
D. Liu et al. (Eds.): ISNN 2007, LNCS 4493, Part III, pp. 764–773, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Fast Code Detection Using
High Speed Time Delay Neural Networks

Hazem M. El-Bakry1 and Nikos Mastorakis2

1 Faculty of Computer Science & Information Systems,
Mansoura University, Egypt
helbakry20@yahoo.com

2 Department of Computer Science,
Military Institutions of University Education (MIUE)-Hellenic Naval Academy,

Greece

Abstract. This paper presents a new approach to speed up the operation of time
delay neural networks for fast code detection. The entire data are collected
together in a long vector and then tested as a one input pattern. The proposed
fast time delay neural networks (FTDNNs) use cross correlation in the
frequency domain between the tested data and the input weights of neural
networks. It is proved mathematically and practically that the number of
computation steps required for the presented time delay neural networks is less
than that needed by conventional time delay neural networks (CTDNNs).
Simulation results using MATLAB confirm the theoretical computations.

1 Introduction

Recently, time delay neural networks have shown very good results in different areas
such as automatic control, speech recognition, blind equalization of time-varying
channel and other communication applications. The main objective of this research is
to reduce the response time of time delay neural networks. The purpose is to perform
the testing process in the frequency domain instead of the time domain. Our approach
was successfully applied for sub-image detection using fast neural networks (FNNs)
as proposed in [1,2,3]. Furthermore, it was used for fast face detection [7,9], and fast
iris detection [8]. Another idea to further increase the speed of FNNs through image
decomposition was suggested in [7].

FNNs for detecting a certain code in one dimensional serial stream of sequential data
were described in [4,5]. Compared with conventional neural networks, FNNs based on
cross correlation between the tested data and the input weights of neural networks in the
frequency domain showed a significant reduction in the number of computation steps
required for certain data detection [1,2,3,4,5,7,8,9,11,12]. Here, we make use of our
theory on FNNs implemented in the frequency domain to increase the speed of time
delay neural networks. The idea of moving the testing process from the time domain to
the frequency domain is applied to time delay neural networks. Theoretical and practical
results show that the proposed FTDNNs are faster than CTDNNs. In section 2, our
theory on FNNs for detecting certain data in one dimensional matrix is described.
Experimental results for FTDNNs are presented in section 3.

 Fast Code Detection Using High Speed Time Delay Neural Networks 765

2 Fast Code Detection Using Cross Correlation in the Frequency
Domain

Finding a certain code/data in the input one dimensional matrix is a searching
problem. Each position in the input matrix is tested for the presence or absence of the
required code/data. At each position in the input matrix, each sub-matrix is multiplied
by a window of weights, which has the same size as the sub-matrix. The outputs of
neurons in the hidden layer are multiplied by the weights of the output layer. When
the final output is high, this means that the sub-matrix under test contains the required
code/data and vice versa. Thus, we may conclude that this searching problem is a
cross correlation between the matrix under test and the weights of the hidden neurons.

The convolution theorem in mathematical analysis says that a convolution of f with
h is identical to the result of the following steps: let F and H be the results of the
Fourier Transformation of f and h in the frequency domain. Multiply F and H*
(conjugate of H) in the frequency domain point by point and then transform this
product into the spatial domain via the inverse Fourier Transform. As a result, these
cross correlations can be represented by a product in the frequency domain. Thus, by
using cross correlation in the frequency domain, speed up in an order of magnitude
can be achieved during the detection process [1,2,3,4,5,7,8,9,14]. In the detection
phase, a sub matrix I of size 1xn (sliding window) is extracted from the tested matrix,
which has a size 1xN, and fed to the neural network. Let Wi be the matrix of weights
between the input sub-matrix and the hidden layer. This vector has a size of 1xn and
can be represented as 1xn matrix. The output of hidden neurons h(i) can be calculated
as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑

=
= ib(k)I(k)

n

1k iWgih (1)

where g is the activation function and b(i) is the bias of each hidden neuron (i).
Equation 1 represents the output of each hidden neuron for a particular sub-matrix I. It
can be obtained to the whole input matrix Z as follows:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
∑
−=

++=
n/2

n/2k i bk) Z(uk)(iWg(u)ih (2)

Eq.2 represents a cross correlation operation. Given any two functions f and d,
their cross correlation can be obtained by:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
∞

∞−=
+=⊗

n
n)d(n)f(xf(x)d(x) (3)

Therefore, Eq. 2 may be written as follows [1]:

()ibZiWgih +⊗= (4)

where hi is the output of the hidden neuron (i) and hi (u) is the activity of the hidden
unit (i) when the sliding window is located at position (u) and (u) ∈ [N-n+1].

