Mathematical and Computational Methods in Applied Sciences

- Proceedings of the 3rd International Conference on Applied, Numerical and Computational Mathematics (ICANCM ’15)
- Proceedings of the 5th European Conference of Chemical Engineering (ECCE ’15)
- Proceedings of the 5th International Conference on Communication and Management in Technological Innovation and Academic Globalization (COMATIA ’15)

Sliema, Malta, August 17-19, 2015
MATHEMATICAL and COMPUTATIONAL METHODS in APPLIED SCIENCES

Proceedings of the 3rd International Conference on
Applied, Numerical and Computational Mathematics (ICANCM '15)

Proceedings of the 5th European Conference of
Chemical Engineering (ECCE '15)

Proceedings of the 5th International Conference on
Communication and Management in Technological Innovation and Academic
Globalization (COMATIA '15)

Sliema, Malta
August 17-19, 2015
MATHEMATICAL and COMPUTATIONAL METHODS in APPLIED SCIENCES

Proceedings of the 3rd International Conference on
Applied, Numerical and Computational Mathematics (ICANCM '15)

Proceedings of the 5th European Conference of
Chemical Engineering (ECCE '15)

Proceedings of the 5th International Conference on Communication and
Management in Technological Innovation and Academic Globalization
(COMATIA '15)

Sliema, Malta
August 17-19, 2015
Editor:
Prof. Imre J. Rudas, Obuda University, Hungary

Committee Members-Reviewers:
Yixin Bao
Matteo Palai
Daniela Litan
U. C. Jha
Vasile Cojocaru
Jose Manuel Mesa Fernández
Yuqing Zhou
Zanariah Abdul Majid
Hamideh Eskandari
Tsvetelina Draganova
Maria Wenisch
Roots Larissa
Vassos Vassiliou
Elena Zaitseva
Yong Kheng Goh
Isaac Yeboah
Carla Pinto
Gabriela Mircea
Bhagwati Prasad
Md. Shamim Akhter
Mihai Tiberiu Lates
Maria Dobritoiu
Alexandru Filip
Gabriella Bognar
Emmanuel Lopez-Neri
Ibrahim Canak
Anca Croitoru
Sk. Sarif Hassan
Zhibing Zhang
Adrian Schumpe
Jerzy Baldyga
Alirio Rodrigues
Mostafa Barigou
Jaime Wisniak
Sohail Murad
Konstantinos E. Kakosimos
Raghunath V. Chaudhari
Xijun Hu
Deepak Kunzru
Reinhard Neck
Morris Adelman
Robert L. Bishop
Glenn Louy
Fernando Alvarez
Mark J. Perry
Biswa Nath Dutta
Panos Pardalos
Gamal Elnagar
Table of Contents

Plenary Lecture 1: Conservative Averaging Method: Applications and Theory
Andris Buikis
9

Plenary Lecture 2: On Some Functional Equations Arising in the Communication Networks
Janusz Brzdek
10

Aerodynamic Study of Annular Jet by Proper Orthogonal Decomposition
B. Patte-Rouland, A. Danlos, E. Rouland
13

M-Band Wavelet Based Pseudo Quantum Watermarking
Tong Liu, Xuan Xu, Xiaodi Wang
19

Special Hyperbolic Type Spline for Mass Transfer Problems in Multi-Layer 3-D Domains
Buikis Andris, Kalis Harijs, Kangro Ilmars
25

Optimization in Model Predictive Control Using Evolutionary-Gradient Algorithm
Jan Antos, Marek Kubalcik
35

Hyperbolic Type Approximation for the Solutions of the Hyperbolic Heat Conduction Equation in 3-D Domain
Buikis Andris, Kalis Harijs
42

Influence of Ultrasonic Preprocessing on Neutralization of Oil-Slimes
Esther M. Sulman, Ekaterina A. Prutenskaya, Mikhail G. Sulman, Yuriy Yu. Kosivtsov, Irina Yu. Tyamina
52

The Conservative Averaging Method: Applications, Theory and New Hyperbolic Approximation
Buikis Andris, Buikke Margarita
58

Reducing of Energy Consumption of Polymer Wastes Thermal Recycling
Yury Yu. Kosivtsov, Esther M. Sulman, Yury V. Lugovoy, Anna Yu. Kosivtsova, Antonina A. Stepacheva
68

Wave Energy and Steel Quenching Models, which are Solved Exactly and Approximately
Buikke Margarita, Buikis Andris, Harijs Kalis
72

Innovative Mechanisms for Strengthening Political Engagement of the Citizenry
Matevž Tomšič, Petra Kleindienst
82

Selective Extraction of Acetophenone from the Mixture Obtained by Enzymatic Conversion of Methylbenzylamine
Anca-Irina Galaction, Lenuta Kloetzer, Madalina Postaru, Alexandra Cristina Blaga, Gladiola Andruseau, Dan Cascaval
91

