7, the implementation of 2-bit digital divider using neural
network requires 4-neurons, 20-synaptic weights in
the input-hidden layer, and 4-neurons, 15-synaptic
weights in the hidden-output layer. Hence, the total number of neurons is 8-neurons with 35-synaptic
weights. The network receives two digital words, each
word has 2-bit, and the output of the network gives
two digital words one for the resulting division and the
other for the resulting remainder. The network is trained by the training set shown in Table 5.
The values of the weights and their corresponding
resistance values are shown in Table 6. The results
have been tested using H-spice computer program.
Computer results are found to be very close to the
correct results.
Arithmetic operations namely, addition, subtraction,
multiplication, and division can be realized easily
using a reconfigurable artificial neural network. The proposed network consists of only 8-neurons, 67-connection weights, and 32-reconfiguration switches.
Fig. 8 shows the block diagram of the arithmetic
operation using reconfigurable neural network. The
network includes full-adder, full-subtractor, 2-bit digital multiplier, and 2-bit digital divider. The
proposed circuit is realized by hardware means and the
results are tested using H-spice computer program.
Both the actual and computer results are found to be
very close to the correct results.
The computed values of weights and their
corresponding values of resistors are described in Tables 2,4,6. After completing the design of the
network, simulations are carried out to test both the
design and performance of this network by using H-

spice. Experimental results confirm the proposed theoretical considerations as shown in Tables 7,8.

VI. CONCLUSION
A new concept for realizing arithmetic unit that
includes full-adder, full-subtractor, 2-bit digital multiplier, and 2-bit digital divider by using analog
reconfigurable artificial neural networks has been
presented. The proposed full-network has been
realized by hardware means and the results have been
tested using H-spice computer program. Both the
actual and computer results are found to be very close
to the correct results.

REFERENCES [1] Srinagesh Satyanarayna, Yannis P. Tsividis, and Hans Peter graf,

“A Reconfigurable VLSI Neural Network,” IEEE Journal of Solid State Circuits, vol. 27, no. 1, January 1992. [2] E. R. Vittos, “Analog VLSI Implementation of Neural
Networks,” in proc. Int. Symp. Circuits Syst. (new Orleans, LA), 1990, pp. 2524-2527. [3] H. P. graf and L. D. Jackel, “Analog Electronic Neural Network
Circuits,” IEEE Circuits Devices Mag., vol. 5, pp. 44-49, July 1989. [4] H. M. EL-Bakry, M. A. Abo-Elsoud, and H. H. Soliman and H.
A. El-Mikati " Design and Implementation of 2-bit Logic functions Using Artificial Neural Networks ," Proc. of the 6th

International Conference on Microelectronics (ICM'96), Cairo, Egypt, 16-18 Dec. , 1996. [5] Simon Haykin, “Neural Network : A comprehensive foundation”, Macmillan college publishing company, 1994. [6] Jack M. Zurada, “Introduction to Artificial Neural Systems,”
West Publishing Company, 1992. [7] C. Mead, and M. Ismail, “Analog VLSI Implementation of Neural Systems,” Kluwer Academic Publishers, USA, 1989 [8] H. M. EL-Bakry, M. A. Abo-Elsoud, and H. H. Soliman and H.
A. El-Mikati " Implementation of 2-bit Logic functions Using
Artificial Neural Networks ," Proc. of the 6th International
Conference on Computer Theory and Applications, Alex., Egypt, 3-5 Sept. , 1996, pp. 283-288. [9] I. S. Han and S. B. Park, “Voltage-Controlled Linear Resistor by
Using two MOS Transistors and its Applications to RC Active
Filter MOS Integration,” Proceedings of the IEEE, Vol.72, No.11, Nov. 1984, pp. 1655-1657. [10] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
Representations by Back-Propagation Error,” Nature, vol.323, pp.533-536,1986. [11] Laurene Fausett, “Fundamentals of Neural Network :
Architectures, Algorithms, and Applications,” Prentice Hall
International. [12] H. M. El-bakry, “Complexity Reduction Using Modular Neural Networks,” Proc. of IEEE IJCNN’03, Portland, Oregon, pp. 2202-2207, July, 20-24, 2003.

