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Quite often (e.g., in applications) we have to do with functions that satisfy some equations only
approximately. There arises a natural question what errors we commit when we replace such
functions by the exact solutions to those equations. Some tools to evaluate them are provided
within the theory of the Ulam (also Hyers-Ulam) type stability.

The issue of Ulam's type stability of (�rst, functional, but next also di�erence, di�erential and
integral) equations has been a very popular subject of investigations for the last nearly �fty years
(see, e.g., [3, 8, 9, 10]). The main motivation for it was given by S.M. Ulam in 1940. The following
de�nition somehow describes the main ideas of such stability notion for equations in n variables
(R+ stands for the set of nonnegative reals).

De�nition 1. Let A be a nonempty set, (X, d) be a metric space, C ⊂ R+
An

be nonempty, T map

C into R+
A, and F1,F2 map a nonempty D ⊂ XA into XAn

. We say that the equation

F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn) (1)

is T � stable provided for every ε ∈ C and ϕ0 ∈ D with

d
(
F1ϕ0(x1, . . . , xn),F2ϕ0(x1, . . . , xn)

)
≤ ε(x1, . . . , xn), x1, . . . , xn ∈ A,

there is a solution ϕ ∈ D of equation (1) such that d
(
ϕ(x), ϕ0(x)

)
≤ T ε(x) for x ∈ A.

The next two theorems contain examples of some results on stability of the additive Cauchy
equation (see [3]) and of a linear di�erence equation of higher order (see [7]).

Theorem 1. Let E1 and E2 be two normed spaces, c ≥ 0 and p 6= 1 be �xed real numbers. Let
f : E1 → E2 be such that

‖f(x+ y)− f(x)− f(y)‖ ≤ c(‖x‖p + ‖y‖p), x, y ∈ E1 \ {0}.
If p < 0, then f is additive (i.e., f(x + y) = f(x) + f(y) for x, y ∈ E1). If p ≥ 0 and E2 is
complete, then there is a unique additive T : E1 → E2 with

‖f(x)− T (x)‖ ≤ c‖x‖p∣∣2p−1 − 1
∣∣ , x ∈ E1 \ {0}.

Theorem 2. Let T be either N or Z, X be a Banach space over F ∈ {R,C}, (bn)n∈T be a sequence
in X, a1, . . . , am ∈ F , δ > 0 and r1, . . . , rm ∈ C be the roots of the characteristic equation of the
di�erence equation

xn+m = a1xn+m−1 + · · ·+ amxn + bn, n ∈ T. (2)

Suppose that |ri| 6= 1 for i = 1, . . . ,m and (yn)n∈T is a sequence in X with

‖yn+m − a1yn+m−1 − · · · − amyn − bn‖ ≤ δ, n ∈ T.
Then there exists a sequence (xn)n∈T in X such that (2) holds and

‖yn − xn‖ ≤
δ

|1− |r1| | · . . . · |1− |rm| |
, n ∈ T.

The lecture contains some basic motivations, de�nitions and results connected with the notion
of the Ulam (but also the Hyers-Ulam) type stability. A general method will also be presented
for investigations of that stability, e.g., of the following linear (di�erence, di�erential, functional)
equations of higher orders:

bmϕ(n+m) + bm−1ϕ(n+m− 1) + · · ·+ b1ϕ(n+ 1) + b0ϕ(n) = G(n),
1



bmϕ
(m)(z) + bm−1ϕ

(m−1)(z) + · · ·+ b1ϕ
′(z) + b0ϕ(z) = G(z),

bmϕ(f
m(z)) + bm−1ϕ(f

m−1(z)) + · · ·+ b1ϕ(f(z)) + b0ϕ(z) = G(z).

It works for analogous integral equations, as well. In many cases, functions satisfying such equations
approximately generate the exact solutions to them (see, e.g., [2]). That method can be described
in the terms of �xed points in suitable function spaces (for related results see, e.g., [1, 5, 6]). Some
examples of simple applications of it are provided.
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