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Abstract—There are some problems in hardware 

implementation of digital combinational circuits. In 
contrast, analog design has the advantages of both 
economy and easy to implement compared with the 
digital design. In this paper, a simple design and 
implementation of analog reconfigurable artificial neural 
network is presented. A novel design of arithmetic unit 
that including full-adder, full-subtractor , 2-bit digital multiplier and 2-bit digital divider is introduced. The 
proposed neural network has been realized by hardware 
components and the results are simulated using H-spice 
program. Practical results confirm the theoretical 
considerations. 

 
I. INTRODUCTION 

dvances in MOS VLSI have made it possible to 
integrate neural networks of large sizes on a 
single-chip [1,2]. Hardware realizations make it 

possible to execute the forward pass operation of 
neural networks at high speeds, thus making neural 
networks possible candidates for real-time 
applications. Other advantages of hardware 
realizations as compared to software implementations 
are the lower per unit cost and small size system.  
Analog circuit techniques provide area-efficient 
implementations of the functions required in a neural 
network, namely, multiplication, summation, and the sigmoid transfer characteristic [3]. In this paper, we 
describe the design of a reconfigurable neural network 
in analog hardware and demonstrate experimentally 
how a reconfigurable artificial neural network 
approach is used in implementation of arithmetic unit 
that including full-adder, full-subtractor, 2-bit digital multiplier, and 2-bit digital divider. 
One of the main reasons for using analog electronics 
to realize network hardware is that simple analog 
circuits (for example adders, sigmoid, and multipliers) 
can realize several of the operations in neural 
networks. Nowadays, there is a growing demand for 
large as well as fast neural processors to provide 
solutions for difficult problems. Designers may use 
either analog or digital technologies to implement 
neural network models. The analog approach boasts 
compactness and high speed. On the other hand,  
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digital implementations offer flexibility and 
adaptability, but only at the expense of speed and 
silicon area consumption.  

 
II.  ANALOG IMPLEMENTATION OF RECONFIGURABLE 

NEURAL NETWORKS 
 
A) Implementation of artificial neuron 

 
Implementation of analog neural networks means that using only analog computation [4,6,8]. Artificial 
neural network as the name indicates, is the 
interconnection of artificial neurons that tend to 
simulate the nervous system of human brain [5]. 
Neural networks are modeled as simple processors 
(neurons) that are connected together via weights. The 
weights can be positive (excitatory) or negative 
(inhibitory). Such weights can be realized by resistors 
as shown in Fig. 1. 
 
The computed weights may have positive or negative 
values. The corresponding resistors that represent these weights can be determined as follow [6]: 

 
win  =  -Rf / Rin                  i = 1, 2, ……, n    (1) 

 
 
 

 (2) 
 

The exact values of these resistors can be calculated as 
presented in [4,8]. The summing circuit accumulates 
all the input-weighted signals and then passes to the output through the transfer function [3]. The main 
problem with the electronic neural networks is the 
realization of resistors which are fixed and have many 
problems in hardware implementation [7]. Such 
resistors are not easily adjustable or controllable. As a 
consequence, they can be used neither for learning, 
nor can they be used for recall when another task 
needs to be solved. So the calculated resistors 
corresponding to the obtainable weights can be 
implemented by using CMOS transistors operating in 
continuous mode (triode region) as shown in Fig. 2. The equivalent resistance between terminal 1 and 2 is 
given by [9]: 

 
Req = 1/[K(Vg – 2Vth)]                   (3) 

 

A 



B) Reconfigurability 

The interconnection of synapses and neurons 
determines the topology of a neural network. 
Reconfigurability is defined as the ability to alter the topology of the neural network [9]. Using switches in 
the interconnections between synapses and neurons 
permits one to change the network topology as shown in Fig.3. These switches are called "reconfiguration 
switches". 
The concept of reconfigurability should not be 
confused with weight programmability. Weight 
programmability is defined as the ability to alter the values of the weights in each synapse. In Fig.3, weight 
programmability involves setting the values of the 
weights w1, w2, w3, . . . . , wn. Although 
reconfigurability can be achieved by setting weights of 
some synapses to zero value, this would be very 
inefficient in hardware. 
 
C) The need for reconfigurable systems Reconfigurability is desirable for several reasons [1]: 1. Providing a general problem-solving environment. 2. Correcting offsets. 3. Ease of testing. 4. Reconfiguration for isolating defects. 
 

III.  DESING OF ARITHMETIC UNIT USING 

RECONFIGURABLE ANNS In previous paper [12], a neural design for logic 
functions by using modular neural networks was 
presented.  Here, a simple design for the arithmetic 
unit using reconfigurable neural networks is presented. 
The aim is to have a complete design for ALU by 
using the benefits of both modular and reconfigurable 
neural networks.  
 