Full-

Adder

Full-

Subtractor

I/P

x y z S C D B 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 1 0 1 1 0 0 1 1 0 1 0 1 1

0 0 1 1 1 1 1 0 0 1 0 0 0 0 1 1

Table I
Truth table of full-adder/full-subtractor

-
+

Rn1 Rf
V1p Vo

Ro
Rp1 V1n
Rnn
Rpp

Vnn
Vpp

Fig. 1. Implementation of positive and negative
weights using only one opamp.

 Weight Resistance Weight Resistance Weight Resistance 1 2 3

Bias

 7.5 7.5 7.5

 -10.0

11.8 Ro 11.8 Ro 11.8 Ro 0.1 Rf

15 15

 -10

 -10

6.06 Ro 6.06 Ro 0.1 Rf 0.1 Rf

15 15

 -10

 -10

6.06 Ro 6.06 Ro 0.1 Rf 0.1 Rf

I/P O/P B2 B1 A2 A1 O4 O3 O2 O1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0

0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

Neuron I/P W. Value Resistor (1) A1 B1 Bias 7.5 7.5 -10.0 1200 1200 100 (2) A1 B2 Bias N4 N5 7.5 7.5 -10.0 -30.0 20.0 1450 1450 100 33 618 (3) A2 B2 bias N4 7.5 7.5 -10.0 -10.0 1200 1200 100 100 (4) A1 A2 B1 B2 bias 3.0 3.0 3.0 3.0 -10.0 1200 1200 1200 1200 100 (5) A2 B1 Bias 7.5 7.5 -10.0 1200 1200 100

Table II
 Computed weights and their corresponding resistances of full-adder/full-subtractor

Table III 2-bit digital multiplier training set Table IV
 Weight values and their corresponding resistance values

Neuron (1) Neuron (2) Neuron (3) I / P

×

×

×

X1
X2
Xn

W1
W2

Wn Switches for
Reconfiguration

O/ P
Fig.3. Neuron with reconfigurable switches. Fig.2. Two MOS transistor as a linear resistor.

Vg 2 1

I/P O/P B2 B1 A2 A1 O4 O3 O2 O1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0

1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0

1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0

1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1

Neuron I/P W. Val. Resistor (1) A1 A2 B1 B2 Bias

-17.5 -17.5 5 5 5 56 56 2700 2700 2700 (2) A1 A2 B1 B2 Bias

7.5 7.5 -10 7.5 -17.5 1200 1200 100 1200 56 (3) A1 A2 B2 Bias

7.5 -10 7.5 -10 1200 100 1200 100 (4) A1 A2 B1 B2 Bias

-4.5 7.5 7.5 -4.5 -10 220 1200 1200 220 100 (5) A1 A2 B1 B2 N3 Bias

-20 -30 10 25 -25 17.5 50 33 1200 500 40 700 (6) N1 N3 Bias 10 10 -5 1000 1000 220 (7) N1 N4 Bias 10 10 -5 1000 1000 220 (8) N1 N2 Bias 10 10 -5 1000 1000 220
I/p Neuron(1) Neuron(2) Neuron(3) X Y Z Practical Simulated Practical Simulated Practical Simulated 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

-2.79 -2.73 -2.73 3.46 -2.73 3.46 3.46 3.46
-3.4157 -2.5968 -2.5968 3.3761 -2.5968 3.3761 3.3761 3.4231

-2.79 3.46 3.46 3.46 -2.79 -2.75 -2.75 3.48
-3.4135 3.3741 3.2741 3.4366 -3.4372 -3.3081 -3.3081 3.4120

-2.79 3.46 3.46 -2.75 3.46 -2.75 -2.75 3.48
-3.4135 3.3741 3.3741 -3.3081 3.3741 -3.3081 -3.3081 3.4120