What is Lubricating Technological Innovation Networks? Qualitative Comparative Study of Denmark and Slovenia
Borut Rončević
98
Thermocatalytic Refining of Gaseous Products of Fast Pyrolysis of Plant Biomass Waste

The Role of Social Networks in the Framework of the Regional Development
Victor Cepoi

Polymers Processing and Recycling for Electrical Insulation
Robert Sekula

Catalyst of Suzuki Cross-Coupling Based on Polymeric Matrix of Amino-Functionalized Hypercrosslinked Polystyrene
Nadezhda Lyubimova, Linda Nikoshvili, Alexey Bykov, Alexander Sidorov, Valentina Matveeva, Mikhail Sulman, Esther Sulman

Regional Development Performance – A Focus on the Innovation Processes
Victor Cepoi

Robust Method for Estimating Porosity, as a Collector Rock Parameter, Necessary Studying the Efficiency of the Tertiary Migration Process in Abandoned Oil Reservoirs
Cristian Patrascioiu, Dan Jacota, Florea Minescu

Strategic Communication as a Path-Creation Tool for Technological Latecomers
Borut Rončević

Structure of Lysine Dendrimers. Molecular Dynamic Simulation
Maxim Yu. Ilyash, Denis A. Markelov, Igor M. Neelov

Rheological Behavior of Alginate-Lignosulfonate Blend Solutions
Raluca Petronela Dumitriu, Georgeta Cazacu, Dan Sorin Vasilescu

An Alternative Vision to Weber-Fechner’s Psychophysics
William M. Saade

Optimal Visible Nearest Neighbor Query Processing
P. D. Mahendhiran, R. Ranjani

Data Reconstruction Based on Probability Distribution
Dariusz Jacek Jakóbczak

Authors Index
Plenary Lecture 1

Conservative Averaging Method: Applications and Theory

Professor Andris Buikis

Institute of Mathematics and Computer Science
University of Latvia
Latvia
E-mail: buikis@latnet.lv

Abstract: The idea of conservative averaging method is at least 100 years old; the origins can be found in papers of Knezer A., Samarskii A. and Tikhonov A. This idea was employed in the modeling of heat transfer processes and improvement of oil recovering process. Practically in all papers non-classical boundary conditions will be obtained in the intuitive form by obtaining some specific peculiarities of concrete task, without well-founded mathematical basis. The mathematical basis was given in thesis of doctor of sciences Buikis A. In the thesis the method was named "conservative averaging method." In this publication of 1980ies and other papers was used the function approximation with polynomial, including polynomial and rational splines. Later exponential approximation for electric wires and car fuses was developed. Now, together with colleagues Professor Kalis H. and others we use new hyperbolic approximation with numeral parameters. In the lecture are given numerical calculations for ordinary and partial differential equations as samples of several mathematical models.

Brief Biography of the Speaker: Andris Buikis received the M.S. in numerical mathematics from University of Latvia (Faculty of Physics and Mathematics) in 1963 and Dr. math. (Candidate of Science in former USSR), University of Latvia, in 1970. He was Junior Researcher, Senior Researcher, Computing Centre, University of Latvia, 1962 – 1972. Assistant Professor and Head of Chair of Applied Mathematics, 1972 – 1976 and Head of Chair of Differential Equations and Numerical Methods, Faculty of Physics and Mathematics, University of Latvia, 1976 – 1984. Dr. habil. math. (Doctor of Science in former USSR), University of Kasan, Russia, 1988. Professor, University of Latvia, 1991.

Plenary Lecture 2

On Some Functional Equations Arising in the Communication Networks

Professor Janusz Brzdek
Pedagogical University of Cracow
Department of Mathematics
Kraków, Poland
E-mail: jbrzdek@up.krakow.pl

Abstract:

Numerous researchers have investigated various examples of functional equations that are of the general form

\[C_1(x, y)P(x, y) = C_2(x, y)P(x, 0) + C_3(x, y)P(0, y) + C_4(x, y)P(0, 0), \]

where \(C_i, i = 1, 2, 3, 4, \) are given functions in two complex variables \(x, y \) and the unknown function \(P \) is a probability generating function (PGF). So, \(P \) is defined and analytic in the closed unit disc of the complex plane. The equations have many important applications in the queuing theory and in the communication networks (see, e.g., [1, 2, 6, 7, 9, 12, 13, 14]).

A quite popular technique of solving those equations is a reduction to a boundary value problem (cf. [3, 4, 5, 8]). Unfortunately, that approach is not always sufficiently effective and there is no universal efficient solving method known for such equations, so far.

