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Abstract. This paper presents a new approach to speed up the operation of time 
delay neural networks for fast code detection. The entire data are collected 
together in a long vector and then tested as a one input pattern. The proposed 
fast time delay neural networks (FTDNNs) use cross correlation in the 
frequency domain between the tested data and the input weights of neural 
networks. It is proved mathematically and practically that the number of 
computation steps required for the presented time delay neural networks is less 
than that needed by conventional time delay neural networks (CTDNNs). 
Simulation results using MATLAB confirm the theoretical computations. 

1   Introduction 

Recently, time delay neural networks have shown very good results in different areas 
such as automatic control, speech recognition, blind equalization of time-varying 
channel and other communication applications. The main objective of this research is 
to reduce the response time of time delay neural networks. The purpose is to perform 
the testing process in the frequency domain instead of the time domain. Our approach 
was successfully applied for sub-image detection using fast neural networks (FNNs) 
as proposed in [1,2,3]. Furthermore, it was used for fast face detection [7,9], and fast 
iris detection [8]. Another idea to further increase the speed of FNNs through image 
decomposition was suggested in [7].  

FNNs for detecting a certain code in one dimensional serial stream of sequential data 
were described in [4,5]. Compared with conventional neural networks, FNNs based on 
cross correlation between the tested data and the input weights of neural networks in the 
frequency domain showed a significant reduction in the number of computation steps 
required for certain data detection [1,2,3,4,5,7,8,9,11,12].  Here, we make use of our 
theory on FNNs implemented in the frequency domain to increase the speed of time 
delay neural networks. The idea of moving the testing process from the time domain to 
the frequency domain is applied to time delay neural networks. Theoretical and practical 
results show that the proposed FTDNNs are faster than CTDNNs. In section 2, our 
theory on FNNs for detecting certain data in one dimensional matrix is described. 
Experimental results for FTDNNs are presented in section 3.  
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2   Fast Code Detection Using Cross Correlation in the Frequency 
Domain 

Finding a certain code/data in the input one dimensional matrix is a searching 
problem. Each position in the input matrix is tested for the presence or absence of the 
required code/data. At each position in the input matrix, each sub-matrix is multiplied 
by a window of weights, which has the same size as the sub-matrix. The outputs of 
neurons in the hidden layer are multiplied by the weights of the output layer. When 
the final output is high, this means that the sub-matrix under test contains the required 
code/data and vice versa. Thus, we may conclude that this searching problem is a 
cross correlation between the matrix under test and the weights of the hidden neurons.   

The convolution theorem in mathematical analysis says that a convolution of f with 
h is identical to the result of the following steps: let F and H be the results of the 
Fourier Transformation of f and h in the frequency domain. Multiply F and H* 
(conjugate of H) in the frequency domain point by point and then transform this 
product into the spatial domain via the inverse Fourier Transform. As a result, these 
cross correlations can be represented by a product in the frequency domain. Thus, by 
using cross correlation in the frequency domain, speed up in an order of magnitude 
can be achieved during the detection process [1,2,3,4,5,7,8,9,14]. In the detection 
phase, a sub matrix I of size 1xn (sliding window) is extracted from the tested matrix, 
which has a size 1xN, and fed to the neural network. Let Wi be the matrix of weights 
between the input sub-matrix and the hidden layer. This vector has a size of 1xn and 
can be represented as 1xn matrix. The output of hidden neurons h(i) can be calculated 
as follows:  
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where g is the activation function and b(i) is the bias of each hidden neuron (i). 
Equation 1 represents the output of each hidden neuron for a particular sub-matrix I. It 
can be obtained to the whole input matrix Z as follows: 
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Eq.2 represents a cross correlation operation. Given any two functions f and d, 
their cross correlation can be obtained by: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

n
n)d(n)f(xf(x)d(x)                                    (3) 

Therefore, Eq. 2 may be written as follows [1]: 

( )ibZiWgih +⊗=                                              (4) 

where hi is the output of the hidden neuron (i) and hi (u) is the activity of the hidden 
unit (i) when the sliding window is located at position (u) and (u) ∈ [N-n+1].  