766 H.M. El-Bakry and N. Mastorakis

Now, the above cross correlation can be expressed in terms of one dimensional
Fast Fourier Transform as follows [1]:

() ()()iW*FZF1FZiW •−=⊗ (5)

Hence, by evaluating this cross correlation, a speed up ratio can be obtained
comparable to conventional neural networks. Also, the final output of the neural
network can be evaluated as follows:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑
=

+=
q

1i
ob)u(ih (i)oWgO(u) (6)

where q is the number of neurons in the hidden layer. O(u) is the output of the neural
network when the sliding window located at the position (u) in the input matrix Z. Wo

is the weight matrix between hidden and output layer.

The complexity of cross correlation in the frequency domain can be analyzed as
follows:

1- For a tested matrix of 1xN elements, the 1D-FFT requires a number equal to
Nlog2N

 of complex computation steps [13]. Also, the same number of complex
computation steps is required for computing the 1D-FFT of the weight matrix at each
neuron in the hidden layer.
2- At each neuron in the hidden layer, the inverse 1D-FFT is computed. Therefore, q
backward and (1+q) forward transforms have to be computed. Therefore, for a given
matrix under test, the total number of operations required to compute the 1D-FFT is
(2q+1)Nlog2N.
3- The number of computation steps required by FNNs is complex and must be
converted into a real version. It is known that, the one dimensional Fast Fourier
Transform requires (N/2)log2N

 complex multiplications and Nlog2N complex
additions [13]. Every complex multiplication is realized by six real floating point
operations and every complex addition is implemented by two real floating point
operations. Therefore, the total number of computation steps required to obtain the
1D-FFT of a 1xN matrix is:

ρ=6((N/2)log2N) + 2(Nlog2N) (7)

which may be simplified to:

ρ=5Nlog2N (8)

4- Both the input and the weight matrices should be dot multiplied in the frequency
domain. Thus, a number of complex computation steps equal to qN should be
considered. This means 6qN real operations will be added to the number of
computation steps required by FNNs.
5- In order to perform cross correlation in the frequency domain, the weight matrix
must be extended to have the same size as the input matrix. So, a number of zeros =
(N-n) must be added to the weight matrix. This requires a total real number of
computation steps = q(N-n) for all neurons. Moreover, after computing the FFT for
the weight matrix, the conjugate of this matrix must be obtained. As a result, a real
number of computation steps = qN should be added in order to obtain the conjugate of

 Fast Code Detection Using High Speed Time Delay Neural Networks 767

the weight matrix for all neurons. Also, a number of real computation steps equal to
N is required to create butterflies complex numbers (e-jk(2Πn/N)), where 0<K<L. These
(N/2) complex numbers are multiplied by the elements of the input matrix or by
previous complex numbers during the computation of FFT. To create a complex
number requires two real floating point operations. Thus, the total number of
computation steps required for FNNs becomes:

σ=(2q+1)(5Nlog2N) +6qN+q(N-n)+qN+N (9)

which can be reformulated as:

 σ=(2q+1)(5Nlog2N)+q(8N-n)+N (10)

6- Using sliding window of size 1xn for the same matrix of 1xN pixels,
q(2n-1)(N-n+1) computation steps are required when using CTDNNs for certain code
detection or processing (n) input data. The theoretical speed up factor η can be
evaluated as follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-q(2n

2 +++
+=η (11)

