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Abstract—There are some problems in hardware digital implementations offer flexibility —and
implementation of digital combinational circuits. In adaptability, but only at the expense of speed and
contrast, analog design has the advantages of bothsjlicon area consumption.
economy and easy to implement compared with the
digital design. In this paper, a simple design and
implementation of analog reconfigurable artificialneural
network is presented. A novel design of arithmetianit
that including full-adder, full-subtractor , 2-bit digital ) o
multiplier and 2-bit digital divider is introduced. The ALlmplementation of artificial neuron

proposed neural network has been realized by hardwa )
components and the results are simulated using H-se  Implementation of analog neural networks means that

program. Practical results confirm the theoretical using only analog computation [4.,6,8]. Atrtificial
considerations. neural network as the name indicates, is the
interconnection of artificial neurons that tend to

I. INTRODUCTION simulate the nervous system afiman brain [5].

dvances in MOS VLS| have made it possible P&eural networks are modeled as simple processors
integrate neural networks of large sizes on geurons) that are connected together via weigttts.

singlechip [1,2]. Hardware realizations make it weights can be positive (excitatory) or negative

possible to execute the forward pass operation ('@‘hiﬁitory)_. SFl.JCh weights can be realized by resss
neural networks at high speeds, thus making nedigishown in Figl.

networks possible candidates for real-ti
applications.  Other advantages of hardw.
realizations as compared to software implementsiti
are the lower per unit cost and small size system.
Analog circuit techniques provide area-efficient
implementations of the functions required in a aéur
network, namely, multiplication, summation, and the
sigmoid transfer characteristic [3]. In this paper, we wpp =
describe the design of a reconfigurable neural ortw {1 N
in analog hardware and demonstrate experimentally

how a reconfigurable artificial neural networﬁl 4RO R 4 Ro ]
approach is used in implementation of arithmetiit u Rlp R2p

that including full-adder, fulbubtractor, 2-bit digital 2)

multiplier, and 2-bit digital divider. .
One of the main reasons for using analog electsonid'€ €xact values of these resistors can be cascliat

to realize network hardware is that simple anal® esented in4.8]. The summing circuit accumulates

circuits (for example adders, sigmoid, and mulkird) all the ;?.put-k\:ve;lghte.:d sflgnaflls apd tr;en Tphassed_mo t
can realize several of the operations in neuffjtPut through the transfer function [3]. The main
blem with the electronic neural networks is the

networks. Nowadays, there is a growing demand 1P

large as well as fast neural processors to provwghzanon of resistors which are fixed and hawanyn

solutions for difficult problems. Designers may us%ropltcems In htardwgilre d!mpzlebrrentatlo[z].”asauéh
either analog or digital technologies to implemehS'SOrS are not easlly adjustable or contro a

neural network models. The analog approach boa%qgnsequetr;]ce, ghey ca:jn fbe useclil neh|ther fortr:eartnlng,
compactness and high speed. On the other hand, nor can they be used for recall when another tas
needs to be solved. So the calculated resistors

corresponding to the obtainable weights can be
implemented by using CMOS transistors operating in
Manuscript receive®ecember 14, 2008. continuous mode (triode region) as shown in Big.
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B) Reconfigurability As shown in Fig5, the implementation of 2-bit digital

The interconnection of synapses and neur Itiplier using the traditional architecture offeed-
determines the topology of a neural networggrward artificial neural network requires 4-neurons,