The lecture contains some general remarks concerning the issue of solving the equations, with some examples. In particular, we discuss the cases of the following two functional equations

\[y(x - A(x, y))P(x, y) = A(x, y)\left[(\gamma y + \gamma x - y)P(0, y) + \gamma (y - 1)P(0, 0) \right], \]

and

\[[(1 + \alpha + \beta)xy - \alpha y - \beta x - x^2 y^2]P(x, y) = \beta x(y - 1)P(x, 0) + \alpha y(x - 1)P(0, y), \]

where the unknown function \(P \) is a PGF, and therefore must be of the form

\[P(x, y) = \sum_{m,n=0}^{\infty} p_{m,n}x^my^n, \]

with some sequence of nonnegative real numbers \(p_{m,n} (m,n = 0, 1, 2, \ldots) \) satisfying the normalization condition

\[\sum_{m,n=0}^{\infty} p_{m,n} = 1. \]

The first equation (2) arises in [10] (see also [11]) in a performance analysis of an ATM (Asynchronous Transfer Mode) buffered switch transmitting two-class traffic over unreliable channels. The port is modeled as two logical queues with one server offering two service rates, \(1 \) and \(\gamma \), with \(r_1, r_2 \) being the arrival rates of class-1 and class-2 packets, respectively, and

\[A(x, y) = \left(1 - \frac{r_1 + r_2}{N} + \frac{1}{N}(r_1 x + r_2 y) \right)^N, \]

where \(N \) is the number of input/output ports and \(\gamma = 1 - \gamma \).

The second equation (3) was obtained in [6], in a double queue model, where the arriving customers simultaneously place two demands handled independently by two servers, with service times rates \(\alpha, \beta \) and the stability condition \(1 < \alpha \leq \beta \).
References

Brief Biography of the Speaker: Present permanent employment: Department of Mathematics, Pedagogical University, Kraków, Poland;
position of professor
1983 – Master of Science in Mathematics, Jagiellonian University, Kraków, Poland
1991 – PhD in Mathematics
2000 – Habilitation in Mathematics
Major research interests: functional equations and inequalities with their applications, Ulam’s type stability (e.g., of difference, differential, functional, integral and operator equations), real and functional analysis, fixed point theory.
Author of over 100 papers that are already printed or accepted for publication.
Chairman of the Scientific Committee of the series of conferences: International Conference on Functional Equations and Inequalities (ICFEI) (http://uatacz.up.krakow.pl/icfei/15ICFEI/)
Chairman of the Scientific and Organizing Committees of the conference: Conference on Ulam’s Type Stability, Ustron (Poland), June 2-6, 2014 (http://cuts.up.krakow.pl/)
Member of the Programm or Scientific Committees of several other international conferences
Editor (jointly with Th.M. Rassias) of the monograph Functional Equations in Mathematical Analysis (nearly 750 pages; collection of 47 papers of 67 authors), volume 52 (2013) of Springer Optimization and Its Applications series, dedicated to the 100th anniversary of S.M. Ulam
Lead Editor of Banach Center Publications volume 99 (2013) titled: Recent Developments in Functional Equations and Inequalities, Selected Topics
Lead Guest Editor of Abstract and Applied Analysis annual special issues: Ulam’s Type Stability (http://www.hindawi.com/journals/aaa/type.stability/) in the years 2012, 2013
Lead Guest Editor of Journal of Function Spaces (formerly: Journal of Function Spaces and Applications) special issue: Ulam’s Type Stability and Fixed Points Methods (http://www.hindawi.com/journals/jfs/si/329604/cfp/)
Lead Guest Editor of Discrete Dynamics in Nature and Society special issue: Approximate and Iterative Methods (http://www.hindawi.com/journals/ddns/si/473241/)
Supervisor of four promoted PhD students.
Editor of several international journals.
Plenary speaker of several international conferences.

ISBN: 978-1-61804-328-3
Authors Index

Andruseac, G. 91 Lyubimova, N. 126
Antos, J. 35 Mahendhiran, P. D. 175
Blaga, A. C. 91 Markelov, D. A. 155
Buik, M. 58, 72 Matveeva, V. 126
Buikis, A. 25, 42, 58 Minescu, F. 140
Buikis, A. 72 Neelov, I. M. 155
Bykov, A. 126 Nikoshvili, L. 126
Cascaval, D. 91 Patrascoiu, C. 140
Cazacu, G. 161 Patte-Rouland, B. 13
Cepoi, V. 112, 132 Postaru, M. 91
Chalov, K. V. 105 Prutenskaya, E. A. 52
Danlos, A. 13 Ranjani, R. 175
Dumitriu, R. P. 161 Rončević, B. 98, 145
Galaction, A.-I. 91 Rouland, E. 13
Ilyash, M. Y. 155 Saade, W. M. 166
Jacota, D. 140 Sekula, R. 120
Jakóbczak, D. J. 179 Sidorov, A. 126
Kalis, H. 25, 42, 72 Stepacheva, A. A. 68, 105
Kangro, I. 25 Sulman, E. M. 52, 68, 105
Kleindienst, P. 82 Sulman, E. M. 126
Kloetzer, L. 91 Sulman, M. G. 52, 126
Kosivtsov, Y. Y. 52, 68, 105 Tomšič, M. 82
Kosivtsova, A. Y. 68 Tymina, I. Y. 52
Kubalcik, M. 35 Vasilescu, D. S. 161
Liu, T. 19 Wang, X. 19
Lugovoy, Y. V. 68, 105 Xu, X. 19