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Spectral Transformations for Two-Dimensional
Filters via FFT

Nikos E. MastorakisSenior Member, IEEEgnd M. N. S. SwamyLife Fellow, IEEE

Abstract—in this paper, a new fast algorithm for spectral trans- A good many efficient techniques and fast algorithms for 1-D
formations for two-dimensional digital filters is presented. The al- polynomial, and 1-D rational transformations of 1-D aneD
gorithm is based on the use of the_fast _Fouriertransform. The com- holynomials have been proposed lately. In [4]-[13], the bilinear
putational complexity of this algorithm is evaluated. The simplicity 5, ye|ated transformations are carried out by using appropriate
and efficiency of the algorithm is illustrated by a numerical ex- . o )
ample. matrix muIt|pI|ca_t|(_)ns. In_ [14], the same trg_nsformatlons are

used in the multidimensional systems stability. In [15], a pro-
cedure for transforming a rational function to another rational
function under an arbitrary rational transformation via appro-
priate matrix multiplication is outlined. In [16], the matrix mul-
|. INTRODUCTION tiplication technique for bilinear transformation of multivariable

T WO-DIMENSIONAL (2-D) digital filters have found nu- polynomials is developed as an extension of the corresponding

. s N Aiqit-D technique. In [17], the same technique is applied for the
merous applications within the vast context of 2-D dlgltalriscrete system stability. In [18], an efficient algorithm for bi-

signal processing. In the area of real-time image processing. ik ar transformation of multivariable polynomials is given. In
example, they are used for the enhancement of X-ray imag

blood cell vsis. th hv ult dech h ], the bilinear transformation is extended to transform mul-
ood celtanalysis, thermography, ultrasound echography, Cofllz e polynomials, using discrete convolution and the Kro-

puterized tomography, moving-objects recognition, underwatgs .o product. In [20], some properties of the matrix associated
acoustics, remote-sensing, and robotics. Several implemenign ihe pilinear transformation are given. In [21], properties of
tion algorithms for 2-D digital filters have been widely reporteghe same matrix in the multidimensional case are discussed. In
[1]-{3]. Most of these algorithms are based on proper (2-D) 2] the structure of the transformation matrix for the general
tional (also called spectral) transformations. These transforngtinear transformation is examined. A new transformation ma-
tions are useful for designing low-pass, high-pass, band-pags, technique for bilinear transformation is proposed in [23],
and multiple passband filters. The bilinear transformation iS\/@h”e in [24] properties of the known transformation matrix are
special case of the 1-D rational transformation. This transfgsresented. In [25]-[30], in order to achieve the desired transfor-
mation appears to have a long list of references in the recemition the method of the synthetic division is used. In [31], a
literature [5]-[10]. closed form relationship for the multiple bilinear transformation
It is well known that a linear shift-invariant causal singleis used by Erfani, Ahmadi, and Ramachandran.

input single-output (SISO) 2-D system can be described by theln [32]-[36], one can find very important applications
transfer function of several rational transformations. In [37], a very efficient
O(s1, 52) algorithm based on the well-known Horner's form is proposed
-1 = (1) by Waggener. This is a simple recursive algorithm first for
F(sy, 52) bilinear transformation and secondly for other single-variable
whereQ(s1, s2) andF (s, s;) are coprime polynomials in the rational transformations. Heinen and Siddique extended this
independent complex variables and s,. As a unifying ap- technique for any arbitrary 1-D rational transformation [38].

proach, the variables, and s, are used for the continuous adone should note that several authors use the term “polynomial
well as for the discrete 2-D case. A transformatibis a map- transformation” instead of the term rational transformation. In

ping: C? — C2 with s, = G1(21,22), 52 = Ga(z1, 22). Ob- [40], fast multivariable bilinear and Hadamard transforms are

Index Terms—Discrete transforms, fast Fourier transforms,
spectral transformation, two-dimensional filters.

