Editors
Valeri Mladenov
Nikos Mastorakis

Advanced Topics on Applications of Fractional Calculus on Control Problems, System Stability and Modeling

by Prof. Mihailo Lazarević

Advanced Topics on Applications of Fractional Calculus on
Control Problems, System Stability and Modeling

Editors
Prof. Valeri Mladenov
Prof. Nikos Mastorakis

Authors
Mihailo Lazarević
Milan R. Rapaic
Tomislav B. Sekara
Sreten B. Stojanovic
Dragutin Lj. Debeljkovic
Zoran Vosika
Goran Lazovic
Jovana Simic-Krstic
Djuro Koruga
Dragan T. Spasic
Andjelka N. Hedrih
Katica R. (Stevanovic) Hedrih

Published by WSEAS Press
www.wseas.org
Advanced Topics on Applications of Fractional Calculus on Control Problems, System Stability and Modeling

Published by WSEAS Press
www.wseas.org

Copyright © 2014, by WSEAS Press

All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press.

All papers of the present volume were peer reviewed by two independent reviewers. Acceptance was granted when both reviewers' recommendations were positive.
See also: http://www.worldses.org/review/index.html

World Scientific and Engineering Academy and Society
Preface

In this monograph several aspects of fractional calculus will be presented ranging from its brief history over control applications and stability problems for time delay systems to applications in bio-engineering fields with illustrative examples.

The advantages of fractional calculus have been described and pointed out in the last few decades by many authors. Fractional calculus is based on derivatives and integrals of non integer arbitrary order, fractional differential equations and methods of their solution, approximations and implementation techniques. It has been shown that the fractional order models of real systems are regularly more adequate than usually used integer order models.

The monograph consists of seven chapters and an appendix where related a list of references include in the end of chapters.

The monograph begins in Chapter 1 with a brief historical review of the theory of fractional calculus and its applications. The theory of non-integer order differentiation and integration is almost as old as classical calculus itself, but nevertheless there seems to be an astonishing lack of knowledge of this field in most mathematicians. A look at the historical development can in parts explain the absence of this field in today's standard mathematics textbooks on calculus and in addition give the reader not familiar with this field a good access to the topics addressed in this monograph. In this chapter some well known definitions and properties of fractional order differ integrals are also stated.

Chapter 2 is devoted to the problem of discrete-time (digital) implementation of fractional order systems, i.e. fractional differ integrators, where two novel methods have been closely investigated: direct optimal and indirect. Both methods produce approximations of fractional differ integrators, which are then used to create approximations to more complex fractional order systems. It has been demonstrated by means of a number of numerical examples that both presented methods.

Some of stability problems for time delay systems have been discussed in the two following chapters (Chapters 3, 4). While Lyapunov methods have been developed for stability analysis and control law synthesis of integer linear systems and have been extended to stability of fractional systems, only few studies deal with non-Lyapunov stability of fractional systems. Here, finite-time stability of fractional order time-delay systems is considered in Chapter 3. Sufficient conditions for finite-time stability for (non) linear (non)homogeneous as well as perturbed fractional order time-delay systems are obtained and presented.

The problem of stability (simple stability and robust stability) of linear discrete-time fractional order systems is addressed in Chapter 4 where it is shown that some stability criteria for discrete time-delay systems could be applied with small changes to discrete fractional order state-space systems. The approach is based on the idea of constructing novel Lyapunov-Krasovskii functionals combined with free-weighting matrices or algebraic methods.

The next three Chapters (5, 6, 7) are related to applications of fractional calculus in bio-engineering fields. Chapter 5 is dedicated to the mathematical modeling of skin structure applying fractional calculus where it is proposed the skin structure as a more complex system consisting of several layers which describes series of structures via continuous generalizing (distributed order type) the Cole equation. According to this model and experimental data of the skin bioimpedance measurements, one may predict more complex equivalent electrical circuit and define new time parameters which correspond to each reduced Cole element.

In Chapter 6, a thermodynamically consistent rheological modified Zener model of viscoelastic body, i.e. standard fractional linear viscoelastic body is studied and presented. Proposed model comprises both fractional derivatives of stress and strain and the restrictions on the coefficients that follow from Clausius Duhem inequality. In that way, it should be included in both analytical and experimental projects ab initio, particularly in experiments in which newly developed materials are tested.
Finally, Chapter 7 concludes this monograph showing an useful modeling double DNA helix main chains of the free and forced fractional order vibrations applying fractional calculus. Different models are focusing on different aspects of the DNA molecule (biological, physical and chemical processes in which DNA is involved). The aim of this study was to model the DNA dynamics (vibrations of DNA chains) as a biological system in a specific boundary condition that are possible to occur in a life system during regular function of a DNA molecule.