Reconfigurability is defined as the ability to altée O-synapt;((:) welghi's n thehltnpu@nddt?n la%’fg‘éa and 4_t .
topology of the neural network [9]. Using switches in neuron:l, _iin?ptlcf We]'jg Sf in the I8 en-outpu
the interconnections between synapses and neur]8?ﬂ%r'40 ence, t'e ota F]ltlm er of neurons is s-neurons
permits one to change the network topology as shz&“ h -S}lnap Ic Wfi'g S- desi £ 2-bit digital

in Fig.3. These switches are called "reconfiguratiofy ¢ present work, a new design ol 2-bit digital
switches". multiplier has be_en adopted._The new design reguire
The concept of reconfigurability should not b%nly 5-neurons with 20-synaptic weights as shown in

confused with weight proorammability. Weiaht ig. 6. The r}etwork receives two digital words, §ach
programmability is gefine% gs the abili)t/y to alt%e word has 2-bit, and the output of the network gives the

values of the weights in each synapse. In Fig.3, weight resulting multiplication. The network is trained the

programmability_involves setting the values of tH&&ning set shown in Table 3. During the training
weights w, W, W w,. Although phase, these input/output pairs are fed to the arktw
’ ’ ’ L . . ) n-

reconfigurability can be achieved by setting wesghtt and in each iteration; the weights are modifiedlunt

some synapses to zero value, this would be v%}? cheq to the Opt”.“a' values. T_he opt!mal value of
inefficient in hardware weights and their corresponding resistanceegalu

are shown in Table 4. The proposed circuit has been
realized by hardware means and the results have bee
tested using H-spice computer program. Both the

Reconfigurability is desirable for several reasons [1]: actual and computer results are found to be versecl
. Providing a general problem-solving environment. tg the correct results.

1

2. Correcting offsets.

3. Ease of testing. C) 2-Bit Digital Divider Implementation
4. Reconfiguration for isolating defects.

C) The need for reconfigurable systems

2-bit digital divider can be realized easily usirtet

artificial neural network. As shown in Fig. 7, the

[1l. DESING OFARITHMETIC UNIT USING implementation of 2-bit digital divider using neural
RECONFIGURABLEANNS network requires 4-neurons, 20-synaptic weights in

In previous paper [12], a neural design for Iogic'[he inputhidden layer, and 4-neurons, 15-synaptic

functions by using modular neural networks Wé(geights in the hidden-output layer. Hence, theltota

presented. Here, a simple design for the aritiomd}fmber of neurons is 8-neurons with 35-synaptic
unit using reconfigurable neural networks is présgn weights. The network receives two digital wordstea

The aim is to have a complete design for ALU %%)rd has 2-bit, and the output of the network gives

using the benefits of both modular and reconfiglera tr? d'%'tal mords Onﬁ. for the rgsgltlng_lgrl]vmon(t\hjvﬂnek .
neural networks. other for the resulting remainder. e network is

trained by the training set shown in Table 5.

The values of the weights and their corresponding
redstance values are shown in Table 6. The results
ANN have been tested using H-spice computer program.
Full-adder/full-subtractor problem is solved Computer results are found to be very close to the
practically and a neural network is simulated ag@rrect results.

implemented using the back-propagation algorithm f8rithmetic operations namely, addition, subtraction
the purpose of learning this network [10]. The network Multiplication, and division can be realized easily
is learned to map the functions of full-adder anli- f using a reconfigurable artificial neural networkieT
subtractor. The problem is to classify the patterpgposed network consists of only 8-neurons, 67-
shown in Table 1 correctly. connection weights, and 32-reconfiguration switches.
The computed values of weights and thefg. 8 shows the block diagram of the arithmetic
corresponding values of resistors are described Opgration using reconfigurable neural network. The
Table 2. After completing the design of the networkpetwork includes full-adder, fulabtractor, 2-bit
simulations are carried out to test both the deaigsh digital multiplier, and 2-bit digital divider. The
performance of this network by usikgspice. Proposed circuit is realized by hardware meanstaed
Experimental results confirm the proposed theaakti¢esults are tested using H-spice computer program.
considerations. Both the actual and computer results are foundeto b
Fig. 4 shows the construction of full-adder/full- very close to the correct results.

subtractor neural network. The network consists bie computed values of weights and their

A) Full-Adder/Full-Subtractor | mplementation Using

three neurons and 12-connection weights. corresponding values of resistors are described in
Tables 2,4,6. After completing the design of the
B) 2-Bit Digital Multiplier Implementation network, simulations are carried out to test bdta t