G(Sl, 82) =

viously the problem of transformation of the rational functioR"¢Sented. , ,
(1) is reduced to transforming the polynomials. , s») and In [41], an algorithm for any (2-D) spectral transformation of

F(s1,s2). Henceforth, we deal only with the 2-D rational trans2 D filters [1}-{3], [39], which is based on the technique of [37]

. i . and [38], is presented.
formation of the 2-D polynomial(sy, s2). In the present paper, a new algorithm for the same problem is

proposed. The algorithm is based on the discrete Fourier trans-
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tional functions is known [45]. So, in the present paper the ulds easy to verify thaB(z, zo) = R (21, 22) RY? (21, 7).

of DFT is proposed in order to find a new efficient algorithm for In order to computei(z1, z2), B(z, 22), we consider a 2-D
spectral transformations for 2-D filters. The original polynomiadiscrete Fourier transform ét; + 1) x (r» + 1) equispaced
under the transformatidfi(s; = G (%1, 22), s2 = G2(z1, #2)), points on the unit 2-D disk wherg = (N, + No)M;, 70 =
G1and7 being rational functions ifzy, z), is transformed to (V; + N,)M,. So, we define

the rational function A(z1, 22)/B(21, 22)). In Section I, the

Horner's formula for a 2-D polynomial is described. In Section wy = e/ (A (11)
11, the algorithm is fully presented. In Section 1V, the computaand
tional complexity of the presented algorithms is evaluated. Fi- wy = 2/ (r2+1) (12)

nally, Section V contains some concluding remarks.
The 2-D DFT for the double sequences of the coeffi-
cients a(i1,i2) and b(ii,i2), in (9) and (10), where
71,42 = 0,...,7r2 is defined as follows:

Il. THE HORNER S FORM FOR2-D POLYNOMIALS

In what follows, it is necessary to describe the Horner’s foft =0,
mula for 2-D Polynomials [41]. To this end, consider the poly-

nomial F(sy,s2) = SN0 f(ir,i2)st s . This poly- b(ky, ko) = Z Z i1, i )wit ik (13)
nomial can be evaluated using the following 2-D Horner’s form 11—0 22_0
FED(s) = FO=D(s1) sy + f(Ny — k, Ny — 1), a(ky, k2) = Z Z aiy, ig)wi M wike, (14)
kzl,...,Nl (2) 11=0142=0
with the initial conditionF®9(s;) = f(N1, No — ) and S0, bk, k2), a(ky, k2) can be considered as the polynomial
D) S (Vo) values of B(z1,22) and A(z1,22) at the equally spaced
Y (s1,82) = FV ) (s1,82) - 2+ P00V (s, 82), points z; = w"', 2z, = wh? on the unit 2-D disc, where
l=1,....Ny (3 ki = 0,...,71,k2 = 0,...,72. So, the polynomial values

. ) b(k1, k2) are found as follows:
with the initial condition £ (s, s,) = FO9 (s, s5). In (k. k)

(2), k is the step of the iteration andis simply a parameter
(I =0,1,...,N2) while in (3), 1 is the step of the iteration.
Fina“y, F(Sl, 82) = F(Nz)(sb 82).

b(k1, k) = Ry (21, 22)RY? (21, 22) (15.1)

oL k2
ZI=W 22 =W,

while the coefficient$(i; , i) are evaluated via the inverse 2-D

FFT as follows:

I1l. SPECTRAL TRANSFORMATIONS FOR2-D HLTERS

Consider the 2-D polynomial bliv, i bk, ko )wy MRy 2Rz
poly (t1,12) = 71+1 72+1kz_:0k22_:0 1, k2)
My . (15.2)
F(s1,52) Z Z Fliryi)sh' s 4)  Therefore, the polynomiaB(z;, z;) has been computed. Fur-
71=0i>=0 thermore, the polynomial valuégk; , k-) are found by the for-
Under the transformation mula
Pi(z1,22) .
S1 = Gl(zlsz) = 31(21722) (5) a(kl,kg) = B(Zl,ZQ)| 1 7~2_w Z Z f Ll, L2
PQ(ZI 242) 11—0 12—0
Rl(zlsz) RQ(Zlsz) Ky ko
where s=wil s =w,
My M, or equivalently
i (21, 22) Z ZP; i1,42)73 25, j=12 (7)
q 1=072=0 a(ky, k2) = bk, k) - Z Z S (i1, i2)
an M, M, ‘ 11=0142=0 ‘
ez =D Y riliviatzy, =12 @) (Pl (D) " (16.1)
i1=0is=0 Ry (21, 22) Ry (21, 22) T .
Z1=Wy 22 =W,

where ' = F'(sy,s2) is transformed to the rational function

(A(z1,22)/B(z1,22)). Suppose that where Horner’s formula for 2-D polynomials should be used.

