Recent Advances in Energy and Environmental Management

- Proceedings of the 8th International Conference on Energy & Environment (EE ’13)
- Proceedings of the 7th International Conference on Geology and Seismology (GES ’13)
- Proceedings of the 1st International Conference on Environmental Management in Construction (EMC ’13)
- Proceedings of the 6th International Conference on Urban Rehabilitation and Sustainability (URES ’13)

Rhodes Island, Greece, July 16-19, 2013

Scientific Sponsors
RECENT ADVANCES in ENERGY and ENVIRONMENTAL MANAGEMENT

Proceedings of the 8th International Conference on Energy & Environment (EE '13)
Proceedings of the 7th International Conference on Geology and Seismology (GES '13)
Proceedings of the 1st International Conference on Environmental Management in Construction (EMC '13)
Proceedings of the 6th International Conference on Urban Rehabilitation and Sustainability (URES '13)

Rhodes Island, Greece
July 16-19, 2013

Scientific Sponsors:

Technical University of Sofia, Bulgaria
Polytechnic University of Bari, Italy
University Politehnica of Bucharest, Romania
RECENT ADVANCES in ENERGY and ENVIRONMENTAL MANAGEMENT

Proceedings of the 8th International Conference on Energy & Environment (EE '13)
Proceedings of the 7th International Conference on Geology and Seismology (GES '13)
Proceedings of the 1st International Conference on Environmental Management in Construction (EMC '13)
Proceedings of the 6th International Conference on Urban Rehabilitation and Sustainability (URES '13)

Rhodes Island, Greece
July 16-19, 2013

Published by WSEAS Press
www.wseas.org

Copyright © 2013, by WSEAS Press

All the copyright of the present book belongs to the World Scientific and Engineering Academy and Society Press. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Editor of World Scientific and Engineering Academy and Society Press.

All papers of the present volume were peer reviewed by no less that two independent reviewers. Acceptance was granted when both reviewers' recommendations were positive.
See also: http://www.worldses.org/review/index.html

ISSN: 2227-4359
ISBN: 978-960-474-312-4
RECENT ADVANCES in ENERGY and ENVIRONMENTAL MANAGEMENT

Proceedings of the 8th International Conference on Energy & Environment (EE '13)
Proceedings of the 7th International Conference on Geology and Seismology (GES '13)
Proceedings of the 1st International Conference on Environmental Management in Construction (EMC '13)
Proceedings of the 6th International Conference on Urban Rehabilitation and Sustainability (URES '13)

Rhodes Island, Greece
July 16-19, 2013
Editors:
Prof. Valeri Mladenov, Technical University of Sofia, Bulgaria.
Prof. Tasho Tashev, Technical University of Sofia, Bulgaria.
Prof. Hui Wang, North Carolina State University, USA.
Prof. Ivan Kralov, Technical University of Sofia, Bulgaria.
Prof. Sergey Stankevich, Scientific Centre for Aerospace Research of the Earth (CASRE), Ukraine.
Prof. Pelin Yildiz, Hacettepe University, Turkey.
Prof. Jon Burley, Michigan State University, USA.

Reviewers:
Mioara Chirita
Petr Mastny
Ali Salehipour
Hamed Niroumand
Irene Zananiri
Lamberto Tronchin
Konstantinos Vogiatzis
Gheorghe Mugurel Radulescu
Gherghinescu Sorin
Reza Fathipour
Luis Loures
Mehdi Seyyed Almasi
Maria Wenisch
Guoxiang Liu
Yang Zhang
Pablo Fdez-Arroyabe
Heimo Walter
Mihaela-Carmen Muntean
Gheorghe Badea
Bahar Razavi
Gabriel Badescu
Rodica Badescu
Dragoi Andreea
Karim Shirazi
Hui Wang
Lamyaa Taha
Ismail Rakip Karas
Chirita Mioara
Walid Oueslati
José Nunes
Francisco Diniz
Cabureanu Popescu Madalina Xenia
Oguz Arslan
Arion Felix
Ioana Diaconescu
Khaled Galal Ahmed
Sorin-Codrut Florut
Jose Manuel Mesa Fernández
Arash Barjastehe
Ioana Adrian
Adrian Turek Rahoveanu
Krisztina Uzuneanu
Al Emran Ismail
Roman Mihai Daniel
Davorin Kralj
Jon Burley
Harry Coomar Shumsher Rughooputh
Saeid Eslamian