3 Simulation Results

Time delay neural networks accept serial input data with fixed size (n). Therefore, the
number of input neurons equals to (n). Instead of treating (n) inputs, our new approach
is to collect all the input data together in a long vector (for example 100xn). Then the
input data is tested by time delay neural networks as a single pattern with length L
(L=100xn). Such a test is performed in the frequency domain as described in section II.
Complex-valued neural networks have many applications in fields dealing with
complex numbers such as telecommunications, speech recognition and image
processing with the Fourier Transform [6,10]. Complex-valued neural networks mean
that the inputs, weights, thresholds and the activation function have complex values. In
this section, formulas for the speed up ratio with different types of inputs will be
presented. The special case of only real input values (i.e. imaginary part=0) will be
considered. Also, the speed up ratio in the case of a one and two dimensional input
matrix will be concluded. The operation of FNNs depends on computing the Fast
Fourier Transform for both the input and weight matrices and obtaining the resulting
two matrices. After performing dot multiplication for the resulting two matrices in the
frequency domain, the Inverse Fast Fourier Transform is calculated for the final
matrix. Here, there is an excellent advantage with FNNs that should be mentioned. The
Fast Fourier Transform is already dealing with complex numbers, so there is no change
in the number of computation steps required for FNNs. Therefore, the speed up ratio in
the case of complex-valued time delay neural networks can be evaluated as follows:

1) In case of real inputs

A) For a one dimensional input matrix

Multiplication of (n) complex-valued weights by (n) real inputs requires (2n) real
operations. This produces (n) real numbers and (n) imaginary numbers. The addition

768 H.M. El-Bakry and N. Mastorakis

of these numbers requires (2n-2) real operations. Therefore, the number of
computation steps required by conventional neural networks can be calculated as:

θ=2q(2n-1)(N-n+1) (12)

The speed up ratio in this case can be computed as follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(2n

2 +++
+=η (13)

The theoretical speed up ratio for searching short successive (n) data in a long
input vector (L) using complex-valued time delay neural networks is shown in
Tables 1, 2, and 3. Also, the practical speed up ratio for manipulating matrices of
different sizes (L) and different sized weight matrices (n) using a 2.7 GHz processor
and MATLAB is shown in Table 4.

Table 1. The theoretical speed up ratio for time delay neural networks (1D-real values input
matrix, n=400)

Length of
input matrix

Number of computation steps
required for classic complex-

valued neural networks

Number of computation steps
required for fast complex-valued

neural networks

Speed up
ratio

10000 4.6027e+008 4.2926e+007 10.7226
40000 1.8985e+009 1.9614e+008 9.6793
90000 4.2955e+009 4.7344e+008 9.0729

160000 7.6513e+009 8.8219e+008 8.6731
250000 1.1966e+010 1.4275e+009 8.3823

Table 2. The theoretical speed up ratio for time delay neural networks (1D-real values input
matrix, n=625)

Length of
input matrix

Number of computation steps
required for classic complex-

valued neural networks

Number of computation steps
required for fast complex-valued

neural networks

Speed up
ratio

10000 7.0263e+008 4.2919e+007 16.3713
40000 2.9508e+009 1.9613e+008 15.0452
90000 6.6978e+009 4.7343e+008 14.1474

160000 1.1944e+010 8.8218e+008 13.5388
250000 1.8688e+010 1.4275e+009 13.0915

Table 3. The theoretical speed up ratio for time delay neural networks (1D-real values input
matrix, n=900)

Length of
input matrix

Number of computation steps
required for classic complex-

valued neural networks

Number of computation steps
required for fast complex-valued

neural networks

Speed up
ratio

10000 9.823 e+008 4.2911e+007 22.8933
40000 4.2206e+009 1.9612e+008 21.5200
90000 9.6176e+009 4.7343e+008 20.3149

160000 1.7173e+010 8.8217e+008 19.4671
250000 2.6888e+010 1.4275e+009 18.8356

 Fast Code Detection Using High Speed Time Delay Neural Networks 769

Table 4. Practical speed up ratio for time delay neural networks (1D-real values input matrix)

Length of
input matrix

Speed up ratio
(n=400)

Speed up ratio
(n=625)

Speed up ratio
(n=900)

10000 17.88 25.94 35.21
40000 17.19 25.11 34.43
90000 16.65 24.56 33.59
160000 16.14 24.14 33.05
250000 15.89 23.76 32.60