A) Full-Adder/Full-Subtractor Implementation Using 

ANN 

Full-adder/full-subtractor problem is solved 
practically and a neural network is simulated and 
implemented using the back-propagation algorithm for the purpose of learning this network [10]. The network 
is learned to map the functions of full-adder and full-
subtractor. The problem is to classify the patterns shown in Table 1 correctly. 
The computed values of weights and their 
corresponding values of resistors are described in Table 2. After completing the design of the network, 
simulations are carried out to test both the design and 
performance of this network by using H-spice. 
Experimental results confirm the proposed theoretical 
considerations.  
Fig. 4 shows the construction of full-adder/full-
subtractor neural network. The network consists of three neurons and 12-connection weights. 
 
B) 2-Bit Digital Multiplier Implementation 2-bit digital multiplier can be realized easily using the 
traditional feed-forward artificial neural network [11]. 

As shown in Fig. 5, the implementation of 2-bit digital 
multiplier using the traditional architecture of a feed-forward artificial neural network requires 4-neurons, 20-synaptic weights in the input-hidden layer, and 4-neurons, 20-synaptic weights in the hidden-output layer. Hence, the total number of neurons is 8-neurons with 40-synaptic weights. In the present work, a new design of 2-bit digital 
multiplier has been adopted. The new design requires only 5-neurons with 20-synaptic weights as shown in 
Fig. 6. The network receives two digital words, each word has 2-bit, and the output of the network gives the 
resulting multiplication. The network is trained by the training set shown in Table 3. During the training 
phase, these input/output pairs are fed to the network 
and in each iteration; the weights are modified until 
reached to the optimal values. The optimal value of 
the weights and their corresponding resistance values are shown in Table 4. The proposed circuit has been 
realized by hardware means and the results have been 
tested using H-spice computer program. Both the 
actual and computer results are found to be very close 
to the correct results. 

 
C) 2-Bit Digital Divider Implementation 2-bit digital divider can be realized easily using the artificial neural network. As shown in Fig. 7, the implementation of 2-bit digital divider using neural 
network requires 4-neurons, 20-synaptic weights in 
the input-hidden layer, and 4-neurons, 15-synaptic 
weights in the hidden-output layer. Hence, the total number of neurons is 8-neurons with 35-synaptic 
weights. The network receives two digital words, each 
word has 2-bit, and the output of the network gives 
two digital words one for the resulting division and the 
other for the resulting remainder. The network is trained by the training set shown in Table 5.  
The values of the weights and their corresponding 
resistance values are shown in Table 6. The results 
have been tested using H-spice computer program. 
Computer results are found to be very close to the 
correct results.  
Arithmetic operations namely, addition, subtraction, 
multiplication, and division can be realized easily 
using a reconfigurable artificial neural network. The proposed network consists of only 8-neurons, 67-connection weights, and 32-reconfiguration switches. 
Fig. 8 shows the block diagram of the arithmetic 
operation using reconfigurable neural network. The 
network includes full-adder, full-subtractor, 2-bit digital multiplier, and 2-bit digital divider.  The 
proposed circuit is realized by hardware means and the 
results are tested using H-spice computer program. 
Both the actual and computer results are found to be 
very close to the correct results. 
The computed values of weights and their 
corresponding values of resistors are described in Tables 2,4,6. After completing the design of the 
network, simulations are carried out to test both the 
design and performance of this network by using H-



spice. Experimental results confirm the proposed theoretical considerations as shown in Tables 7,8.  
 

VI.  CONCLUSION 
A new concept for realizing arithmetic unit that 
includes full-adder, full-subtractor, 2-bit digital multiplier, and 2-bit digital divider by using analog 
reconfigurable artificial neural networks has been 
presented. The proposed full-network has been 
realized by hardware means and the results have been 
tested using H-spice computer program. Both the 
actual and computer results are found to be very close 
to the correct results. 
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Table I  
Truth table of full-adder/full-subtractor 
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Fig. 1. Implementation of positive and negative 
weights using only one opamp. 



 

 

 

 

 

 

 

 

 

 

 

    

 Weight  Resistance Weight  Resistance Weight  Resistance 1 2 3 

Bias 

 7.5  7.5  7.5 

  -10.0 

11.8 Ro 11.8 Ro 11.8 Ro   0.1 Rf 

15 15 

    -10 

    -10 

6.06 Ro 6.06 Ro 0.1 Rf 0.1 Rf 

15 15 

    -10 

    -10 

6.06 Ro 6.06 Ro 0.1 Rf 0.1 Rf 

       

I/P O/P B2 B1 A2 A1 O4 O3 O2 O1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 

0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 

Neuron I/P W. Value Resistor  (1) A1 B1 Bias    7.5    7.5 -10.0 1200 1200   100   (2) A1 B2 Bias N4 N5    7.5    7.5 -10.0 -30.0  20.0 1450 1450   100     33   618   (3) A2 B2 bias N4    7.5    7.5 -10.0 -10.0 1200 1200   100   100   (4) A1 A2 B1 B2 bias    3.0    3.0    3.0    3.0 -10.0 1200 1200 1200 1200   100  (5) A2 B1 Bias    7.5    7.5 -10.0 1200 1200   100 

Table II  
 Computed weights and their corresponding resistances of full-adder/full-subtractor 

Table III  2-bit digital multiplier training set Table IV 
 Weight values and their corresponding resistance values 