Monica Dumitrascu
Zohreh Salavatizadeh
Rosli Abu Bakar
Humberto Varum
Ramin Khodafarin
Mohamed Salih Dafalla
Claudio Ciovig
Maria De Fátima Nunes De Carvalho
Kannan Subramanian
Ayca Tokuc
Dragos Ilie
Denizar Cruz Martins
Adrian Baltalunga
Alina Adriana Minea
Hsin-Jang Shieh
Vasile Zotic
Lucija Foglar
Ahadollah Azami
Oprita Razvan
Andrei Madalina-Teodora
Cristina Matos
Tejinder Saggu
Mihaela Dudita
Giri Kattel
Sorin Gherghinescu
Ali Dashi Shafiei
Ahmet Ertek
Cornelia Aida Bulucea
Sara Sadrazadeh
Suzana Yusup
Feridoun Nahidi Azar
Catarina Luisa Camarinhas
Miguel Angel Vigil Berrocal
Andreea Zamfir
Thomas Panagopoulos
Kaushal K. Srivastava
Ana Maria Tavares Martins
Hamed Ziaepoor
Nabil Mohareb
Diana-Elena Alexandru
Mario Torcinaro
Claudia A. F. Aiub
Saad Bakkali
Maria Bostenaru Dan
Grabara Janusz
Corina Carranca
Table of Contents

Plenary Lecture 1: Energy and Environmental Landscape: The Laws of Thermodynamics and Nature
M. Kostic
11

Plenary Lecture 2: Emphasis on Sustainability Concepts for Analyzing the Disconnection Process
Energy Transformation in the Generator Circuit-Breaker
Cornelia Aida Bulucea
12

Kaoru Takeishi
13

Plenary Lecture 4: Formaldehyde Emission Modeling Depending on Plywood Thickness at Different Testing Temperatures
Loredana Anne-Marie Badescu, Octavia Zeleniuc
15

Plenary Lecture 5: Incidence of Cutting Fluids on the Machining Process, the Operator and the Work Environment
Constantin Buzatu
16

Plenary Lecture 6: Significance of Structural Health Monitoring in Cultural Heritage Structures
Ahmet Turer
17

Plenary Lecture 7: Heavy Metal Contamination of Soils and Remediation Technologies
Dilek Turer
18

Plenary Lecture 8: On the Link Between Energy Retrofit and Economic Evaluation Priorities
Lamberto Tronchin
19

AC Micro-Power Plants Used in Offshore Drilling
Ion Potârniche, Sorin Dan Grigorescu, Mina Gheamalinga, Mihai Octavian Popescu, Cornelia Popescu
21

Methods of Spatial Modeling for Evaluation of Air Quality Based on UAV
Florin Mingireanu, Sorin Dan Grigorescu, Costin Cepisca, Catalin Stefan, Ionut Mocanu, Lucian P. Georgescu
25

Design and Implementation of Regional Balancing Mechanism Software
Costin Cepisca, Sorin Dan Grigorescu, George Seritan, Cosmin Karl Banica
29

The Study of Head Losses for Land Drainage Pipes with and without Filtering Materials
Hâlbac-Cotoară-Zamfir Rares
33

Considerations on Unsteady-State Land Drainage for Soils with Humidity Excess
Hâlbac-Cotoară-Zamfir Rares, Circu Camelia
39
Addressing Some Sustainability Aspects of Electric Power Systems Comprising Generator Circuit-Breakers

Cornelia A. Bulucea, Marc A. Rosen, Doru A. Nicola, Nikos E. Mastorakis, Carmen A. Bulucea

Satellite Image Processing and Mathematical Modeling of the Growth of Cyanobacteria to Determine the Level of Environmental Contamination in the Tiete River Beach