B) For a two dimensional input matrix

Multiplication of (n2) complex-valued weights by (n2) real inputs requires (2n2) real
operations. This produces (n2) real numbers and (n2) imaginary numbers. The addition
of these numbers requires (2n2-2) real operations. Therefore, the number of
computation steps required by conventional neural networks can be calculated as:

θ=2q(2n2-1)(N-n+1) 2 (14)

The speed up ratio in this case can be computed as follows:

 N)n-q(8N)N log1)(5N(2q

 1)n-1)(N-2q(2n
222

2
2

22

+++
+=η (15)

The theoretical speed up ratio for detecting (nxn) real valued submatrix in a large
real valued matrix (NxN) using complex-valued time delay neural networks is shown
in Tables 5, 6, 7. Also, the practical speed up ratio for manipulating matrices of
different sizes (NxN) and different sized weight matrices (n) using a 2.7 GHz
processor and MATLAB is shown in Table 8.

Table 5. The theoretical speed up ratio for time delay neural networks (2D-real values input
matrix, n=20)

Size of
input matrix

Number of computation steps
required for classic complex-

valued neural networks

Number of computation steps
required for fast complex-valued

neural networks

Speed up
ratio

100x100 3.1453e+008 4.2916e+007 7.3291
200x200 1.5706e+009 1.9610e+008 8.0091
300x300 3.7854e+009 4.7335e+008 7.9970
400x400 6.9590e+009 8.8203e+008 7.8898
500x500 1.1091e+010 1.4273e+009 7.7711

Table 6. The theoretical speed up ratio for time delay neural networks (2D-real values input
matrix, n=25)

Size of
input matrix

Number of computation steps
required for classic complex-

valued neural networks

Number of computation steps
required for fast complex-valued

neural networks

Speed up
ratio

100x100 4.3285e+008 4.2909e+007 10.0877
200x200 2.3213e+009 1.9609e+008 11.8380
300x300 5.7086e+009 4.7334e+008 12.0602
400x400 1.0595e+010 8.8202e+008 12.0119
500x500 1.6980e+010 1.4273e+009 11.8966

770 H.M. El-Bakry and N. Mastorakis

Table 7. The theoretical speed up ratio for time delay neural networks (2D-real values input
matrix, n=30)

Size of
input matrix

Number of computation steps
required for classic complex-

valued neural networks

Number of computation steps
required for fast complex-valued

neural networks

Speed up
ratio

100x100 5.4413e+008 4.2901e+007 12.6834
200x200 3.1563e+009 1.9608e+008 16.0966
300x300 7.9272e+009 4.7334e+008 16.7476
400x400 1.4857e+010 8.8201e+008 16.8444
500x500 2.3946e+010 1.4273e+009 16.7773

Table 8. Practical speed up ratio for time delay neural networks (2D-real values input matrix)

Size of input
matrix

Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 17.19 22.32 31.74
200x200 17.61 22.89 32.55
300x300 16.54 23.66 33.71
400x400 15.98 22.95 34.53
500x500 15.62 22.49 33.32

2) In case of complex inputs

A) For a one dimensional input matrix

Multiplication of (n) complex-valued weights by (n) complex inputs requires (6n) real
operations. This produces (n) real numbers and (n) imaginary numbers. The addition
of these numbers requires (2n-2) real operations. Therefore, the number of
computation steps required by conventional neural networks can be calculated as:

θ=2q(4n-1)(N-n+1) (16)

The speed up ratio in this case can be computed as follows:

 N n)-q(8N N) 1)(5Nlog(2q

 1)n-1)(N-2q(4n

2 +++
+=η (17)

Table 9. The theoretical speed up ratio for time delay neural networks (1D-complex values
input matrix, n=400)

Length of
input matrix

Number of computation steps
required for classic complex-

valued neural networks

Number of computation steps
required for fast complex-valued

neural networks

Speed up
ratio

100x100 9.2111e+008 4.2926e+007 21.4586
200x200 3.7993e+009 1.9614e+008 19.3706
300x300 8.5963e+009 4.7344e+008 18.1571
400x400 1.5312e+010 8.8219e+008 17.3570
500x500 2.3947e+010 1.4275e+009 16.7750

The theoretical speed up ratio for searching short complex successive (n) data in a
long complex-valued input vector (L) using complex-valued time delay neural

 Fast Code Detection Using High Speed Time Delay Neural Networks 771

networks is shown in Tables 9, 10, and 11. Also, the practical speed up ratio for
manipulating matrices of different sizes (L) and different sized weight matrices (n)
using a 2.7 GHz processor and MATLAB is shown in Table 12.