Using, now, an inverse 2-D FFT, the coefficients; , i) are

(N1+N2)My (N14+Ng) M,

Az, 20) = Z aliy ig)2it 22
il =0 iz =0
(]\r1+1\ )]\41 (]\r1+1\r2)]\42 ) )
B(z1,22) = > blinia)2tag.

41 =0 io =0

(10)

evaluated as follows:

©)

Z1k1 Z2k2

> altsibau

k1=0 k=0

aliny o) = ! +1 T2 +1

(16.2)
Therefore, the polynomial(zy, 22) has been found.
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Remark: In order to transform a given rational functionApplying (double) inverse DFT we find the double sequence
G(s1,s2) = (Q(s1,s2)/F(s1,s2)) under the transformation

of (5) and (6), the previously developed procedure is applied {{1.21348, —0.528 443, —0.326 097}
for Q(s1, s2) andF'(s1, s2) separately. Both these polynomials {—0.528443,0.446 268,0.388 004 }
are transformed using the above algorithm where we are not {-0.326 097, 0.388 004, —0.100 284} }

interested in the common resultant denominaf{iz, 22 ),
but only for the different resultant numeratats (21, 22) and  which corresponds to the polynomial of the denominator of the

Ag(z1, 22). _ o _ new transfer function.
~ Example: Consider the 2-D digital filter with transfer func- 5o, the resultant digital filter is described by the transfer func-
tion [2], [39] and [41]: tion shown at the bottom of the page. This is a typical transfor-
F(Z 7 mation of a high-pass 2-D digital filter [2].
H(Zy, 25) = T2 22)
FQ(Z17 ZQ)
IV. COMPUTATIONAL COMPLEXITY
[1 7 ] 1 —0.046 68 1
050944 U1 -0.04668 —0.46761| | Z, | A. For FindingB(z1,22)
=0.5 1z 1 0.426 02 1] Using the 2-D Horners formula, for finding
U10.42602 —0.10692 | | Z, Ry(z1,22), MiM> + M; + M, complex multiplications and
. . MM, + My + M, complex additions are needed. Also, for
Under the spectral (rational) transformation finding Ra(z1, 72), we needM; M, + My + M, complex
7 —0.2612 + 0.26122; + 0.261229 + 2120 multiplications and complex additions. So, in (15.1) there
YT 140.26122, + 0.261225 — 0.26122) 2 exists a cost of2(M:1 Mz + My + Mz) + N1 + N2 — 1
7 0.7154 — 0.71542; — 0.715429 + 2122 complex multiplications as well as a cost of
* T 1-0.7154z, — 0.715425 + 0.7154z, 29 2(MM> + My + M) complex additions. Since

o : r1 + 1)(r2 + 1) number of equation (15.1) are required, i.e.,
ne sove vt o s storned i anaer el LR ot
for the polynomial cf:‘ptze numeratopr di(Z,, Zy) for 21 = ally (N1 + N2)My + 1)((M + No)Mo + D(MM +
ej%(n/g? 7y 27m/3) 5 — 0.1.9 and ﬂll’ 2 0.1 248; My + M) + Ny + N, — 1) complex multiplications as well as
yR2 = ) = Ui = U l, = ’
we find the following values that form a double sequence 2((N1+ No)My + 1)((Ny + No) Mz + 1) (My Mo + My + M)
complex additions.

{{0.157584,0.459 614 + 0.116 3355,0.459 614 — 0.116335;} ~ Equation (15.2) require§l/4)(r1 + 1)(r2 + 1)logy(r1 +
{0.459614 + 0.1163357,3.290 08 — 1.527515,0.509692)  1)108:(r2 + 1) complex multiplications, i.e.(1/4)((Ny +

NoM;, + D((Ny + N2)My + Dlogy((Ny + No)M; +
{0.459614 — 0.116 3354, 0.509 692, 3.290 08 + 1.527 515} }. 1)21)0g21((N1 J)F(SV;)MQJF%' 2 + 1)logy((M 2)M

Applying (double) inverse DFT, we find the double sequenceB. For Finding A(z1, 22)

{{1.066 18, —0.625 201, —0.082 038 2} In (16.1), using the 2-D Horner's formula, for finding
{—0.625201,0.0018205,0.589 87} Pi(z1,22) we need MM, + M; + M, complex mul-
{—0.0820382,0.58987, —0.675675}} tiplications and MM, + M; + M, complex additions.

