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Stability of Multidimensional Systems
Using Genetic Algorithms

Nikos E. Mastorakis, Ioannis F. Gonos, and M. N. S. Swamy

Abstract—The study of the stability of -dimensional systems is a dif-
ficult one especially when 3. There exist only a few results in the
literature and unfortunately, there does not exist any practical criterion. In
this brief, the stability of an -dimensional system is dealt as a minimiza-
tion problem of the absolute value of its characteristic polynomial over the
boundaries of its variables (i.e., on the unit circles). This minimization
problem is solved by using genetic algorithms (GAs). Using GAs we obtain,
in general, better results than other methods of minimization (numerical
techniques, neural networks, etc.). Numerical examples are presented.

I. INTRODUCTION

In the study of systems theory, stability plays an important role, since
every designed system ought to be stable. A one-dimensional (1-D)
discrete-time system is stable (in the bounded-input–bounded-output
sense) if and only if its characteristic polynomial is devoid of any roots
inside the unit disk and has no multiple roots on the unit circle. In the
system theory literature, this kind of stability is also known as Schur
stability. Also, for practical purposes and applications, there exist many
tests such as Jury’s and Hurwitz’s tests that check the stability without
finding the roots of the characteristic polynomial.

A multidimensional (m-D) linear, shift-invariant, discrete variable
system described by the transfer function

G(z1; . . . ; zm) =
A(z1; . . . ; zm)

B(z1; . . . ; zm)
(1)

and having no nonessential singularity of the second kind [1], [2] is
stable (in the bounded-input–bounded-output sense) if and only if

B(0; . . . ; 0; zm) 6=0; for jzmj�1

B(0; . . . ; 0; zm�1; zm) 6=0; for jzm�1j�1; jzmj=1
...

B(0; z2; . . . ; zm�1; zm) 6=0; for jz2j�1; jz3j=. . .= jzmj=1

B(z1; z2; . . . ; zm) 6=0; for jz1j�1; jz2j=. . .= jzmj=1:
(2)

The above theorem is known as the theorem ofAnderson and Jury[3],
[4]. Unfortunately, for practical purposes (filtering, design ofm-D fil-
ters, etc.,) we need some more practical tests than the above theorem.
In two-dimensional (2-D) systems, a great variety of practical tests
have been produced in the last three decades (Jury’s 2-D test [1], [3],
Schur–Cohn test [1], [3], Inners’ test [5], Zeheb–Walach test [6], [7],
Mastorakis–Barnett test [8], [9], Partial Energies’ test [10], etc.). There
are also a variety of special results and other considerations [11]–[13].

In m-D systems(m > 2), unfortunately, we have a complete lack
of such tests, though we must refer to the contributions of [4]–[7] and
[14]–[22]. Thus, it is difficult to check if a givenm-D polynomial
B(z1; . . . ; zm) corresponds to the characteristic polynomial of a stable
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m-D system whenm > 2. In the sequel, by the term stable or unstable
polynomial, we mean the characteristic polynomial of a stable or un-
stablem-D (linear, shift-invariant, discrete variables) system. An im-
portant result in the stability ofm-D system is given by the following
theorem, known as DeCarlo–Strintzis theorem [1], [3], [14].

DeCarlo–Strintzis Theorem: B(z1; . . . . . . ; zm) is a stable polyno-
mial if and only if

B(z1; 1; . . . ; 1) 6= 0; forjz1j � 1 (3.1)

B(1; z2; 1; . . . ; 1) 6= 0; forjz2j � 1 (3.2)
...

B(1; . . . ; 1; zm) 6= 0; forjzmj � 1 (3.m)

B(z1; . . . ; zm) 6= 0; forjz1j=. . .= jzmj=1 (3.m+1)

and the transfer function for whichB(z1; . . . . . . ; zm) is the denomi-
nator has no nonessential singularity of the second kind.

In this brief, we will assume that the condition of the nonexistence
of nonessential singularities of the second kind is fulfilled. Them

first conditions of DeCarlo–Strintzis theorem actually consist of
m 1-D conditions and are easy to be checked via any 1-D test (for
example, the 1-D Jury test). In order to check the last equation of
the DeCarlo–Strintzis’ theorem, a methodology based on genetic
algorithms (GAs) is proposed here. This methodology is presented in
the next section.