Table 10. The theoretical speed up ratio for time delay neural networks (1D-complex values
input matrix, n=625)

Length of
input matrix

Number of computation steps
required for classic complex-

valued neural networks

Number of computation steps
required for fast complex-valued

neural networks

Speed up
ratio

100x100 1.4058e+009 4.2919e+007 32.7558
200x200 5.9040e+009 1.9613e+008 30.1025
300x300 1.3401e+010 4.7343e+008 28.3061
400x400 2.3897e+010 8.8218e+008 27.0883
500x500 3.7391e+010 1.4275e+009 26.1934

Table 11. The theoretical speed up ratio for time delay neural networks (1D-complex values
input matrix, n=900)

Length of
input matrix

Number of computation steps
required for classic complex-

valued neural networks

Number of computation steps
required for fast complex-valued

neural networks

Speed up
ratio

100x100 1.9653e+009 4.2911e+007 45.7993
200x200 8.4435e+009 1.9612e+008 43.0519
300x300 1.9240e+010 4.7343e+008 40.6410
400x400 3.4356e+010 8.8217e+008 38.9450
500x500 5.3791e+010 1.4275e+009 37.6817

Table 12. Practical speed up ratio for time delay neural networks (1D-complex values input
matrix)

Length of
input matrix

Speed up ratio
(n=400)

Speed up ratio
(n=625)

Speed up ratio
(n=900)

10000 37.90 53.58 70.71
40000 36.82 52.89 69.43
90000 36.34 52.47 68.69
160000 35.94 51.88 68.05
250000 35.69 51.36 67.56

B) For a two dimensional input matrix

Multiplication of (n2) complex-valued weights by (n2) real inputs requires (6n2) real
operations. This produces (n2) real numbers and (n2) imaginary numbers. The addition
of these numbers requires (2n2-2) real operations. Therefore, the number of
computation steps required by conventional neural networks can be calculated as:

θ=2q(4n2-1)(N-n+1)2 (18)

The speed up ratio in this case can be computed as follows:

 N)n-q(8N)N log1)(5N(2q

 1)n-1)(N-2q(4n
222

2
2

22

+++
+=η (19)

772 H.M. El-Bakry and N. Mastorakis

The theoretical speed up ratio for detecting (nxn) complex-valued submatrix in a
large complex-valued matrix (NxN) using complex-valued neural networks is shown
in Tables 13, 14, and 15. Also, the practical speed up ratio for manipulating matrices
of different sizes (NxN) and different sized weight matrices (n) using a 2.7 GHz
processor and MATLAB is shown in Table 16.

Table 13. The theoretical speed up ratio for time delay neural networks (2D-complex values
input matrix, n=20)

Size of
input matrix

Number of computation steps
required for classic complex-

valued neural networks

Number of computation steps
required for fast complex-valued

neural networks

Speed up
ratio

100x100 6.2946e+008 4.2916e+007 14.6674
200x200 3.1431e+009 1.9610e+008 16.0281
300x300 7.5755e+009 4.7335e+008 16.0040
400x400 1.3927e+010 8.8203e+008 15.7894
500x500 2.2197e+010 1.4273e+009 15.5519

Table 14. The theoretical speed up ratio for time delay neural networks (2D-complex values
input matrix, n=25)

Size of
input matrix

Number of computation steps
required for classic complex-

valued neural networks

Number of computation steps
required for fast complex-valued

neural networks

Speed up
ratio

100x100 8.6605e+008 4.2909e+007 20.1836
200x200 4.6445e+009 1.9609e+008 23.6856
300x300 1.1422e+010 4.7334e+008 24.1301
400x400 2.1198e+010 8.8202e+008 24.0333
500x500 3.3973e+010 1.4273e+009 23.8028

Table 15. The theoretical speed up ratio for time delay neural networks (2D-complex values
input matrix, n=30)