766 H.M. El-Bakry and N. Mastorakis 

Now, the above cross correlation can be expressed in terms of one dimensional 
Fast Fourier Transform as follows [1]: 

( ) ( )( )iW*FZF1FZiW •−=⊗                                          (5) 

Hence, by evaluating this cross correlation, a speed up ratio can be obtained 
comparable to conventional neural networks. Also, the final output of the neural 
network can be evaluated as follows:  
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where q is the number of neurons in the hidden layer. O(u) is the output of the neural 
network when the sliding window located at the position (u) in the input matrix Z. Wo 

is the weight matrix between hidden and output layer. 

The complexity of cross correlation in the frequency domain can be analyzed as 
follows: 

1- For a tested matrix of 1xN elements, the 1D-FFT requires a number equal to 
Nlog2N

 of complex computation steps [13]. Also, the same number of complex 
computation steps is required for computing the 1D-FFT of the weight matrix at each 
neuron in the hidden layer.  
2- At each neuron in the hidden layer, the inverse 1D-FFT is computed. Therefore, q 
backward and (1+q) forward transforms have to be computed. Therefore, for a given 
matrix under test, the total number of operations required to compute the 1D-FFT is 
(2q+1)Nlog2N. 
3- The number of computation steps required by FNNs is complex and must be 
converted into a real version. It is known that, the one dimensional Fast Fourier 
Transform requires (N/2)log2N

 complex multiplications and Nlog2N complex 
additions [13]. Every complex multiplication is realized by six real floating point 
operations and every complex addition is implemented by two real floating point 
operations. Therefore, the total number of computation steps required to obtain the 
1D-FFT of a 1xN matrix is: 

ρ=6((N/2)log2N) + 2(Nlog2N)                                          (7) 

which may be simplified to: 

ρ=5Nlog2N                                                           (8) 

4- Both the input and the weight matrices should be dot multiplied in the frequency 
domain. Thus, a number of complex computation steps equal to qN should be 
considered. This means 6qN real operations will be added to the number of 
computation steps required by FNNs.  
5- In order to perform cross correlation in the frequency domain, the weight matrix 
must be extended to have the same size as the input matrix. So, a number of zeros = 
(N-n) must be added to the weight matrix. This requires a total real number of 
computation steps = q(N-n) for all neurons. Moreover, after computing the FFT for 
the weight matrix, the conjugate of this matrix must be obtained. As a result, a real 
number of computation steps = qN should be added in order to obtain the conjugate of 
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the weight matrix for all neurons.  Also, a number of real computation steps equal to 
N is required to create butterflies complex numbers (e-jk(2Πn/N)), where 0<K<L. These 
(N/2) complex numbers are multiplied by the elements of the input matrix or by 
previous complex numbers during the computation of FFT. To create a complex 
number requires two real floating point operations. Thus, the total number of 
computation steps required for FNNs becomes: 

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N                                (9) 

which can be reformulated as: 

           σ=(2q+1)(5Nlog2N)+q(8N-n)+N                                     (10) 

6- Using sliding window of size 1xn for the same matrix of 1xN pixels,                 
q(2n-1)(N-n+1) computation steps are required when using CTDNNs for certain code 
detection or processing (n) input data. The theoretical speed up factor η can be 
evaluated as follows: 

   N n)-q(8N N) 1)(5Nlog(2q
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3   Simulation Results 