Carlos E. Formigoni

Differences in Risk Assessment of Particular Areas of Interest

Andrea Peterková, Michal Titko, Katarína Hollá

Vulnerability of Linear Transport Constructions of Critical Infrastructure and Comparison of Its Assessment Approaches

Michal Titko, Andrea Peterková, Katarína Hollá

Renewable Electricity in Estonia – Discrepancy between State Subsidies and Private Demand

Margot Roodi, Úllas Ehrlich

Estimation of Evapotranspiration from Measured Climatic Data

Milan Hofreiter, Pavel Trnka

Extending the Contingent Valuation Method (CVM) to Assess Externalities Created Round a Cultural Heritage Preservation Site - A Knowledge Based Approach

Fragiskos A. Batzias, Odysseas N. Kopsidas

Comparison of Economics of Renewable Generation in Estonian and Danish Electricity Market

Izabella Knöš, Mart Landsberg, Juhan Valtin

Multi-Fuel Modeling of Oxygen Ion Transport in Solid Oxide Fuel Cell

Tarkeshwar C. Patil, Shrikant G. Kulkarni, Siddhartha P. Duttagupta, Girish J. Phatak

Energy Performance and “Cost-Optimal Levels”: An Example

Kristian Fabbri, Lamberto Tronchin, Valerio Tarabusi

Friction and Heat Transfer Characteristics of Silica and CNT Nanofluids in a Tube Flow

Milivoje M. Kostic

Complementary Use of Solar Energy in Hybrid Systems Consisting of a Photovoltaic Power Plant and a Wind Power Plant

Mustafa Music, Ajla Merzic, Elma Redzic, Damir Aganovic

Cost or Energy Efficiency? Criteria in Design of a Reinforced Concrete Structure of a Public Building

Attila Puskas, Jacint Virag

Study on Shifting Performance of Electronically Controlled Continuously Variable Transmission (E-CVT)

Kei-Lin Kuo, Cheng-Chi Yu
Wind Power Density Loss for Wind Turbines Due to Upstream Hills
Bodo Ruck, Manuel Gruber

Effect of Platinum Electrode on Partial Oxidation of Glycerol and Optimization by Central Composite Design
Juan Carlos Beltrán Prieto, Roman Slavík, Karel Kolomazník

Direct Synthesis of Dimethyl Ether from Carbon Dioxide over Copper Catalysts Prepared Using the Sol-Gel Method
Kaoru Takeishi, Yutaro Wagatsuma

Incidence of Cutting Fluids on the Machining Process, the Operator and the Work Environment
Constantin Buzatu, Badea Lepadatescu, Adriana Balacescu, Alexanru Orzan

Hydrogen Production from Dimethyl Ether and the Catalysts Development in the Case of the Sol-Gel Catalysts
Kaoru Takeishi

Hydrogen Production from Dimethyl Ether and the Catalyst Preparation Methods
Kaoru Takeishi

Forecasting Electricity Consumption Based on Smart Metering Case Study in Latvia
Ilze Laicane, Andra Blumberga, Marika Rosa, Dagnija Blumberga, Uldis Bariss

Formaldehyde Emission Modeling Depending on Plywood Thickness at Different Testing Temperatures
Badescu Loredana Anne-Marie, Zeleniuc Octavia, Urdea Simona

Degradation of Dyes Used in Textile Industries by Selected White-Rot Fungi
Konstantina Papadopoulou, Fotis Rigas

First Results of an Airborne Release of Volcanic Ash for Testing of Volcanic Ash Plume Measurement Instruments

Seismic Hazard Analysis (SHA) Considerations for South China Sea Territories of Malaysia
Aziz Aulov, Mohd Shahir Liew

The Street - Playground or Dwelling for Some Children
Cristina-Maria Povian, Halbac-Ncotoara-Zamfir Rares

The Influence of the Nutrients Phosphorus and Nitrogen in the Amount of Chlorophyll a in the Waters of Esgotão Stream in the City of Sabino/SP- Brazil
Ana Maria Taddei Cardoso, Clezi Conforto Zambon, Cássio L. F. De Oliveira, Paulo César Lodí