II. GA FOR CHECKING THEm-D SYSTEMS STABILITY

According to the DeCarlo–Strintzis Theorem, the firstm conditions
can be examined via any 1-D test (criterion). If some of these condi-
tions are not satisfied, we easily conclude that the system is unstable,
without examining the last condition (3.m+1). However, if thesem con-
ditions are fulfilled, then condition (3.m+1) is that which will “decide”
the stability. If it is satisfied, then the system is stable; otherwise, it
is unstable. In order to investigate the condition (3.m+1), we consider
the minimum of the functionf , wheref = f(w1; w2; . . . ; wm) =
jB(ejw ; ejw ; . . . ; ejw )j. So, assuming that

M = min f (4)

overwi 0 � wi � 2�, the condition (3.m+1) is equivalent to

M > 0: (5)

If M = 0, the polynomialB(z1; . . . ; zm) is unstable. In general, the
problem in question is how to findM avoiding any “trap” of local
minima. Some of the existing methods of minimum search (numerical
or neural networks’ techniques) usually give only local minima. On
the other hand, GAs can find the global minimumM in many cases,
though such a convergence cannot always be guaranteed.

A brief overview of the theory of GAs is as follows. GAs are search
algorithms, which initially were inspired by the process of natural
genetics (reproduction of an original population, performance of
crossover and mutation, selection of the best). The main idea for an
optimization problem is to start our search not with one initial point,
but with a population of initial points. The2n numbers (parents) of
this initial set (called population, quite analogously to the biological
system) are converted to the binary system. In the sequel, they are
considered as chromosomes (actually sequences of 0 and 1) “Parents”
come to “reproduction” where they interchange parts of their “genetic
material”. This procedure is called crossover. Moreover a very small
probability for a mutation exists. (Mutation is the phenomenon where
quite randomly—with a very small probability though—a 0 becomes
1 or a 1 becomes 0). Assume that every pair of “parents” gives rise to
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k “children.” By the process of reproduction, the population of the
“parents” is enhanced by the “children” and we have an increase in the
original population because new members have been added (parents
always belong to the population considered). The new population
has now2n + kn members. Then, the process ofnatural selection
is applied. According to the concept of natural selection, from the
2n + kn members, only2n survive. These2n members are selected
as the members with the highest values off , if we are attempting to
maximizef (or with the lowest values off , if we are attempting to
minimizef ). By repeated iterations of reproduction (under crossover
and mutation) and natural selection, we can find the minimum (or
maximum) off as the point to which the best values of our population
converge. The termination criterion is fulfilled if the mean value off

in the 2n-members population is no longer improved (maximized or
minimized), or if the number of iterations is greater than the maximum
number of iterationsNmax, which is defined by us. A more detailed
overview of GAs can be found in [23], [24].

In our problem ofm-D systems stability, we wish to minimizef
overw1; w2; . . . ; wm whenwi 2 [0; 2�], i = 1; . . . ;m. To this end,
w1; w2; . . . ; wm are converted to the binary system and are considered
as part of a big chromosome. If we assume that everywi is converted
to a t-bits binary number, we needmt bits for the “chromosome” of
w1; w2; . . . ; wm. Our search starts with a randomly generated popu-
lation of such2n chromosomes. In quite a random manner, this pop-
ulation is split into pairs of parents that will be crossed, i.e., they will
interchange their genetic material (withc crossovers) always under a
small probabilityp for mutation (for examplep = 0:01). By this re-
production, a new population of2n + kn members will be formed,
since each pair of parents give birth tok children. The new popula-
tion is filtered and only the2n better members (here “better” means
the2n lowest values off(w1; w2; . . . ; wn)) are retained in the pop-
ulation, and the others deleted. By repeated iterations of reproduction
(under crossover and mutation) and natural selection, we can find the
minimum off(w1; w2; . . . ; wn), 0 � wi � 2�, i = 1; . . . ;m as the
point to which the best values of our population converge. The termi-
nation criterion is “the mean value off in the population is no longer
improved.” The algorithm is summarized as follows.

STEP A: Find (randomly) the initial population of2n mem-
bers.

STEP B: Split the population (randomly) inton pairs.
STEP C: Makec crossovers and from each pair of parents

takek children. Every bit of every child has a prob-
ability of p for a mutation.

STEP D: Find the new population2n+ 2k (parents+ chil-
dren).

STEP E: From the new population, select the2n members
with the lowest values off .

STEP F: If the absolute value of the difference between the
mean value off in the population of this gener-
ation and the mean value off in the population
of the previous generation is< ", or the number
of iterations is greater than the maximum number
of iterations, say,Nmax, (which is defined by us),
then STOP; otherwise go to STEP C.

No technique or method in the area of global optimization can al-
ways guarantee the convergence to the global minimum. However, in
most cases the evolutionary computation (GA) leads to convergence
to the global minimum, and the strategy of evolutionary computation
has proved to be better than the conventional numerical methods with
regard to the convergence to the global minimum. However, the con-
vergence is slower, but in most cases, we can find the global minimum.