Time delay neural networks accept serial input data with fixed size (n). Therefore, the 
number of input neurons equals to (n). Instead of treating (n) inputs, our new approach 
is to collect all the input data together in a long vector (for example 100xn). Then the 
input data is tested by time delay neural networks as a single pattern with length L 
(L=100xn). Such a test is performed in the frequency domain as described in section II. 
Complex-valued neural networks have many applications in fields dealing with 
complex numbers such as telecommunications, speech recognition and image 
processing with the Fourier Transform [6,10]. Complex-valued neural networks mean 
that the inputs, weights, thresholds and the activation function have complex values. In 
this section, formulas for the speed up ratio with different types of inputs will be 
presented. The special case of only real input values (i.e. imaginary part=0) will be 
considered. Also, the speed up ratio in the case of a one and two dimensional input 
matrix will be concluded. The operation of FNNs depends on computing the Fast 
Fourier Transform for both the input and weight matrices and obtaining the resulting 
two matrices. After performing dot multiplication for the resulting two matrices in the 
frequency domain, the Inverse Fast Fourier Transform is calculated for the final 
matrix. Here, there is an excellent advantage with FNNs that should be mentioned. The 
Fast Fourier Transform is already dealing with complex numbers, so there is no change 
in the number of computation steps required for FNNs. Therefore, the speed up ratio in 
the case of complex-valued time delay neural networks can be evaluated as follows: 

1) In case of real inputs  

A) For a one dimensional input matrix 

Multiplication of (n) complex-valued weights by (n) real inputs requires (2n) real 
operations. This produces (n) real numbers and (n) imaginary numbers. The addition 
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of these numbers requires (2n-2) real operations. Therefore, the number of 
computation steps required by conventional neural networks can be calculated as: 

θ=2q(2n-1)(N-n+1)                                                       (12) 

The speed up ratio in this case can be computed as follows: 
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The theoretical speed up ratio for searching short successive (n) data in a long 
input vector (L) using complex-valued time delay neural networks is shown in  
Tables 1, 2, and 3. Also, the practical speed up ratio for manipulating matrices of 
different sizes (L) and different sized weight matrices (n) using a 2.7 GHz processor 
and MATLAB is shown in Table 4.  

Table 1. The theoretical speed up ratio for time delay neural networks (1D-real values input 
matrix, n=400) 

Length of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

10000 4.6027e+008 4.2926e+007 10.7226 
40000 1.8985e+009 1.9614e+008 9.6793 
90000 4.2955e+009 4.7344e+008 9.0729 

160000 7.6513e+009 8.8219e+008 8.6731 
250000 1.1966e+010 1.4275e+009 8.3823 

Table 2. The theoretical speed up ratio for time delay neural networks (1D-real values input 
matrix, n=625) 

Length of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

10000 7.0263e+008 4.2919e+007 16.3713 
40000 2.9508e+009 1.9613e+008 15.0452 
90000 6.6978e+009 4.7343e+008 14.1474 

160000 1.1944e+010 8.8218e+008 13.5388 
250000 1.8688e+010 1.4275e+009 13.0915 

Table 3. The theoretical speed up ratio for time delay neural networks (1D-real values input 
matrix, n=900) 

Length of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

10000 9.823 e+008 4.2911e+007 22.8933 
40000 4.2206e+009 1.9612e+008 21.5200 
90000 9.6176e+009 4.7343e+008 20.3149 

160000 1.7173e+010 8.8217e+008 19.4671 
250000 2.6888e+010 1.4275e+009 18.8356 
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Table 4. Practical speed up ratio for time delay neural networks (1D-real values input matrix) 

Length of 
input matrix 

Speed up ratio 
(n=400) 

Speed up ratio 
(n=625) 

Speed up ratio 
(n=900) 

10000 17.88 25.94 35.21 
40000 17.19 25.11 34.43 
90000 16.65 24.56 33.59 
160000 16.14 24.14 33.05 
250000 15.89 23.76 32.60 

B) For a two dimensional input matrix 

Multiplication of (n2) complex-valued weights by (n2) real inputs requires (2n2) real 
operations. This produces (n2) real numbers and (n2) imaginary numbers. The addition 
of these numbers requires (2n2-2) real operations. Therefore, the number of 
computation steps required by conventional neural networks can be calculated as: 

θ=2q(2n2-1)(N-n+1) 2                                                (14)  

The speed up ratio in this case can be computed as follows: 
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The theoretical speed up ratio for detecting (nxn) real valued submatrix in a large 
real valued matrix (NxN) using complex-valued time delay neural networks is shown 
in Tables 5, 6, 7. Also, the practical speed up ratio for manipulating matrices of 
different sizes (NxN) and different sized weight matrices (n) using a 2.7 GHz 
processor and MATLAB is shown in Table 8.  