Neuron (1) Neuron (2)  Neuron (3)  I / P 
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Reconfiguration 
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Fig.3. Neuron with reconfigurable switches. Fig.2. Two MOS transistor as a linear resistor. 
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I/P O/P B2 B1 A2 A1 O4 O3 O2 O1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 

1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 0 

1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0 

1 0 0 0 1 1 0 0 1 0 1 0 1 1 1 1 

Neuron I/P W. Val. Resistor   (1) A1 A2 B1 B2 Bias 

-17.5 -17.5 5 5 5 56 56 2700 2700 2700   (2) A1 A2 B1 B2 Bias 

7.5 7.5 -10 7.5 -17.5 1200 1200 100 1200 56  (3) A1 A2 B2 Bias 

7.5 -10 7.5 -10 1200 100 1200 100   (4) A1 A2 B1 B2 Bias 

-4.5 7.5 7.5 -4.5 -10 220 1200 1200 220 100   (5) A1 A2 B1 B2 N3 Bias 

-20 -30 10 25 -25 17.5 50 33 1200 500 40 700  (6) N1 N3 Bias 10 10 -5 1000 1000 220  (7) N1 N4 Bias 10 10 -5 1000 1000 220  (8) N1 N2 Bias 10 10 -5 1000 1000 220 
I/p Neuron(1) Neuron(2) Neuron(3) X  Y  Z Practical Simulated Practical Simulated Practical Simulated 0  0  0 0  0  1 0  1  0 0  1  1 1  0  0 1  0  1 1  1  0 1  1  1 

-2.79 -2.73 -2.73  3.46 -2.73  3.46  3.46  3.46 
-3.4157 -2.5968 -2.5968  3.3761 -2.5968  3.3761  3.3761  3.4231 

-2.79  3.46  3.46  3.46 -2.79 -2.75 -2.75  3.48 
-3.4135  3.3741  3.2741  3.4366 -3.4372 -3.3081 -3.3081  3.4120 

-2.79  3.46  3.46 -2.75  3.46 -2.75 -2.75 3.48 
-3.4135  3.3741  3.3741 -3.3081  3.3741 -3.3081 -3.3081 3.4120 

Table VII 
Practical and Simulation results after the summing circuit of full-adder/full-subtractor 

W2 W7 
W3 W1 A1 

A2 
B1  

W5 W9 W4 A1 
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W6 B1  Wbias1 
Wbias2 

 W8 B1 
Wbias3 1 1 1 

S C Full-adder 

Full-subtractor Fig. 4. full-adder/full-subtractor implementation. D B 
Table V   2-bit digital multiplier training set Table VI 

 Weight values and their corresponding resistance values 



 

 

 
 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Neuron (1) Neuron (2) Neuron (3) Neuron (4) Neuron (5) Pract. Sim. Pract. Sim. Pract. Sim. Pract. Sim. Pract. Sim. -2.79 -2.34 -2.79 -2.34 -2.34  3.46 -2.34  3.46 -2.79 -2.34 -2.79 -2.34 -2.34  3.46 -2.34  3.46 

-3.415 -2.068 -3.415 -2.068 -2.068  3.390 -2.068  3.390 -3.415 -2.068 -3.415 -2.068 -2.068  3.390 -2.068 3.390 

-2.79 -2.72 -2.79 -2.72 -2.79 -2.72  3.45  3.45 -2.72  3.45 -2.72  3.45 -2.72  3.45  3.45 -2.73 

-3.409 -2.498 -3.409 -2.498 -3.409 -2.498  3.397  3.424 -2.498  3.373 -2.498  3.373 -2.498  3.373  3.373 -3.398 

-2.79 -2.79 -1.63 -1.63 -2.79 -2.79 -1.63 -1.63 -1.63 -1.63  3.45  3.45 -1.63 -1.63  3.45 -2.70 

-3.413 -3.314 -1.355 -1.355 -3.413 -3.413 -1.355 -1.355 -1.355 -1.355  3.399  3.399 -1.355 -1.355  3.399 -2.710 

-2.79 -2.78 -2.78 -2.78 -2.78 -2.78 -2.78 -2.74 -2.78 -2.78 -2.78 -2.74 -2.78 -2.74 -2.74  1.86 

-3.447 -3.438 -3.438 -3.423 -3.438 -3.423 -3.423 -3.384 -3.438 -3.423 -3.423 -3.384 -3.423 -3.384 -3.384  2.519 

-2.79 -2.79 -2.34 -2.34 -2.34 -2.34  3.46 3.46 -2.79 -2.79 -2.34 -2.34 -2.34 -2.34  3.46  3.46 

-3.415 -3.415 -2.068 -2.068 -2.068 -2.068  3.390  3.390 -3.415 -3.415 -2.068 -2.068 -2.068 -2.068  3.390  3.390 

Table VIII 
 Practical and Simulation results after the summing circuit of 2-bit digital multiplier 
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Fig. 5. 2-Bit digital multiplier using 
traditional feed-forward neural network Fig. 6.  A novel design for2-Bit multiplier 

using neural network 
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Fig. 7. 2-Bit digital divider using neural network. 
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Fig. 8. Block diagram of arithmetic unit using reconfigurable neural network. 
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