

Editor Prof. George J. Tsekouras

Image Analysis Inspired by Physical Electro-Magnetic Fields

by Dr. Xiaodong Zhuang and Prof. Nikos Mastorakis

ISBN: 978-960-474-390-2

Image Analysis Inspired by Physical Electro-Magnetic Fields

Editor

Prof. George J. Tsekouras Military Institutes of University Education (ASEI) Hellenic Naval Academy Terma Hatzikyriakou 18539 Piraeus, Greece

Authors

Dr. Xiaodong Zhuang Prof. Nikos Mastorakis

Image Analysis Inspired by Physical Electro-Magnetic Fields

Published by WSEAS Press www.wseas.org

Copyright © 2014, by WSEAS Press

All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press.

All papers of the present volume were peer reviewed by two independent reviewers. Acceptance was granted when both reviewers' recommendations were positive. See also: http://www.worldses.org/review/index.html

ISBN: 978-960-474-390-2

World Scientific and Engineering Academy and Society

Preface

Nature has enormous power and intelligence behind its common daily appearance, and it is generous. The development of human society relies on natural resources in every area (both material and spiritual). We learn in it and from it, virtually as part of it. Nature-inspired systems and methods have a long history in human science and technology. For example, in the area of computer science, the recent well-known ones include the artificial neural network, genetic algorithm and swarm intelligence, which solve hard problems by imitating mechanisms in nature. Nature-inspired methods are also being quickly developed and applied in other areas. In this book, we just try to pick up a drop from the sea of nature's intelligence, and apply it in a specific area. We hope that it may inspire the readers' interest of nature's intelligence when exploring in their own areas of science and technology.

Traditional image processing methods usually take images as data sets or mathematical functions. In our idea of nature-inspired methods, images are more like the imitation of certain natural entities (such as electric charges, currents, etc.) simulated in computer. The evolutions of such virtual entities can be simulated according to corresponding natural laws and the simulation result can be studied for possible utilization in practical image processing tasks. Nowadays, nature-inspired methods in image processing have attracted more and more attention and research efforts. Physics and biology are the two main sources from which most of such methods have derived. Related work has achieved promising results in practical tasks, which indicate that it is a direction potentially leading to breakthroughs of new image analysis techniques. Methods inspired by physical electro-magnetic field make up a branch of this field, which have been successfully applied in the practical applications including: recognition of human ear, face and gait; extraction of corner, edge, and shape skeleton in images. The existing methods inspired by electro-magnetic theory generally belong to two categories: analysis of the virtual field generated by the image (such as the "force field transform") and deforming a shape or curve under the virtual force field generated by the image (such as the "active counter model").

The beginning of the research introduced in this book was in 2006, after we read a paper about "force field energy functionals for image feature extraction" (David J. Hurley, Mark S. Nixon, John N. Carter, 2002). This paper inspired our strong interest of natural analogies in image processing. Since then, we have been exploring in the area of nature-inspired image analysis for years and have published a series of papers about our original methods and results. These methods are mainly inspired by the theory of electro-magnetic field, which reveal the structure properties of the image by electro-magnetics inspired transforms. In these transforms, the formulas in electro-magnetic theory are adjusted to more generalized forms in order to suit practical image analysis tasks, and some novel viewpoints which take the image as a virtual field are presented. Several types of methods have been proposed from different aspects of field theory (vector field, scalar potential field, and field source distribution), which indicates that the physics inspired virtual field is a novel way of designing new effective image transforms.

Nature-inspired methodology itself means continuous exploration in the rich resource of the intelligence shown by nature. Therefore, this book does not mean the final conclusion of the authors' on-going work. Further promising results in both theory and practice are expected and we hope our research attempts shown in the book may inspire new ideas of others, which will surely be much more valuable than the book itself.

Dr. Xiaodong Zhuang Automation & Engineering College Qingdao University Qingdao, 266071 China

Prof. Dr. Nikos E. Mastorakis Technical University of Sofia, Bulgaria and Military Institutes of University Education, Hellenic Naval Academy, Greece

Acknowledgements

The research introduced in this book is supported by WSEAS on the research topic of "Advanced Image Processing Techniques". We are sincerely grateful to the WSEAS friends for their years of warm support in our research cooperation; we would like to say that the book is the fruit of our years of cooperation research efforts. And we heartily appreciate those who helped us through hard times in research by their warm encouragement and friendly expectation to us.