Table 5. The theoretical speed up ratio for time delay neural networks (2D-real values input 
matrix, n=20) 

Size of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 3.1453e+008 4.2916e+007 7.3291 
200x200 1.5706e+009 1.9610e+008 8.0091 
300x300 3.7854e+009 4.7335e+008 7.9970 
400x400 6.9590e+009 8.8203e+008 7.8898 
500x500 1.1091e+010 1.4273e+009 7.7711 

Table 6. The theoretical speed up ratio for time delay neural networks (2D-real values input 
matrix, n=25) 

Size of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 4.3285e+008 4.2909e+007 10.0877 
200x200 2.3213e+009 1.9609e+008 11.8380 
300x300 5.7086e+009 4.7334e+008 12.0602 
400x400 1.0595e+010 8.8202e+008 12.0119 
500x500 1.6980e+010 1.4273e+009 11.8966 
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Table 7. The theoretical speed up ratio for time delay neural networks (2D-real values input 
matrix, n=30) 

Size of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 5.4413e+008 4.2901e+007 12.6834 
200x200 3.1563e+009 1.9608e+008 16.0966 
300x300 7.9272e+009 4.7334e+008 16.7476 
400x400 1.4857e+010 8.8201e+008 16.8444 
500x500 2.3946e+010 1.4273e+009 16.7773 

Table 8. Practical speed up ratio for time delay neural networks (2D-real values input matrix) 

Size of input 
matrix 

Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 17.19 22.32 31.74 
200x200 17.61 22.89 32.55 
300x300 16.54 23.66 33.71 
400x400 15.98 22.95 34.53 
500x500 15.62 22.49 33.32 

2) In case of complex inputs  

A) For a one dimensional input matrix 

Multiplication of (n) complex-valued weights by (n) complex inputs requires (6n) real 
operations. This produces (n) real numbers and (n) imaginary numbers. The addition 
of these numbers requires (2n-2) real operations. Therefore, the number of 
computation steps required by conventional neural networks can be calculated as: 

θ=2q(4n-1)(N-n+1)                                              (16)  

The speed up ratio in this case can be computed as follows: 
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Table 9. The theoretical speed up ratio for time delay neural networks (1D-complex values 
input matrix, n=400) 

Length of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 9.2111e+008 4.2926e+007 21.4586 
200x200 3.7993e+009 1.9614e+008 19.3706 
300x300 8.5963e+009 4.7344e+008 18.1571 
400x400 1.5312e+010 8.8219e+008 17.3570 
500x500 2.3947e+010 1.4275e+009 16.7750 

The theoretical speed up ratio for searching short complex successive (n) data in a 
long complex-valued input vector (L) using complex-valued time delay neural 
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networks is shown in Tables 9, 10, and 11. Also, the practical speed up ratio for 
manipulating matrices of different sizes (L) and different sized weight matrices (n) 
using a 2.7 GHz processor and MATLAB is shown in Table 12.  