I hope that this monograph will be value to Ph.D. students and fractional systems researchers as well as the other readers will find something in this monograph exciting.

Also, I want to thank very much Mrs. Ranki Gajic for the support in the preparation of the manuscript for English edition.

Belgrade, August, 2012

Dr Mihailo Lazarević
(Mихаило Лазаревић)
University of Belgrade
Faculty of Mechanical Engineering
Belgrade, Serbia
Acknowledgements

Authors gratefully acknowledge the support of Ministry of Education, Science and Technological Development of the Republic of Serbia under the projects: No.35006, No.41006, No.174016, No. ON174001, No.33020 as well as works on this book were partially supported through NATO Collaborative Linkage Grant No 984136.

The Authors
Table of Contents

Preface iii
Acknowledgements v

Part I. Introduction to Fractional Calculus

1 Introduction to Fractional Calculus with Brief Historical Background 3
 by Mihailo P. Lazarevic, Milan R. Rapaic, Tomislav B. Sekara
 1.1 Brief History of Fractional Calculus 4
 1.2 Basic Definitions of Fractional Order Differintegrals 9
 1.3 Basic Properties of Fractional Order Differintegrals 12
 References 15

Part II. Control and Stability Issues

2 Direct and Indirect Method for Discretization of Linear Fractional Systems 19
 by Tomislav B. Sekara, Milan R. Rapaic
 2.1 Introduction 19
 2.2 Motivation and Formulation of the Problem 21
 2.3 The Direct Optimal Method for Discretization of Fractional Integrators 24
 2.3.1 The Optimality Criterion 24
 2.3.2 Optimal Discrete Approximations of the Fractional Integrators 25
 2.3.3 Remarks on the Optimization Procedure 29
 2.4 Indirect Method for Discretization of Fractional Integrators 29
 2.5 Examples 33
 2.6 Conclusions 38
 References 39

3 Finite-Time Stability of Fractional Order Time-Delay Systems 43
 by Mihailo P. Lazarevic
 3.1 Introduction 43
 3.2 Preliminaries on Integer Time-Delay Systems 45
 3.2.1 Some Previous Results Related to Integer Time-Delay Systems 47
 3.3 Preliminaries on Stability of Fractional Order Systems Including Time-Delays 48
 3.3.1 A Review on Stability of Fractional Order Time Delay System 51
 3.4 Finite-Time Stability of Fractional Order Time-Delay Systems 54
 3.5 Conclusion 62
 References 63

4 Stability of Discrete-Time Fractional Order Systems: 67
 An Approach based on Stability of Discrete-Time Integer Order Time-Delay Systems
 by Sreten B. Stojanovic, Dragutin Lj. Debeljkovic, Mihailo P. Lazarevic
 4.1 Introduction 67
 4.2 Problem Formulation 69
 4.2.1 The Discrete-Time Fractional Order System as Discrete-Time Linear Integer
 Order Time Delay System: Stability Issue 69
 4.3 The Problem Solution 71
 4.3.1 Stability of Linear Discrete Time Delay Systems 71
 4.3.1.1 Delay-Independent Stability 72
 4.3.1.2 Delay-Dependent Stability 80
 4.4 Conclusion 83
 References 84

Part III. Modeling

5 Modeling of Human Skin using Distributed Order Fractional Derivative 91
Model-Frequency Domain
by Zoran Vosika, Mihailo Lazarevic, Goran Lazovic, Jovana Simic-Krstic, Djuro Koruga

5.1 Introduction 91
5.2 Distributed Order Type Fractional Derivative Model of Impedance 93
 5.2.1 Some Basic Results Related to Dielectric Properties of Materials 93
 5.2.2 Basic Facts Related to Bio-Impedance of Human Skin 94
5.3 Distributed Order Type Fractional Derivative Model of Impedance 95
 5.3.1 Fractional Calculus Preliminaries 95
 5.3.1.1 Basic Definitions 95
 5.3.1.2 Distributed Caputo Derivatives and Integrals 95
 5.3.1.3 Distributed Caputo-Weyl Derivatives and Integrals 96
 5.3.2 Cole and Distributed Order Cole Element 98
 5.3.3 Materials and Methods 100
 5.3.4 Results and Discussion 101
5.4 Conclusion 103
References 104