Environmental Impact of Building Retrofits
Ligia Moga
Patterns of Foreign Direct Investments in the North East Romanian Region
Aniela Raluca Danciu

Traffic Growth Rate and Composition of Dhaka-Chittagong Highway (N-1) of Bangladesh: The Actual Situation
Mohammad Ahad Ullah, Md. Shamsul Hoque, Hamid Nikraz

Improvement of Fire Resistance Determination Process for Buildings and Metal Structures under the Influence of Fire
Ana-Diana Ancas, Lucia-Maria Boeriu, Alexandru Serban, Cristian Nastac

Authors Index
Abstract: Energy and Environmental landscape could be substantially enhanced with improved efficiency and diversification of energy sources, devices and processes. The fundamental Laws of Thermodynamics and comprehensive analysis and optimization are the most effective ways for the improvements and could lead to innovative development. The fundamental Laws of Nature are exceptionally simple but they appear in exceptionally many different forms, which explain universality and unity of simplicity and complexity, but also difficulties to recognize simplicity in complex diversity.

The philosophic axiom "causa aequat effectum" [the cause is adequate to the effect] traced to ancient philosophers, represents the most universal and fundamental law of nature, including existence and future, i.e. past and future transformations. Furthermore, the phenomenological Laws of Thermodynamics have much wider, including philosophical significance and implication, than their simple expressions based on the experimental observations – they are the Fundamental Laws of Nature. They are defining and unifying our comprehension of all existence in universe (all natural and man-made systems defined by their properties and processes) and all changes in time (all processes, including life), which are in turn caused by mass-energy transfer, from one system or subsystem to another, due to non-uniform mass-energy distribution in space and time.

Therefore, advances in energy conversion and utilization technologies and increase in efficiency, including computerized control and management, contribute to energy efficiency and conservation, increase in safety, and reduction of related environmental pollution. Actually, per capita energy use in the U.S. and other developed countries is being reduced in recent years. However, the increase of World's population and development of many underdeveloped and fast developing and very populated countries, like China, India and others, will influence continuous increase of the World energy consumption and related impact on the environment. After all, in the wake of a short history of fossil fuels' abundance and use (a blip on a human history radar screen), the life may be happier after the fossil fuel era!

Brief Biography of the Speaker: Milivoje M. Kostic, Ph.D., P.Eng., Professor of Mechanical Engineering at Northern Illinois University, is a notable researcher and scholar in energy fundamentals and applications, including nanotechnology, with emphasis on conservation, environment and sustainability. He graduated with the University of Belgrade highest distinction (the highest GPA in ME program history), obtained Ph.D. at University of Illinois at Chicago as a Fulbright scholar, appointed as NASA faculty fellow, and Fermi and Argonne National Laboratories faculty researcher. Professor Kostic also worked in industry and has authored a number of patents and professional publications, including invited articles in prestigious energy encyclopedias. He has a number of professional awards and recognitions, is a frequent plenary speaker at international conferences and at different educational and public institutions, as well as member of several professional societies and scientific advisory boards. More at www.kostic.niu.edu.
Plenary Lecture 2

Emphasis on Sustainability Concepts for Analyzing the Disconnection Process Energy Transformation in the Generator Circuit-Breaker

Associate Professor Cornelia Aida Bulucea
Faculty of Electrical Engineering
University of Craiova
ROMANIA
E-mail: abulucea@gmail.com

