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Filters via FFT
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Abstract—In this paper, a new fast algorithm for spectral trans-
formations for two-dimensional digital filters is presented. The al-
gorithm is based on the use of the fast Fourier transform. The com-
putational complexity of this algorithm is evaluated. The simplicity
and efficiency of the algorithm is illustrated by a numerical ex-
ample.

Index Terms—Discrete transforms, fast Fourier transforms,
spectral transformation, two-dimensional filters.

I. INTRODUCTION

T WO-DIMENSIONAL (2-D) digital filters have found nu-
merous applications within the vast context of 2-D digital

signal processing. In the area of real-time image processing, for
example, they are used for the enhancement of X-ray images,
blood cell analysis, thermography, ultrasound echography, com-
puterized tomography, moving-objects recognition, underwater
acoustics, remote-sensing, and robotics. Several implementa-
tion algorithms for 2-D digital filters have been widely reported
[1]–[3]. Most of these algorithms are based on proper (2-D) ra-
tional (also called spectral) transformations. These transforma-
tions are useful for designing low-pass, high-pass, band-pass,
and multiple passband filters. The bilinear transformation is a
special case of the 1-D rational transformation. This transfor-
mation appears to have a long list of references in the recent
literature [5]–[10].

It is well known that a linear shift-invariant causal single-
input single-output (SISO) 2-D system can be described by the
transfer function

(1)

where and are coprime polynomials in the
independent complex variables and . As a unifying ap-
proach, the variables and are used for the continuous as
well as for the discrete 2-D case. A transformationis a map-
ping: with . Ob-
viously the problem of transformation of the rational function
(1) is reduced to transforming the polynomials and

. Henceforth, we deal only with the 2-D rational trans-
formation of the 2-D polynomial .
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A good many efficient techniques and fast algorithms for 1-D
polynomial, and 1-D rational transformations of 1-D and-D
polynomials have been proposed lately. In [4]–[13], the bilinear
and related transformations are carried out by using appropriate
matrix multiplications. In [14], the same transformations are
used in the multidimensional systems stability. In [15], a pro-
cedure for transforming a rational function to another rational
function under an arbitrary rational transformation via appro-
priate matrix multiplication is outlined. In [16], the matrix mul-
tiplication technique for bilinear transformation of multivariable
polynomials is developed as an extension of the corresponding
1-D technique. In [17], the same technique is applied for the
discrete system stability. In [18], an efficient algorithm for bi-
linear transformation of multivariable polynomials is given. In
[19], the bilinear transformation is extended to transform mul-
tivariable polynomials, using discrete convolution and the Kro-
necker product. In [20], some properties of the matrix associated
with the bilinear transformation are given. In [21], properties of
the same matrix in the multidimensional case are discussed. In
[22], the structure of the transformation matrix for the general
bilinear transformation is examined. A new transformation ma-
trix technique for bilinear transformation is proposed in [23],
while in [24] properties of the known transformation matrix are
presented. In [25]–[30], in order to achieve the desired transfor-
mation the method of the synthetic division is used. In [31], a
closed form relationship for the multiple bilinear transformation
is used by Erfani, Ahmadi, and Ramachandran.

In [32]–[36], one can find very important applications
of several rational transformations. In [37], a very efficient
algorithm based on the well-known Horner’s form is proposed
by Waggener. This is a simple recursive algorithm first for
bilinear transformation and secondly for other single-variable
rational transformations. Heinen and Siddique extended this
technique for any arbitrary 1-D rational transformation [38].
One should note that several authors use the term “polynomial
transformation” instead of the term rational transformation. In
[40], fast multivariable bilinear and Hadamard transforms are
presented.

In [41], an algorithm for any (2-D) spectral transformation of
2-D filters [1]–[3], [39], which is based on the technique of [37]
and [38], is presented.

In the present paper, a new algorithm for the same problem is
proposed. The algorithm is based on the discrete Fourier trans-
form (DFT). The exploitation of the DFT in similar problems
of systems theory is already known. In [42], the DFT is used
in order to determine the characteristic polynomial of a rectan-
gular matrix and in [43] the same technique is used for the cal-
culation of a determinantal polynomial. The extension of this
technique in 2-D systems is given in [44]. The use of DFT for
arbitrary transformations of one-variable polynomials and ra-
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tional functions is known [45]. So, in the present paper the use
of DFT is proposed in order to find a new efficient algorithm for
spectral transformations for 2-D filters. The original polynomial
under the transformation ,

and being rational functions in , is transformed to
the rational function . In Section II, the
Horner’s formula for a 2-D polynomial is described. In Section
III, the algorithm is fully presented. In Section IV, the computa-
tional complexity of the presented algorithms is evaluated. Fi-
nally, Section V contains some concluding remarks.

