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Abstract—In this paper, we present a new design method for a
class of two-dimensional (2-D) recursive digital filters using an evo-
lutionary computational system. The design of the 2-D filter is re-
duced to a constrained minimization problem the solution of which
is achieved by the convergence of an appropriate evolutionary algo-
rithm. In our approach, the genotypes of potential solutions have a
uniform probability within the region of the search space specified
by the constraints and zero probability outside this region. This ap-
proach is particularly effective as the evolutionary search considers
only those potential solutions that respect the constraints. We use
the computer language GENETICA, which provides the expressive
power necessary to get an accurate problem formulation and sup-
ports an adjustable evolutionary computational system. Results of
this procedure are illustrated by a numerical example, and com-
pared with those of some previous designs.

Index Terms—Constrained optimization, evolutionary computa-
tional system, two-dimensional (2-D) recursive filters, 2-D systems.

I. INTRODUCTION

I N RECENT years, the field of two-dimensional (2-D) dig-
ital signal processing has been growing rapidly. Processing

of medical pictures, satellite photographs, radar and sonar
maps, seismic data mappings, gravity waves data, magnetic
records are some good examples, where 2-D signal processing
is needed. An overview of 2-D signal processing is given
in [1], [3]. In these applications, the design of 2-D filters
plays a central role. This design is based on two different
methodologies, one based on an appropriate transformation of a
one-dimensional (1-D) filter [1]–[3], and the other based on ap-
propriate optimization techniques such as linear programming,
Remez exchange algorithm, nonlinear programming: gradient
methods, direct search methods, Newton and Gauss–Newton
Methods, Fletcher–Powell, and conjugate gradient [1], [4]–[9].

However, most of the existing methodologies (algorithms)
[2]–[9] may result in an unstable filter. Some sophisticated
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“recipes” have been adopted in order to resolve all these in-
stability problems, but the outcome is likely to be a system
that has a very small stability margin and hence, not of much
practical importance [10], [11].

Stability conditions, represented as numerical constraints
place certain bounds for the potential solutions to be within
specific region of the search space, referred to as the “stability
region”. Considering potential solutions outside the stability
region reduces the effectiveness of the evolutionary search
even if a hard fitness-penalty is used for such solutions [11].
However, a conventional genetic algorithm cannot restrict the
search within the stability region, because this region cannot be
defined to be closed with respect to the genetic operations.

The computer language GENETICA [12], [13], which we use
for our application, provides the expressive power required to
achieve an accurate problem formulation that specifies potential
solutions having uniform probability within the stability region.
Given this formulation, a focused search is performed via an
evolutionary computational system, which is incorporated in to
the GENETICA’s programming environment.

II. DESIGN OF 2-D RECURSIVE FILTERS

The design task of 2-D recursive filters amounts to finding
a transfer function as in (1) such that the function

approximates the desired am-
plitude response , where the frequencies

and .
For design purposes, the function is equivalent to

a class of nonsymmetric half-plane (NSHP) filters, whose 2-D
transfer function is given by

(1)

This approximation can be achieved by minimizing [10], [11]

(2)

where and is a positive
integer (usually or ).

Hence, the aim is to minimize the difference between the ac-
tual and the desired amplitude response of the filter at
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points. Since we are dealing with first-degree factors in the de-
nominator, it is known that the stability conditions are given by
[1], [2]

(3)

where is given positive integer.
Thus, the design of 2-D recursive filters is equivalent to the

following constrained minimization problem:

(4)

subject to the conditions given by (3), where is a positive in-
teger (usually or ), and and are given positive
integers.

III. PROBLEM FORMULATION

For purposes of illustration, without loss of generality, we
consider the case of . Then, given by (1) may
be written as (5) shown at the bottom of the page.

In compact form, may be written as

(6)

where

(7)

and

(8)

Furthermore, we proceed with the design of the 2-D recursive
filter given by (1) for the case , as presented in (5). Let
the desired amplitude response be given by

if
if
otherwise

(9)

IV. PROBLEM SOLUTION

The aforementioned problem has been tackled by using
neural networks [10] or a genetic algorithm [11]. The

TABLE I
RESULTS AND COMPARISON

Fig. 1. Tetrahedron that represents the “stability region” in the state space of
variables b ; c ; d ; (k = 1; 2) defined on the axes B, C, and D, respectively.

problem-solving application presented here is developed
in the computer language GENETICA [12], [13], which is
integrated in a programming environment that includes an evo-
lutionary computational system. Given a GENETICA program
that includes nondeterministic elementary decisions, such as
the definition of values ranging within specific intervals, the
computational system evolves these decisions with respect to
either confirmation or optimization goals formulated in the
program. As a consequence, no genetic algorithm needs to
be developed, while all of the GENETICA’s computational
parameters are available.

In our case, the problem is to minimize by defining the
values ,
which range in the real interval , as it is shown in [10],
[11] Table I, under the constraints and

.
Consider the values defined on the axes

respectively (Fig. 1). The constraints define the vector
within the tetrahedron having vertices

(5)
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Fig. 2. Visualization of the evolutionary process minimizing the sum of absolute differences in 1018 computational cycles (p = 1).

. In our application, the
vector resulting from any genetic operation has a
uniform probability density within the tetrahedron and zero
probability outside. This makes the evolutionary search very
effective, as only unbiased potential solutions satisfying the
constraints are considered.

The aforementioned probability density specifications can be
achieved if the probability densities of the values sat-
isfy the following conditions.

• The probability density of the value is proportional to
the area of the section of the tetrahedron at a level parallel
to the axes and , at the point (Fig. 1, dashed
line).