The GA used here is the basic GA, and one can use more sophisti-
cated schemata. In many cases, GAs find the global minimum of the

minimization problem in question, in spite of the fact of its slow-con-
vergence speed. While running the proposed GA, if we find that the
minimum of

f = f(w1; w2; . . . ; wm) = B(ejw ; e
jw

; . . . . . . ; ejw )

is 0, then, the polynomial in question is unstable. However, if we find
that the minimum off is not zero, then we can guarantee that our
polynomial is stable. The reason is that our functionf is a function
of cos(N1

�w1), sin(N1

�w1), cos(N2

�w2), andsin(N2

�w2), where
N1 andN2 are the degrees of the polynomials with respect toz1 and
z2 respectively, and0 � wi � 2�, i = 1, 2.

Hence, taking appropriate equispaced initial population from 0 to
2�, for example,2�N1 points forw1 and2�N2 forw2, we avoid being
trapped in a local minimum.

In our examples, we have usedt from t = 12 up to t = 20. For
examples up to ten variables(m = 10), no convergence problem has
been observed. The convergence is achieved after about 100–350 itera-
tions. The time necessary to run the computer program on a PC Pentium
4 (2.4 GHz) is between 1 to 3 min, which is very satisfactory.

Example 1: Suppose that our 3-D system (without any nonessen-
tial singularity of the second kind), has the following characteristic
polynomial:

B(z1; z2; z3)=0:8z1+1:5z21z2+1:8z32+0:2z3+1:3z2z
2

3+5:6:

Then, the first three conditions, i.e., (3.1)–(3.3) of the DeCarlo–
Strintzis theorem are satisfied forjzij � 1 with i =1, 2, and 3,
respectively, since

B(z1; 1; 1) =1:5z21 + 0:8z1 + 8:9 6= 0

B(1; z2; 1) =1:8z32 + 2:8z2 + 6:6 6= 0

B(1; 1; z3) = 1:3z23 + 0:2z3 + 9:7 6= 0:

So, we have to examine the last equation in the DeCarlo–Strintzis
theorem. To this end, let us considerf = f(w1; w2; . . . ; wm) =
jB(ejw ; ejw ; . . . . . . ; ejw )j. We easily find thatf = Q2

1
+Q2

2
,

where

Q1 =0:8 cos(w1) + 1:5 cos(2w1 + w2) + 1:8 cos(3w2)

+ 0:2 cos(w3) + 1:3 cos(w2 + 2w3) + 5:6

Q2 =0:8 sin(w1) + 1:5 sin(2w1 + w2) + 1:8 sin(3w2)

+ 0:2 sin(w3) + 1:3 sin(w2 + 2w3):

Using now the previously presented GA withn = 5, k = 4, t = 12,
p = 0:01, c = 6, and" = 10�4, we find that the optimum value of
f as well as the mean value off in each generation converges to zero
(see Fig. 1). Therefore, for this exampleM = 0 and the polynomial is
(Schur) unstable.

Example 2: Suppose that our 3-D system (without any nonessen-
tial singularity of the second kind), has the following characteristic
polynomial:

B(z1; z2; z3) = z
2

1 + z
2

2 + z3 � z1z2z3 + 5:

The first three conditions, i.e., (3.1)–(3.3) of the DeCarlo–Strintzis the-
orem are satisfied forjzij � 1 wherei = 1, 2, 3 respectively, since

B(z1; 1; 1) =z
2

1 � z1 + 7 6= 0

B(1; z2; 1) =z
2

2 � z2 + 7 6= 0

B(1; 1; z3) =7 6= 0:

Hence, we have to examine the last equation in the DeCarlo–Strintzis
theorem. As in Example 1, one hasf = Q2

1
+Q2

2
, where

Q1 = cos(2w1) + cos(2w2) + cos(w3)� cos(w1 + w2 + w3) + 5

Q2 = sin(2w1) + sin(2w2) + sin(w3)� sin(w1 + w2 + w3):
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Fig. 1. Convergence of the optimum value ofas well as that of the mean
value of in every generation in Example 1.

Fig. 2. Convergence of the optimum value ofas well as that of the mean
value of in every generation in Example 2.

Using the GA presented here withn = 5, k = 4, t = 12, p = 0:01,
c = 6, and" = 10�4, we obtain that the optimum value off as well as
the mean value off in each generation converges to unity (see Fig. 2).
Therefore, for this exampleM > 0, and the polynomial is (Schur)
stable.