The Authors

Table of Contents

Preface							
Ac	knowle	edgements			iv		
1	Review						
	1.1	Literatu	re Review		1 1		
	1.2	Overview of The Book					
2	Elect	Methods	3 5				
	2.1		-	tial Field Inspired by Physical Electro-Static Field	5 5		
		2.1.1		ive Potential Field of Gray-Scale Images	6		
		2.1.2		erty of The Relative Potential Field	7		
		2.1.3	-	gmentation Based on The Relative Potential Field	9		
	2.2			ods Inspired by Electro-Static Field	17		
		2.2.1		sing Vector Field of Gray-Scale Images	18		
			2.2.1.1	The Diffusing Vector Field of Gray-Scale Images	18		
			2.2.1.2	The Diffusing Vector Field of Images	19		
			2.2.1.3	The Primitive Area In The Diffusing Vector Field	22		
			2.2.1.4	Diffusing Centers in The Primitive Area	22		
			2.2.1.5	Primitive Area Extraction by The Area-Expanding Method	23		
			2.2.1.6	Gray-Scale Image Segmentation Based on The Primitive Area	25		
				Extraction	-		
		2.2.2	The Com	pressing Vector Field of Gray-Scale Images	27		
			2.2.2.1	The Definition of The Compressing Vector Field	27		
			2.2.2.2	Additional Border Force for Compressing Vector Field in Border	28		
				Regions			
			2.2.2.3	The Extraction of Region Center Points	32		
			2.2.2.4	The Extraction of Primitive Regions	34		
			2.2.2.5	Gray-Scale Image Segmentation in The Compressing Vector Field	34		
	2.3	Electro-	Statics Insp	bired Source Reversing for Gray-Scale Images	36		
		2.3.1	-	ionship Between the Electro-Static Field and The Field Source	36		
		2.3.2		ce-Reverse Transform for Digital Images	37		
		2.3.3		al Field Source as the Representation of Image Structure	38		
		2.3.4		order Detection Based on The Source-Reverse Transform	41		
		2.3.5	•	site Transform From The Virtual Source to The Restored Image	42		
		2.3.6		uction of The Virtual Field Source	43		
3	Mag	neto-Stat	ics Inspire	d Methods	45		
	3.1		-	Current in Gray-Scale Images	45		
		3.1.1	-	al Property of The Magnetic Field Generated by Stable Currents	45		
			3.1.1.1	The Magnetic Field of The Current in A Straight Wire and Its Spatial	45		
				Property			
			3.1.1.2	The Magnetic Field of The Current in A Closed Wire With Arbitrary	46		
				Shape and Its Spatial Property			
		3.1.2	The Tange	ent Edge Vector for Simple Image Regions	47		
			-	The Definition of The Tangent Edge Vector	48		
				The Spatial Property of The Virtual Magnetic Field Generated by The	49		
				Set of Tangent Edge Vectors			
		3.1.3		al Edge Current in Digital Images	52		
		3.1.4		gmentation Based on The Virtual Edge Current	55		
		3.1.5		ence of Different Edge Intensity Thresholds on Border Formation	58		
	3.2			r Field Transform of Gray-Scale Images	60		
		3.2.1	0	nition of The Curling Vector	60		

		3.2.2	The Definition of The Curling Vector Field Transform	61		
	3.2.3 Image Segmentation in The Curling Vector Field			63		
	3.2.3.1 The Rotating Direction and Base Points of Rotating Expansion					
			3.2.3.2 Primitive Region Extraction in The Curling Vector Field	65		
			3.2.3.3 Real World Image Segmentation Based on The Curling Vector Field	66		
	3.3	The Curl Source Reversing for Digital Images				
		3.3.1 The Relationship Between The Magnetic Field and Its Field Source				
		3.3.2 The Virtual Curl Source Reversing		68		
		3.3.3 The Spatial Properties of The Virtual Curl Source for Digital Im-		70		
		3.3.4	The Opposite Transform Form The Virtual Curl Source to The Restored Image	75 79		
4		Relative Field Method on Image Sequence Processing				
	4.1 The 3D Relative Potential Field of Image Sequences					
		4.1.1 The Electro-Static Potential and Its Spatial Property				
		4.1.2	A General Form of Virtual Potential Field for Images	80 81		
		4.1.3 The Definition of 3D Relative Potential Field				
	4.2	L				
	4.3					
		4.3.1	The 3D Segmentation Results for The Testing Image Sequences	88		
_		4.3.2	The 3D Segmentation Results for The Real-World Image Sequences	93 129		
5	Relative Field Method on Color Image Processing					
	5.1 The Definition of The Relative Potential for Color Images			129		
		5.1.1	A general form of virtual potential field for 2D images	129		
	5.0	5.1.2	The Relative Potential Field for Color Images	130		
	5.2	atial Property of The Color Relative Potential Field	133 135			
	5.3 Color Image Segmentation in The Color Relative Potential Field					
	5.4	The Preprocessing of Brightness Normalization14Imary and Discussion15				
6		Summary and Discussion				
			ansformation Among Different Patterns (The Diffusing, Whirling, and Shrinking	151		
	\sim		s) of Vector Field	155		
	6.2	1 1				
		6.3 Summary				
	References Subject Index					
	Subject Index					