2-bit digital multiplier can be realized easily ugithe design and performance of this network by using H-

traditional feedforward artificial neural network [11].
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Table | v
Truth table of full-adder/full-subtractor
R¢
Full- Full- W~
/P Adder Subtractor )
Xy z S C D B Vin® 'VX\/ - v
- i + ® Yo
0 0 0 0 0 0 0 Vip W
0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 1 1 1 0 1 0 Rop
1 0 0 0 1 0 1 Vs Wh——
I 0 1 1 0 0 0 ?Ro
1 1 0 1 0 0 0
1 1 1 1 1 1 1 N
Fig. 1. Implementation of positive and negatiy

K weights using only one opamp. /

[}



Table Il

Computed weights and their corresponding resistn€ full-adder/full-subtractor

Neuron (1) Neuron (2) Neuron (3)
I/ P
Weight | Resistance| \Weight | Resistance] Weight | Resistance
1 7.5 11.8 Rq 15 6.06 R, 15 6.06 R,
2 7.5 11.8 Ry 15 6.06 R, 15 6.06 R,
3 7.5 11.8 Ry -10 0.1 R¢ -10 0.1 R¢
Bias -10.0 0.1 R¢ -10 0.1 R¢ -10 0.1 R¢
Table IlI Table IV
2-bit digital multiplier training set Weight values and their corresponding resistaatees
I/P O/P Neuron 1/P W. Value | Resistor
Ay 7.5 1200
Bo [ By | Ay [ Ay | Os | O3 | Oy | O o) B, 7.5 1200
0 0 0 0 0 0 0 0 Bias -10.0 100
0 0 0 1 0 0 0 0 As 7.5 1450
0 0 1 0 0 0 0 0 Ea 75 1450
(2) Bias -10.0 100
0 0 1 1 0 0 0 0 " 300 33
0 1 0 0 0 0 0 0 Ne o0 5
0 1 0 1 0 0 0 1 A2 7.5 1200
0 1 1 0 0 0 1 0 B2 7.5 1200
0 1 1 1 0 0 1 1 (3) bias -10.0 100
1 0 0 0 0 0 0 0 N4 -10.0 100
1 0 0 1 0 0 1 0 Al 3.0 1200
A2 3.0 1200
L 0 L 0 0 L 0 0 (4) B1 3.0 1200
1 0 1 1 0 1 1 0 B2 3.0 1200
1 1 0 0 0 0 0 0 bias -10.0 100
1 1 0 1 0 0 1 1 A2 7.5 1200
1 1 1 0 0 1 1 0 (5) B1 7.5 1200
1 1 1 1 1 0 0 1 Bias -10.0 100
4 N
4 N Xi  —( % —
Vg
W,
1 . —@—
{ W, .
: o/ P
10— o 2 '
- | :
Xn
\___ Fig.2. Two MOS ftransistor as a linear resistor. / % Switches for

Wh' Reconfiguratio

\__Fig.3. Neuron with reconfigurable switches. /




1 Full-subtractor
\_ Fig. 4. full-adder/full-subtractor implementatiory

Table V Table VI
2-bit diaital multiplier trainina se Weight values and their corresponding resistaabges
I/P O/P Neuron I/P W. Val. | Resistor
B, [ B [ A A |04 ] 0;]0;] O e 175 %
0] o] o] o 1 1 1 1 @ gi : e
olofloflz1|loflo|lol]o . — 1200
olo|1flo0o|o0o]of|o]o 5 i 00
o|lo|1|1]|o]o|o]o @ Bies 78 oo
o[ 1|0 ]| o] 1 1 1 1 o gz :1:.’ ilzoZoZ
0 1 0 1 0 0 0 1 Bias -10 100
ol 1| 1fo|o0o]|1|o0o]o0 [y 75 1200
ol 1|1l 1|lolz1]o]o @ = 43 520
1 lolo|lo| 1] 1]1]1 i = i
1 lolo|1|o]o]|1]o 2 Yy 1390
1 lol1|lo|loflo]o]1 ® N > r
1 lol1]|1|1]o0o]o]o o 175 T
1|1 ]lo]o| 1|1 ]|1]1 ® B 2 Py
1 1o | 1|0 o1 1 N 0 1000
11| 1]o0o]o]|1]o0o]1 @ Bias e 220
1 1 1 110001 ® fEs - B
Table VII
Practical and Simulation results after the sumnainguit of full-adder/full-subtractor
I/p Neuron(1) Neuron(2) Neuron(3)