Table VII
Practical and Simulation results after the summing circuit of full-adder/full-subtractor

W2 W7
W3 W1 A1

A2
B1

W5 W9 W4 A1
A2

W6 B1 Wbias1
Wbias2

 W8 B1
Wbias3 1 1 1

S C Full-adder

Full-subtractor Fig. 4. full-adder/full-subtractor implementation. D B
Table V 2-bit digital multiplier training set Table VI

 Weight values and their corresponding resistance values

Neuron (1) Neuron (2) Neuron (3) Neuron (4) Neuron (5) Pract. Sim. Pract. Sim. Pract. Sim. Pract. Sim. Pract. Sim. -2.79 -2.34 -2.79 -2.34 -2.34 3.46 -2.34 3.46 -2.79 -2.34 -2.79 -2.34 -2.34 3.46 -2.34 3.46

-3.415 -2.068 -3.415 -2.068 -2.068 3.390 -2.068 3.390 -3.415 -2.068 -3.415 -2.068 -2.068 3.390 -2.068 3.390

-2.79 -2.72 -2.79 -2.72 -2.79 -2.72 3.45 3.45 -2.72 3.45 -2.72 3.45 -2.72 3.45 3.45 -2.73

-3.409 -2.498 -3.409 -2.498 -3.409 -2.498 3.397 3.424 -2.498 3.373 -2.498 3.373 -2.498 3.373 3.373 -3.398

-2.79 -2.79 -1.63 -1.63 -2.79 -2.79 -1.63 -1.63 -1.63 -1.63 3.45 3.45 -1.63 -1.63 3.45 -2.70

-3.413 -3.314 -1.355 -1.355 -3.413 -3.413 -1.355 -1.355 -1.355 -1.355 3.399 3.399 -1.355 -1.355 3.399 -2.710

-2.79 -2.78 -2.78 -2.78 -2.78 -2.78 -2.78 -2.74 -2.78 -2.78 -2.78 -2.74 -2.78 -2.74 -2.74 1.86

-3.447 -3.438 -3.438 -3.423 -3.438 -3.423 -3.423 -3.384 -3.438 -3.423 -3.423 -3.384 -3.423 -3.384 -3.384 2.519

-2.79 -2.79 -2.34 -2.34 -2.34 -2.34 3.46 3.46 -2.79 -2.79 -2.34 -2.34 -2.34 -2.34 3.46 3.46

-3.415 -3.415 -2.068 -2.068 -2.068 -2.068 3.390 3.390 -3.415 -3.415 -2.068 -2.068 -2.068 -2.068 3.390 3.390

Table VIII
 Practical and Simulation results after the summing circuit of 2-bit digital multiplier

 (1)
 (2) (3)
 (4)
bias
bias
bias
bias

 (5) (6)
 (7)
 (8)
bias
bias
bias
bias

O3 O2 O1

O4
A2 A1
B1
B2

Hidden-Layer Output-Layer

Fig. 5. 2-Bit digital multiplier using
traditional feed-forward neural network Fig. 6. A novel design for2-Bit multiplier

using neural network

 (1)
 (5)
 (4)
bias
bias
bias

 (2)
 (3) bias
bias O3 O2 A2 A1

B1
B2 O4

O1

Fig. 7. 2-Bit digital divider using neural network.

 (1)
 (2) (3)
 (4)
bias
bias
bias
bias

 (5) (6)
 (7)
 (8)
bias
bias
bias
bias

O3 O2 O1
O4

A2 A1
B1
B2

Hidden-Layer Output-Layer A1
A2
B1
B2

Fig. 8. Block diagram of arithmetic unit using reconfigurable neural network.

Full-Adder

Full-
Subtractor 2 Bit Digital
Multiplier

A1
A2
B1
B2

Reconfiguration
switches

O1
O2
O3
O4 2 Bit Digital

Divider

Neurons

I/P Connection
weights Selection

C1 C2 Neurons