SUBJECT INDEX

A

Ampere's Law, 68 Area Expanding, 65 Area Merging, 25

B

Base Point, 64 Biot-Savart Law, 47 Border Force, 28 Brightness Normalization, 141

С

Color Relative Potential, 131 Compressing Vector Field, 27 Cross Product, 76 Curl, 69 Curl Source Reverse, 69 Curling Vector Field, 61 Current Element, 46

D

Diffusing Center, 22 Diffusing Vector Field, 19 Divergence, 38

E

Electro-Static Force, 17 Electro-Static Potential, 5

F

Field Intensity, 36 Field Source, 36, 68

G

Gaussian Law, 36

Η

Hamiltonian Operator, 36, 68

I

Image Compression, 43 Image Gradient, 37, 48 Image Segmentation, 9, 25, 34, 55, 63 Image Sequence, 79 Image Sequence Segmentation, 88 Image Structure, 23, 38, 65 Image Transform, 5

L

Laplacian Operator, 156 Local Image Feature, 6

Μ

Magnetic Induction, 47

Ν

Nature Inspired Method, 1

Р

Physics Inspired Method, 1 Primitive Region, 34, 65

R

Region Merging, 14, 56 Region Shrinking, 34 Relative Field, 79 Relative Potential Field, 6 Repulsive Vector, 18 Right-Hand Rule, 45 Rotating Expansion, 65

S

Sobel Operator, 37, 48, 70 Source Reverse Transform, 37

Т

Tangent Edge Vector, 47 Three-Dimensional Relative Potential, 81 Three-Dimensional Segmentation, 88

V

Vector Field Transform, 17 Virtual Edge Current, 45 Virtual Source, 37, 68

Dr. Xiaodong Zhuang is Associate Professor at the Automation and Engineering College of Qingdao University (Qingdao, China).

He received his B.Sc. and M.Sc. from the Electronics and Engineering Department of Qingdao Ocean University (Qingdao, China) and His received his Ph.D. degree from the Computer Science Department of China Ocean University (Qingdao, China).

He is also a post-doctoral researcher under the supervision of Prof. Nikos E. Mastorakis and a researcher in the WSEAS Research Department (Greece). Also he has served as a visiting researcher in the Oceanic Remote Sensing Laboratory (ORSL) of the Chinese Education Ministry since 2006 and he served as a researcher in the "Professor Partnership Program" of Nvidia Corporation in 2010.

The research interest of Dr. Xiaodong Zhuang includes image segmentation and analysis, speech processing & recognition and parallel programming. He has been in charge of several research projects supported by WSEAS Research Department, Qingdao University, Nvidia Corporation and ORSL respectively. He has published more than 50 papers in journals and conferences and 3 books. He has served as a supervisor for master students of "Signal and Information Processing" in Qingdao University since 2006. He has been an active reviewer of several International Journals ("Artificial Intelligence in Medicine", Elsevier; "Journal of Qingdao University - Natural Science Edition"; "Computers in Biology and Medicine"; "Medical Engineering and Physics"; "Biomedical Signal Processing and Control" and "Neural Computing and Applications").

Prof. Dr. Nikos E. Mastorakis is Professor at the Technical University of Sofia, Bulgaria and also Professor at the Department of Computer Science at the Military Institutions of University Education (MIUE) - Hellenic Naval Academy, Greece.

He received his B.Sc. and M.Sc. in Electrical Engineering from the National Technical University of Athens, Greece and his Ph.D. in Electrical Engineering and

Computer Science from the same university.

He also received his B.Sc. in Pure Mathematics from the National University of Athens, Greece. He served as special scientist on Computers and Electronics at the Hellenic Naval Academy and taught several courses in the Electrical and Computer Engineering Department of the National Technical University of Athens (1998-1994). He has also served as Visiting Professor at the University of Exeter, School of Engineering (UK, 1998) and visiting Professor at the Technical University of Sofia (Bulgaria, 2003-2004).

The Editor of over than 200 Books and the author of 5 books, Dr. Mastorakis has published more than 600 papers in international books, journals and conferences. An active reviewer of 26 International Journals and member of the Editorial Board of 13 International Journals and Editor of International Book Series, Member of the Editorial Board of "Advances in Computation: Theory and Practice" by NOVA), Dr. Mastorakis has received several awards for his academic studies and his scientific research. He is an active researcher in Applied Mathematics and Computer Science and he is the Editor-in-Chief in many International Journals. He has organized more than 30 International Conferences, 40 Special Sessions, 3 Workshops and has given many plenary lectures. He is also member of IEEE, New York Academy of Sciences, A.F. Communications & Electronics Association and member of the American Association for the Advancement of Science.