Table 10. The theoretical speed up ratio for time delay neural networks (1D-complex values 
input matrix, n=625) 

Length of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 1.4058e+009 4.2919e+007 32.7558 
200x200 5.9040e+009 1.9613e+008 30.1025 
300x300 1.3401e+010 4.7343e+008 28.3061 
400x400 2.3897e+010 8.8218e+008 27.0883 
500x500 3.7391e+010 1.4275e+009 26.1934 

Table 11. The theoretical speed up ratio for time delay neural networks (1D-complex values 
input matrix, n=900) 

Length of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 1.9653e+009 4.2911e+007 45.7993 
200x200 8.4435e+009 1.9612e+008 43.0519 
300x300 1.9240e+010 4.7343e+008 40.6410 
400x400 3.4356e+010 8.8217e+008 38.9450 
500x500 5.3791e+010 1.4275e+009 37.6817 

Table 12. Practical speed up ratio for time delay neural networks (1D-complex values input 
matrix) 

Length of 
input matrix 

Speed up ratio 
(n=400) 

Speed up ratio 
(n=625) 

Speed up ratio 
(n=900) 

10000 37.90 53.58 70.71 
40000 36.82 52.89 69.43 
90000 36.34 52.47 68.69 
160000 35.94 51.88 68.05 
250000 35.69 51.36 67.56 

B) For a two dimensional input matrix 

Multiplication of (n2) complex-valued weights by (n2) real inputs requires (6n2) real 
operations. This produces (n2) real numbers and (n2) imaginary numbers. The addition 
of these numbers requires (2n2-2) real operations. Therefore, the number of 
computation steps required by conventional neural networks can be calculated as: 

θ=2q(4n2-1)(N-n+1)2                                                  (18)  

The speed up ratio in this case can be computed as follows: 
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The theoretical speed up ratio for detecting (nxn) complex-valued submatrix in a 
large complex-valued matrix (NxN) using complex-valued neural networks is shown 
in Tables 13, 14, and 15. Also, the practical speed up ratio for manipulating matrices 
of different sizes (NxN) and different sized weight matrices (n) using a 2.7 GHz 
processor and MATLAB is shown in Table 16.  

Table 13. The theoretical speed up ratio for time delay neural networks (2D-complex values 
input matrix, n=20) 

Size of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 6.2946e+008 4.2916e+007 14.6674 
200x200 3.1431e+009 1.9610e+008 16.0281 
300x300 7.5755e+009 4.7335e+008 16.0040 
400x400 1.3927e+010 8.8203e+008 15.7894 
500x500 2.2197e+010 1.4273e+009 15.5519 

Table 14. The theoretical speed up ratio for time delay neural networks (2D-complex values 
input matrix, n=25) 

Size of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 8.6605e+008 4.2909e+007 20.1836 
200x200 4.6445e+009 1.9609e+008 23.6856 
300x300 1.1422e+010 4.7334e+008 24.1301 
400x400 2.1198e+010 8.8202e+008 24.0333 
500x500 3.3973e+010 1.4273e+009 23.8028 

Table 15. The theoretical speed up ratio for time delay neural networks (2D-complex values 
input matrix, n=30) 

Size of 
input matrix 

Number of computation steps 
required for classic complex-

valued neural networks 

Number of computation steps 
required for fast complex-valued 

neural networks 

Speed up 
ratio  

100x100 1.0886e+009 4.2901e+007 25.3738 
200x200 6.3143e+009 1.9608e+008 32.2021 
300x300 1.5859e+010 4.7334e+008 33.5045 
400x400 2.9722e+010 8.8201e+008 33.6981 
500x500 4.7904e+010 1.4273e+009 33.5640 

Table 16. Practical speed up ratio for time delay neural networks (2D-complex values input 
matrix) 

Size of 
input matrix 

Speed up ratio 
(n=20) 

Speed up ratio 
(n=25) 

Speed up ratio 
(n=30) 

100x100 38.33 46.99 62.88 
200x200 39.17 47.79 63.77 
300x300 38.44 48.86 64.83 
400x400 37.92 47.23 65.99 
500x500 37.32 46.89 64.89 
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4   Conclusion 

New FTDNNs have been presented. Theoretical computations have shown that 
FTDNNs require fewer computation steps than conventional ones. This has been 
achieved by applying cross correlation in the frequency domain between the input 
data and the input weights of time delay neural networks. Simulation results have 
confirmed this proof by using MATLAB. This algorithm can be successfully applied 
to any application that uses time delay neural networks. 
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