6 A Thermodynamically Consistent Rheological Model for Engineering Applications
by Dragan T. Spasic

6.1 Introduction 107
6.2 The Modified Zener Model 110
6.3 The Applications 114
 6.3.1 The Impact Against a Rigid Wall - An Ideal Case 114
 6.3.2 The Forced Vibrations with Fractional Type of Dissipation Pattern 119
 6.3.3 A Column-Like Structure under Seismic Load 124
 6.3.4 A Geometrically Nonlinear Problem 129
 6.3.5 The Impact Problem in the Presence of Dry Friction 134
6.4 Conclusion 141
References 141

7 Modeling Double DNA Helix Main Chains of the Free and Forced Fractional Order Vibrations
by Andjelka N. Hedrih, Katica R. (Stevanovic) Hedrih

7.1 Introduction - DNA-Structure and Function 145
7.2 Mechanical Properties of DNA Achieved Experimentally 147
7.3 Mechanical Models of the DNA 147
7.4 DNA Models by N. Kovaleva and L. Manevich 148
7.5 Modified DNA Models by N. Kovaleva and L. Manevich for the Forced Regimes 150
7.6 Consideration of the Basic DNA Model - Linearized Kovaleva-Manevich’s DNA Model 150
 7.6.1 Consideration of the Free Vibrations of a Basic DNA Model - Linearized Kovaleva-Manevich’s DNA Model 151
 7.6.2 Boundary Conditions of the Double DNA Chain Helix 153
 7.6.3 Consideration of the Forced Vibrations of a Basic DNA Model - Linearized Kovaleva-Manevich’s DNA Model 154
 7.6.4 Consideration of the Forced Vibration Regimes of a Basic DNA Model - Linearized Kovaleva-Manevich’s DNA Model-Resonance and Dynamical Absorption 159
7.7 The Double DNA Fractional Order Chain Model on the Basis of the Linearized Kovaleva-Manevich’s DNA Models for Free and Forced Vibrations 160
 7.7.1 Constitutive Relation of the Standard Light Fractional Order Creep Element 160
 7.7.2 The Double DNA Fractional Order Chain Free Vibration Model on the Basis of the Linearized Kovaleva-Manevich’s DNA Model 160
 7.7.3 Analytical Solutions of the Subsystems of the Main Chains Fractional Order Differential Equations for Free Fractional Order Vibrations 163
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7.4 Main Coordinates of the Fractional Order Double DNA Helix Chain System and Corresponding Partial Fractional Order Oscillators</td>
<td>168</td>
</tr>
<tr>
<td>7.7.5 Visualization of the Main Modes of Fractional Order Double DNA Helix Chain System Free Vibrations and Corresponding Partial Fractional Order Oscillator Modes</td>
<td>171</td>
</tr>
<tr>
<td>7.7.6 The Double DNA Fractional Order Chain Forced Vibration Model on the Basis of the Linearized Kovaleva-Manevich’s DNA Model</td>
<td>172</td>
</tr>
<tr>
<td>7.7.7 Analytical Solutions of the Subsystems of the Main Chains Fractional Order Differential Equations for Forced Regime Oscillations</td>
<td>174</td>
</tr>
<tr>
<td>7.7.8 Forced Eigen Modes of the Subsystems of the Main Chains of a Fractional Order Double DNA Helix Chain System Forced Vibrations</td>
<td>176</td>
</tr>
<tr>
<td>7.8 Concluding Remarks</td>
<td>180</td>
</tr>
</tbody>
</table>

References 181

Appendix 185

Subject Index 201
SUBJECT INDEX

A
- Adams-Bashforth Corrector, 31
- Asymptotically Stable, 49, 50, 51, 53, 71-81
- Autonomous, 44, 49, 50, 53, 55, 60, 61, 69, 70, 151, 152

B
- Banach Space, 46
- Bellman-Gronwall Inequality, 43, 44
- Bessel Functions, 23
- BIBO Stability, 44, 49, 53, 54
- Bioimpedance, 92

C
- Caputo, 3, 8-13, 44, 48-50, 53, 54, 57, 68, 95-97, 100
- Cauchy’s Integral Formula, 6
- Cauchy Problem, 119, 135
- Caputo-Weyl Derivative, 95, 96
- Characteristic Matrix, 53
- Clausius Duhem Inequality, 107, 110, 119, 123-125, 133
- Cole-Cole Model, 92, 93
- Cole-Davidson Function, 92
- Collision, 115, 134
- Commensurate, 44, 48, 50
- CRONE, 19