• The values and constitute respectively the and
coordinates of a point having uniform probability density
within the section.

The procedure defining the values and with respect
to the above conditions is as follows.

1) Define according to the probability density ,
where while is the area of the section
of the tetrahedron at a level parallel to the axes and at
the point and ct is a normalization constant such
that .

2) Calculate the dimensions and of the section at the
point (Fig. 1).

3) Define and according to uniform probability densities
in the intervals and respectively

4) Calculate and , as the and coordinates respec-
tively of the point , which is defined in the coordi-
nate system of the section (i.e., the system having axes
according to the sides marked by and respectively
in Fig. 1).

GENETICA includes an atomic formula that allows a random
selection within a real interval, according to a scalar proba-
bility density function represented as a list of real numbers (see
GENETICA Documentation.PDF in [12]: atomic formula ipd).
We can easily formulate an arbitrarily detailed approximation of

as a scalar function by dividing the interval in
equal subintervals and calculating the area of the section of the
tetrahedron at the midpoint of each subinterval. This is done in
a preprocessing phase; then the list-approximation of can
be used in the main application, which consists of a GENETICA
program. The outline of the program is given below.

1) Define having uniform
probability density in the real interval .

2) Define and according to the procedure
described before (Steps a to d).

3) Calculate and define as the fitness value (this
definition of fitness turns the problem to a maximization
one—which satisfies GENETICA’s optimization conven-
tions—while assures a nonzero denominator).

GENETICA’s computational system evolves the random de-
cisions realized in both Step 1 of the main application and Steps
a and c of the procedure defining the values and .

V. VISUALIZATION OF EVOLUTIONARY PROCESS

GENETICA’s computational system evolves a population of
“species” of potential solutions, while allows a visualization of
the evolutionary process. A “species,” which represents a set of
identical genotypes, consists of a single genotype representing
the generic element of the set and a number indicating the size
of the set. If a genotype identical to an existing one is produced,
then the new genotype is not introduced in the population. In-
stead, the size of the “species” of the existing genotype is in-
creased by one. As a consequence, the population does not in-
clude different copies of identical genotypes.

Consider the bottom and the left edges of the textured area
presented in Figs. 2 and 3 as the horizontal and vertical axes, re-
spectively. The horizontal axis represents time in computational
cycles, whereas the vertical axis represents the following three
properties of the search state:

1) “Species” evolution, where “species” are represented by
grayscale zones ordered by fitness, with the best fitness
“species” at the top of the diagram. The thickness of the
zones represents relative sizes of “species”. Critical inno-
vations (i.e., new best-fitness “species”) emerge at the top
of the diagram, while extinction takes place at the bottom
of the diagram.

2) The best fitness encountered within each computational
cycle is represented by a black line.

3) The ratio of the tests (i.e., fitness evaluations for different
genotypes) that introduce new “species” in the population
to all the tests performed during a computational cycle is
represented by a gray line.



GONOS et al.: EVOLUTIONARY DESIGN OF 2-DIMENSIONAL RECURSIVE FILTERS 257

Fig. 3. Visualization of the evolutionary process minimizing the sum of square differences in 3016 computational cycles (p = 2).

Fig. 4. Desired amplitude response.

Sometimes, during the evolutionary process, best fitness
values are temporarily stabilized in mediocre optima, as the
population is trapped in isolated basins of the search space
surrounded by lower fitness barriers. When mutant genotypes
break these barriers jumping into a higher fitness basin, their
offspring spreads searching for the new basin’s optimum. In
these cases best fitness values are rapidly increased, while new
“species” are massively introduced in the population as the
latter invades in the new basin.

VI. RESULTS

In our application, we have calculated by setting
in (2). Three different search procedures have

been performed for and , respectively. For each
search procedure we have used a population of 100 genotypes.
Each computational cycle included 20 tests, i.e., application
of genetic operations on 20 genotypes and substitution of
worse-fitness genotypes of the population with better-fitness
mutant genotypes. Best results are obtained for and in
1018 and 3016 computational cycles respectively (Figs. 2 and
3). The former search procedure took 5 min, while the latter
15 min, on a 2400-MHz Celeron CPU.

Results of the aforementioned search procedures are pre-
sented in Table I in comparison with results given by other
methods. The last four rows of Table I present the values, re-
spective to each column, calculated with different exponents
(2). We use the notation to denote the value of calculated
with exponent .

Fig. 4 shows the graphic representation of the desired am-
plitude response (9) in the domain , while

Fig. 5. GENETICA’s results for p = 1.

Fig. 6. GENETICA’s results for p = 2.

Fig. 7. Results using neural networks [10].

Figs. 5–8 show the graphic representation of (6) resulting from
the coefficient values presented in the respective column of
Table I.
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Fig. 8. Results using genetic algorithm [11].

VII. CONCLUSION

In this study, the design of a class of 2-D recursive filters is
attempted by using an appropriate evolutionary computational
scheme. The key-feature of this scheme is that genotypes’ evo-
lution is restricted in the “stability region,” i.e., the region of
the search space specified by the stability constraints: mutant
genotypes have uniform probability within the stability region
and zero probability outside. This approach gives better results
than a genetic algorithm that uses fitness penalties for genotypes
being outside the stability region.

Restricted evolution requires a sophisticated problem for-
mulation, which a conventional genetic algorithm is hard to
reach. This formulation was easily achieved via the computer
language GENETICA, which provides the required expressive
sufficiency. No application-specific genetic algorithm needed
to be developed as the computational process was performed
via the computational system integrated within GENETICA’s
programming environment.
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