XY Z Practical Simulated Practical Simulated Practical Simulated

000 2.79 -3.4157 2.79 -3.4135 2.79 3.4135

00 1 -2.73 -2.5968 3.46 3.3741 3.46 3.3741

010 -2.73 -2.5968 3.46 3.2741 3.46 3.3741

011 3.46 3.3761 3.46 3.4366 -2.75 -3.3081

100 -2.73 -2.5968 -2.79 -3.4372 3.46 3.3741

101 3.46 3.3761 -2.75 -3.3081 -2.75 -3.3081

110 3.46 3.3761 -2.75 -3.3081 -2.75 -3.3081

111 3.46 3.4231 3.48 3.4120 3.48 3.4120




( Hidden-Layer Output-Layer \ )

Ai o [ A (M -0
A2 02 AZ‘ 02
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B> 04 B, \(? > Oy

bias bias bias
Fig. 5. 2-Bit digital multiplier using Fig. 6. A novel design for2-Bit multiplier
\__traditional feed-forward neuraletwork  J\ using neurahetwork Y,
Table VIII
Practical and Simulation results after the summningpit of 2-bit digital multiplier

Neuron (1) Neuron (2) Neuron (3) Neuron (4) Neuron (5)
Pract. Sim. Pract. Sim. Pract. Sim. Pract. Sim. Pract. Sim.
-2.79 -3.415 -2.79 -3.409 -2.79 -3.413 -2.79 -3.447 -2.79 -3.415
-2.34 -2.068 -2.72 -2.498 -2.79 -3.314 -2.78 -3.438 -2.79 -3.415
-2.79 -3.415 -2.79 -3.409 -1.63 -1.355 -2.78 -3.438 -2.34 -2.068
-2.34 -2.068 -2.72 -2.498 -1.63 -1.355 -2.78 -3.423 -2.34 -2.068
-2.34 -2.068 -2.79 -3.409 -2.79 -3.413 -2.78 -3.438 -2.34 -2.068

3.46 3.390 -2.72 -2.498 -2.79 -3.413 -2.78 -3.423 -2.34 -2.068
-2.34 -2.068 3.45 3.397 -1.63 -1.355 -2.78 -3.423 3.46 3.390

3.46 3.390 3.45 3.424 -1.63 -1.355 -2.74 -3.384 3.46 3.390
-2.79 -3.415 -2.72 -2.498 -1.63 -1.355 -2.78 -3.438 -2.79 -3.415
-2.34 -2.068 3.45 3.373 -1.63 -1.355 -2.78 -3.423 -2.79 -3.415
-2.79 -3.415 -2.72 -2.498 3.45 3.399 -2.78 -3.423 -2.34 -2.068
-2.34 -2.068 3.45 3.373 3.45 3.399 -2.74 -3.384 -2.34 -2.068
-2.34 -2.068 -2.72 -2.498 -1.63 -1.355 -2.78 -3.423 -2.34 -2.068

3.46 3.390 3.45 3.373 -1.63 -1.355 -2.74 -3.384 -2.34 -2.068
-2.34 -2.068 3.45 3.373 3.45 3.399 -2.74 -3.384 3.46 3.390

3.46 3.390 -2.73 -3.398 -2.70 -2.710 1.86 2.519 3.46 3.390
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Fig. 7. 2-Bit digital divider using neuratetwork.
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Fig. 8. Block diagram of arithmetic unit using reconfigbte neural network.

)