II. THE HORNER’S FORM FOR2-D POLYNOMIALS

In what follows, it is necessary to describe the Horner’s for-
mula for 2-D Polynomials [41]. To this end, consider the poly-
nomial . This poly-
nomial can be evaluated using the following 2-D Horner’s form

(2)

with the initial condition and

(3)

with the initial condition . In
(2), is the step of the iteration andis simply a parameter

while in (3), is the step of the iteration.
Finally, .

III. SPECTRAL TRANSFORMATIONS FOR2-D FILTERS

Consider the 2-D polynomial

(4)

Under the transformation

(5)

(6)

where

(7)

and

(8)

where is transformed to the rational function
. Suppose that

(9)

(10)

It is easy to verify that .
In order to compute , we consider a 2-D

discrete Fourier transform at equispaced
points on the unit 2-D disk where

. So, we define

(11)

and

(12)

The 2-D DFT for the double sequences of the coeffi-
cients and , in (9) and (10), where

is defined as follows:

(13)

(14)

So, can be considered as the polynomial
values of and at the equally spaced
points on the unit 2-D disc, where

. So, the polynomial values
are found as follows:

(15.1)

while the coefficients are evaluated via the inverse 2-D
FFT as follows:

(15.2)
Therefore, the polynomial has been computed. Fur-
thermore, the polynomial values are found by the for-
mula

or equivalently

(16.1)

where Horner’s formula for 2-D polynomials should be used.
Using, now, an inverse 2-D FFT, the coefficients are

evaluated as follows:

(16.2)
Therefore, the polynomial has been found.



MASTORAKIS AND SWAMY: SPECTRAL TRANSFORMATIONS FOR TWO-DIMENSIONAL FILTERS VIA FFT 829

Remark: In order to transform a given rational function
under the transformation

of (5) and (6), the previously developed procedure is applied
for and separately. Both these polynomials
are transformed using the above algorithm where we are not
interested in the common resultant denominator ,
but only for the different resultant numerators and

.
Example: Consider the 2-D digital filter with transfer func-

tion [2], [39] and [41]:

Under the spectral (rational) transformation

the above transfer function is transformed into another transfer
function. First, we apply the whole procedure described above
for the polynomial of the numerator of for

and . So,
we find the following values that form a double sequence

Applying (double) inverse DFT, we find the double sequence

which corresponds to the polynomial of the numerator of
the new transfer function. We then apply the same procedure
for the polynomial of the denominator of for

and .
So, we find again the following values:

Applying (double) inverse DFT we find the double sequence

which corresponds to the polynomial of the denominator of the
new transfer function.

So, the resultant digital filter is described by the transfer func-
tion shown at the bottom of the page. This is a typical transfor-
mation of a high-pass 2-D digital filter [2].

IV. COMPUTATIONAL COMPLEXITY

A. For Finding

Using the 2-D Horner’s formula, for finding
complex multiplications and

complex additions are needed. Also, for
finding , we need complex
multiplications and complex additions. So, in (15.1) there
exists a cost of
complex multiplications as well as a cost of

complex additions. Since
number of equation (15.1) are required, i.e.,

, the total cost is
finally

complex multiplications as well as

complex additions.
Equation (15.2) requires

complex multiplications, i.e.,

.

B. For Finding

In (16.1), using the 2-D Horner’s formula, for finding
we need complex mul-

tiplications and complex additions.
Also, for finding we need
complex multiplications and com-
plex additions. Note that and are
already known from the computation in (15.1). Addition-
ally in (16.1) we need 2 complex divisions. So, we need

CMADs (complex multiplications
and divisions). Applying the usual 2-D Horner’s formula, one
finds
CMAD’s and
complex additions.
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Since (16.1) are required, i.e.,
, the total cost

is finally
CMAD’s as well

as
complex additions.

Equation (16.2) requires
complex multiplications, i.e.,

.
The conclusion is that our method requires

CMAD’s with respect to (this is the
evaluated complexity if are considered constant and

variable) as well as
CMAD’s with respect to (this is the evaluated
complexity if are considered constant and
variable). Also our method requires
complex additions with respect to as well as

complex additions with respect
to . Note that each complex multiplication is imple-
mented by four real multiplications and two real additions while
each complex addition is implemented by two real additions.

So, the present method seems to be better than that
of [41], where we had MAD’s
(and equal number of additions) with respect to and

MAD’s (and equal number of addi-

tions) with respect to as well as

with respect to .

V. CONCLUSION

The algorithm presented in this paper speeds up the various
2-D rational transformations. These rational transformations are
of great interest in the area of 2-D digital filters analysis and
synthesis as well as in the area of 2-D signal processing. An im-
portant example is the double bilinear transformation via which
a discrete 2-D system is transformed to a continuous one and
vice-versa. The comparison of this method with a previously
published one, [41], proves that the present method is better with
respect to the computational complexity. Moreover, the whole
formulation of the present method is simpler and more compre-
hensive than that of [41].
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