D
- Delay Differential Equations (DDEs), 43
- Delay-Independent Stability, 67, 72
- Delay-Dependent Stability, 67
- Degrees of Freedom, 3, 123, 148, 155, 157, 158, 161, 170, 195-197
- Discretization, 19, 20-24, 29-32, 35, 38, 69, 114, 136
- Diffusion Equation, 21
- Distributed Order, 92, 93, 95, 98, 99, 103
- Double DNA Helix Chain, 145, 151, 154, 157-162, 168-172, 176, 179, 180
- Dry Friction, 107, 108, 119, 133, 134, 137, 141

E
- Eigenvalues, 50, 51, 53, 80, 81
- Eigenvectors, 81
- Eigen Circular Frequencies, 151, 152, 153, 159, 169, 170, 178, 180
- Erdely-Kober Definition, 9

F
- FIR Filter, 23
- Finite-Time Stability, 43-47, 54, 57, 58, 61, 62
- Fractional Derivative, 3-13, 44, 48, 50, 53, 54, 57, 68, 91-97, 103, 107, 109, 110, 113, 114, 118-125, 129, 133, 200
- Fractional Integral, 6-13, 29, 95, 186
- Fractional Order Systems, 3, 13, 14, 19-21, 34, 38, 43, 44, 48, 51, 54, 57, 59, 60, 62, 67-71, 75-77, 78, 83
- Fractional Order Controllers, 13, 19
- Forced Vibrations, 119, 120, 145, 150, 151, 154, 160, 172, 174, 176, 177, 180
- Frequency Analysis, 91

G
- Gamma Function, 4, 6, 7, 10, 55, 58, 61, 69, 95, 110, 185, 186
- Generalized Coordinate, 177, 192
- Grunwald-Letnikov Definition, 7, 9, 12, 20, 48, 68

H
- Havriliak-Negami Function, 92
- Heat Conduction, 21, 22
- Heat Equation, 21, 52
- Heaviside Step Function, 111
- Hereditary Properties, 3, 197, 198
- Hooke Law, 108
- Human Skin, 91-94, 101-103, 189, 190

I
- IIR Filter, 23
- Incommensurate, 48
- Initial Value, 49, 52, 56, 199
- Initial Condition, 8, 10-13, 20, 44, 47-60, 95, 98, 115, 121, 124, 130, 131, 134, 135, 163, 166-170, 174, 177, 200
- Infinite-Dimensional, 51
- Integro-Differential Inclusions, 107

K
- Kelvin-Voigt Viscoelastic Body, 108

L
- Lambert Function, 44, 52
- Least-Squares Approximation, 28
- Linear Matrix Inequality (LMI), 44, 51
- Lyapunov-Razumikhin Function, 44, 53
Mihailo P. Lazarević is a Professor at the University of Belgrade, Faculty of Mechanical Engineering, Department of Mechanics in Serbia.

Mihailo P. Lazarević was born in Belgrade (Serbia) in 1964. He received four degrees from Belgrade University.
- **B.Sc. in Mechanical Engineering (Aerospace),**
- **B.Sc. in Electrical Engineering,**
- **M.Sc. in Control and System Science Engineering and**
- **Ph. D. in Mechanical Engineering (Robotics).**

He worked at the University of Belgrade at the Faculty of Mechanical Engineering, Department of Mechanics as an Assistant from 1996-2001. He became an Assistant Professor in 2001 and Associate Professor in 2005 and since 2009 he is a full Professor at the same Faculty.

He is a member of the Serbian Society of Mechanics and the Secretary of the Serbian Society of Mechanics since July 2013. During the years of 2009 to 2012 he was the Chief of the Laboratory of Applied Mechanics of the Faculty of Mechanical Engineering in Belgrade University.

He published 4 National Monographs, 4 Chapters in International Monographs, 7 articles in Leading International Journals, 8 articles in International Journals, 12 articles in National Journals, 80 articles in the proceedings of International Meetings, Conferences and Symposia, 1 Book and 2 Handbooks as collections of solutions and solved problems. Also, he participated in several research projects in Serbia and abroad (EUREKA) related to the field of (bio)robotics and applications of Fractional Calculus.

He is engaged as a reviewer by several International Journals and organizer of many International/National Conferences. According to Scopus, he has over 120 citations and his H index is 7.

His scientific research can be divided into several thematic areas among them the Mathematical Modeling and Control of Rigid Bodies by Electrical Devices (Robotics and Biomechatronics) which has been his first research interest. He has also been working on extension of ideas of Fractional Calculus to Modeling of Mechatronic Systems and Biomechanical Tissues.

In addition, a wide range of topics of his interest are in Different Classes of Time Delay Systems, in Theory of Electroviscoelasticity, in Applications of Fractional PID, in Fractional Iterative Learning Control and in Applications of Fractional Wavelet Transform in Signal and Image Processing.