Also, for finding Ps(z1,22) we needM; M, + My + M
which corresponds to the polynomial of the numerator @omplex multiplications anddf, M, + M; + M, com-
the new transfer function. We then apply the same procedyiex additions. Note thatR;(z;,z2) and Ra(z,z) are
for the polynomial of the denominator off(Z,Z>) for already known from the computation in (15.1). Addition-
21 = eI20/3) gy = 12/ = 0,1,2andm = 0,1,2. ally in (16.1) we need 2 complex divisions. So, we need
So, we find again the following values: 2(M; My + M; + M>) + 2 CMADs (complex multiplications
and divisions). Applying the usual 2-D Horner’s formula, one

{{0.626 389, 0.225 212 + 0.298 0925,0.225 212 — 0.298 092; } finds (N1 Na + N1 + No) + 2(M M + My, + Mo +1) + 1

{0.225212 + 0.298 0924, 2.671 03 — 0.82385, 2.026} CMAD’s and (N1 Na + N1 + Na) + 2(My My + My + Mp)
{0.225212 — 0.298 0924, 2.026, 2.671 03 + 0.8238;} }. complex additions.
1.06618  —0.625201 —0.08203827 [ 1
[1 2 27]| —0.625201 0.0018205  0.58987 2
—0.0820382  0.58987  —0.675675 | | 22

H(Zl, ZQ) =0.59944
1.21348  —0.528443 —0.326 097 1

[1 21 2%]|—0.528443 0.446 268 0.388 004 Z2
—0.326097 0.388004 —0.100284 23
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(16.1) are required, i.e.,

((Nl + NQ)Ml + 1)((N1 + NQ)MQ + 1), the total cost

(8]

is finally ((N1 4+ No)My + 1)((N1 + No)My + 1)((N1 N2 +
N+ NQ) + 2(M1M2 + My + Ms + 1) + 1) CMAD'’s as well
as((N1 + No)Mi + 1)((N1 + No)Ma + 1)((N1 N2 + Ny +
No) + 2(My My + M, + M,)) complex additions.

Equation (16.2) require6l/4)(r1 + 1)(r2 + 1)logy(r1 +
1)log,(r2 + 1) complex multiplications, i.e.(1/4)((N; +
NQ)Ml + 1)((N1 + NQ)MQ + 1)10%2((1\71 + NQ)Ml +
1)logy((Ny + No)Mo + 1).

The conclusion is that our method requir€52(N; +
N>)2MEM3) CMAD’s with respect toMy, M, (this is the

evaluated complexity ifV;, N, are considered constant and

M, M, variable) as well agO((N; + N»)2N; NoM; M,)

CMAD’s with respect to Ny, N> (this is the evaluated

complexity if M, Ms are considered constant and,, N
variable). Also our method require®((N; + No)>MEM3)

complex additions with respect tdi;, M, as well as
O((Ny + N2)?N; N, M; M) complex additions with respect
to N1, N2. Note that each complex multiplication is imple- [

9]

(20]

[12]

(23]

(14]

(15]

[16]

mented by four real multiplications and two real additions whiley; g

each complex addition is implemented by two real additions.

So, the present method seems to be better than th

f‘ltg] s

of [41], where we had(1/10)MZM3N,O(N?) MAD’s
(and equal number of additions) with respect A6 and

(1.5/10)M2MZ0O(N3) MAD’s (and equal number of addi-

tions) with respect taV, as well asO (MEMQQ[(NEN2/1O) +
(BNEN2/10) + (BNPNZ/2) + (BNINE/2) + (3NNE/A)
(33 /20)+(NE/4)+ Ni+ (3NENG /2)+ N Ng-+ (N3 /4]
with respect tald;, Ms.

V. CONCLUSION

(20]

(21]

(22]

(23]

[24]

The algorithm presented in this paper speeds up the various
2-D rational transformations. These rational transformations are
of great interest in the area of 2-D digital filters analysis and?®
synthesis as well as in the area of 2-D signal processing. An imzg]
portant example is the double bilinear transformation via which

a discrete 2-D system is transformed to a continuous one a

e’

vice-versa. The comparison of this method with a previously
published one, [41], proves that the present method is better wits]
respect to the computational complexity. Moreover, the whole
formulation of the present method is simpler and more Comprepg)

hensive than that of [41].
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