Size of
input matrix

Number of computation steps
required for classic complex-

valued neural networks

Number of computation steps
required for fast complex-valued

neural networks

Speed up
ratio

100x100 1.0886e+009 4.2901e+007 25.3738
200x200 6.3143e+009 1.9608e+008 32.2021
300x300 1.5859e+010 4.7334e+008 33.5045
400x400 2.9722e+010 8.8201e+008 33.6981
500x500 4.7904e+010 1.4273e+009 33.5640

Table 16. Practical speed up ratio for time delay neural networks (2D-complex values input
matrix)

Size of
input matrix

Speed up ratio
(n=20)

Speed up ratio
(n=25)

Speed up ratio
(n=30)

100x100 38.33 46.99 62.88
200x200 39.17 47.79 63.77
300x300 38.44 48.86 64.83
400x400 37.92 47.23 65.99
500x500 37.32 46.89 64.89

 Fast Code Detection Using High Speed Time Delay Neural Networks 773

4 Conclusion

New FTDNNs have been presented. Theoretical computations have shown that
FTDNNs require fewer computation steps than conventional ones. This has been
achieved by applying cross correlation in the frequency domain between the input
data and the input weights of time delay neural networks. Simulation results have
confirmed this proof by using MATLAB. This algorithm can be successfully applied
to any application that uses time delay neural networks.

References

[1] El-Bakry, H. M. Zhao, Q.: A Modified Cross Correlation in the Frequency Domain for
Fast Pattern Detection Using Neural Networks. International Journal of Signal Processing
1 (2004) 188-194

[2] El-Bakry, H. M., Zhao, Q.: Fast Object/Face Detection Using Neural Networks and Fast
Fourier Transform. International Journal of Signal Processing 1 (2004) 182-187

[3] El-Bakry, H. M., Zhao, Q.: Fast Pattern Detection Using Normalized Neural Networks
and Cross Correlation in the Frequency Domain. accepted and under publication in the
EURASIP Journal on Applied Signal Processing

[4] El-Bakry, H. M., Zhao, Q.: A Fast Neural Algorithm for Serial Code Detection in a
Stream of Sequential Data. International Journal of Information Technology 2 (2005) 71-
90

[5] El-Bakry, H.M., Stoyan, H.: FNNs for Code Detection in Sequential Data Using Neural
Networks for Communication Applications. Proc. of the First International Conference on
Cybernetics and Information Technologies, Systems and Applications: CITSA 2004
Orlando, Florida, USA, Vol. IV, 150-153.

[6] Hirose, A.: Complex-Valued Neural Networks Theories and Applications. Series on
innovative Intellegence 5 (2003)

[7] El-Bakry, H.M.: Face detection using fast neural networks and image decomposition.
Neurocomputing Journal, 48 (2002) 1039-1046

[8] El-Bakry, H.M.: Human Iris Detection Using Fast Cooperative Modular Neural Nets and
Image Decomposition. Machine Graphics & Vision Journal (MG&V) 11 (2002) 498-512

[9] El-Bakry, H.M.: Automatic Human Face Recognition Using Modular Neural Networks,”
Machine Graphics & Vision Journal (MG&V) 10 (2001) 47-73

[10] Jankowski, S., Lozowski, A., Zurada, M.: Complex-valued Multistate Neural Associative
Memory. IEEE Trans. on Neural Networks 7 (1996) 1491-1496

[11] El-Bakry, H.M., Zhao, Q.: Fast Pattern Detection Using Neural Networks Realized in
Frequency Domain. Proc. of the International Conference on Pattern Recognition and
Computer Vision, The Second World Enformatika Congress WEC'05, Istanbul, Turkey,
(2005) 89-92

[12] El-Bakry, H.M., Zhao, Q.: Sub-Image Detection Using Fast Neural Processors and
Image Decomposition. Proc. of the International Conference on Pattern Recognition and
Computer Vision, The Second World Enformatika Congress WEC'05, Istanbul, Turkey,
(2005) 85-88

[13] Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier
series. Math. Comput 19 (1965) 297–301

[14] Klette, R., Zamperon: Handbook of image processing operators. John Wiley & Sonsltd
(1996)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