Example 3: Let our five-dimensional system (without any
nonessential singularity of the second kind), has the following
characteristic polynomial:

B(z1; z2; z3; z4; z5) = z
2

1z
3

3 + z
3

3z
2

4 + z
3

1z2z5 + z1z2z3z4z5 + 5:

The first five conditions, i.e., (3.1)–(3.5), of the DeCarlo–Strintzis the-
orem are satisfied forjzij � 1 wherei = 1, 2, 3, 4, and 5, respectively,
because

B(z1; 1; 1; 1; 1) = z
3

1 + z
2

1 + z1 + 7 6= 0

B(1; z2; 1; 1; 1) =2z2 + 8 6= 0

B(1; 1; z3; 1; 1) =2z33 + z3 + 7 6= 0

B(1; 1; 1; z4; 1) = z
2

4 + z4 + 8 6= 0

B(1; 1; 1; 1; z5) = z
3

5 + 2z5 + 7 6= 0:

Fig. 3. Convergence of the optimum value ofas well as that of the mean
value of in every generation in Example 3.

Fig. 4. Convergence of the optimum value ofas well as that of the mean
value of in every generation in Example 4.

So, we have to examine the last equation in the DeCarlo–Strintzis the-
orem. Here,f = Q2

1
+Q2

2
, where

Q1 = cos(2w1 + 3w3) + cos(3w3 + 2w4) + cos(3w3 + w2 + w5)

+ cos(w1 + w2 + w3 + w4 + w5) + 5

Q2 =2cos(2w1) + sin(3w2) + sin(4w3)

� sin(5w5) + 4 sin(w4) + sin(w1 + w2 + w3):

Using now the GA withn = 5, k = 4, t = 12, p = 0:01, c = 6, and
" = 10�4, we obtain that the optimum value off as well as the mean
value off in each generation converges to zero (see Fig. 3). Therefore,
for this exampleM = 0 and the polynomial is (Schur) unstable.

Example 4: Let our 2-D system (without any nonessential singu-
larity of the second kind), has the following characteristic polynomial
[26]:

B(z1; z2) = 6:5 + z2 + 0:4z22 + 0:4z1 + 0:8z1z2

�0:5z1z
2

2 + 0:2z21 � z
2

1z2 + z
2

1z
2

2 :
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The first two conditions, i.e., (3.1), (3.2) of the DeCarlo–Strintzis the-
orem are satisfied forjzij � 1 wherei = 1, 2 respectively, since

B(z1; 1) =0:2z21 + 0:7z1 + 7:9 6= 0

B(1; z2) = � 0:1z22 + 1:8z2 + 7:1 6= 0:

So, we have to examine the last equation in the DeCarlo–Strintzis the-
orem. As in Example 1, one hasf = Q2

1
+Q2

2
, where

Q1 = cos(w2) + 0:4 cos(2w2) + 0:4 cos(w1)

+ 0:8 cos(w1 + w2)� 0:5 cos(w1 + 2w2)

+ 0:2 cos(2w1)� cos(2w1 + w2)

+ cos(2w1 + 2w2) + 6:5

Q2 = sin(w2) + 0:4 sin(2w2) + 0:4 sin(w1)

+ 0:8 sin(w1 + w2)� 0:5 sin(w1 + 2w2)

+ 0:2 sin(2w1)� sin(2w1 + w2) + sin(2w1 + 2w2):

Using the GA presented here withn = 20, k = 4, t = 16, p = 0:1,
c = 6, and" = 10�4, we obtain that the optimum value off as well
as the mean value off in each generation converges to 3 (see Fig. 4).
Therefore, for this example,M > 0, and the polynomial is (Schur)
stable. The stability of this example has also been shown in [26].

III. CONCLUSION

It has been shown that GAs could prove to be a new useful tool for
checking the stability of m-D(m � 3) systems. First, them-D sta-
bility problem is reduced to an appropriate minimization problem by
using the last condition of the DeCarlo–Strintzis theorem. Then, this
minimization problem of the absolute value of its characteristic poly-
nomial over the boundaries of its variables (i.e., on them unit circles)
can be tackled using GAs. The GA presented in this brief is the basic
one, and we can use far more sophisticated schemata. In most cases the
GAs find the global minimum of the minimization problem in question,
in spite of its slow speed of convergence. Investigation of the concepts
such as them-D stability threshold or stability margin is left for fu-
ture research. Furthermore, the present method can be improved if we
use some heuristic techniques or other sophisticated techniques like the
method ofvariant mutation, zooming, etc [25].
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