Abstract: The sustainability concepts of science describe aspects of the universe. A convincing example of the usefulness of exergy and embodied energy for analyzing systems which transform energy is the generator circuit-breaker (GCB) disconnection process. Nowadays, the electric connection circuits of power plants, based on fossil fuels as well as renewable sources, entail GCBs at the generator terminals, since the presence of that electric equipment offers many advantages related to the sustainability of a power plant. A generator circuit-breaker is located between the generator and the main step-up transformer, this location influencing the operating conditions of GCBs. The interruption requirements of a GCB are significantly higher than for the distribution network circuit-breakers. A generator circuit-breaker must be capable of interrupting not only the high symmetrical fault current, but also the higher asymmetrical faults currents resulting from high aperiodic pulsating components of the fault current. This way arises a sustainability requirement for generator circuit-breakers which are subjected to a unique demanding condition, called delayed current zeros. The manner in which the various factors influence the delay lasting of the first zero passing of the short-circuit current are investigated. Further in this study it is emphasized that although the phenomena produced in the electric arc at the terminals of the circuit-breaker are complicated and not completely explained, the concept of exergy is useful in understanding the physical phenomena. Investigations of electrics show that the limits between the microscopic and macroscopic phenomena are fragile and certain phenomena could be studied in related frames of work. The electric arc that occurs during the interruption processes in a circuit-breaker can be studied as a very high temperature (up to 50,000 K) continuous plasma discharge, and thermodynamic parameters must be taken into consideration; alternatively it could be seen as an electric conductor of a resistance depending on the current intensity (under a constant low voltage) and studied within the Faraday's macroscopic theory. Electric arc interruption is of great importance, because an uncontrolled electrical arc in the apparatus could become destructive since, once initiated, an arc will draw more and more current from a fixed voltage supply until the apparatus is destroyed. However, the appearance of an electric arc at the terminals of the circuit-breaker should not be necessarily seen as a damaging phenomenon since if the electric arc would not appear the network embedded magnetic energy would be converted to the energy of the circuit electric field, leading further to high over-voltages in the network. Moreover, due to the arc exergy, the aperiodic pulsating component of the short-circuit current decreases very quickly, starting with the moment of contact separation.

Brief Biography of the Speaker: Cornelia Aida Bulucea is currently an Associate Professor in Electrotechnics, Electrical Machines and Environmental Electric Equipment in the Faculty of Electrical Engineering, University of Craiova, Romania. She is graduate from the Faculty of Electrical Engineering Craiova and she received the Ph.D degree from Bucharest Polytechnic Institute. In Publishing House she is author of four books in electrical engineering area. Research work is focused on improved solutions for electrical networks on basis of new electric equipment, and environmental impact assessment of electric transportation systems. She has held in the Association for Environment Protection OLtenia and she is a regular invited keynote lecture for environmental engineering symposia organized by Chamber of Industry and Commerce OLtenia. Due to WSEAS recognition as huge scientific Forum she participated over time in nineteen WSEAS International Conferences, presenting papers and chairing sessions. She was Plenary Lecturer in the 5th IASME/WSEAS International Conference on ENERGY&ENVIRONMENT (EE’10), held by the University of Cambridge, UK, February 23-25, 2010, in the 4th IASME/WSEAS International Conference on ENERGY&ENVIRONMENT (EE’09),), held by the University of Cambridge, Cambridge UK, February 24-26, 2009 and in the 8th WSEAS International Conference on POWER SYSTEMS (PS’08), held by the University of Cantabria, Santander, Spain, September 23-25, 2008. She is very proud by her over 30 papers published in the WSEAS Conferences Books and journals.
Plenary Lecture 3

New Energy (Fuel) Will Save Our Earth - Dimethyl Ether (DME): A Clean Fuel for the 21st Century

Associate Professor Kaoru Takeishi
Department of Materials Science and Chemical Engineering
Shizuoka University
Japan
E-mail: tcktake@ipc.shizuoka.ac.jp

Abstract: Dimethyl ether (DME) is the smallest ether, and its chemical formula is CH$_3$OCH$_3$. DME usually exists as gas, but it is easy to liquefy by cooling at -25°C at atmospheric pressure and by pressurizing under 5 atm at room temperature. Therefore, DME is easy to handle like liquefied petroleum gas (LPG). DME will be used as fuel of substitute of LPG. In China, DME is mixed into LPG and used as a domestic fuel. Cetane number of DME is 55-60, so DME will be used as a diesel fuel. In Japan, China, Sweden and so on, DME buses and trucks are testing on public roads. DME does not contain poisonous substances, and it burns with no particulate matters (PM), no sulphur oxides (SOx), and less nitrogen oxides (NOx). Therefore, DME is expected as a clean fuel for the 21st century. DME infrastructures will be settled more rapidly than hydrogen, because existing LPG infrastructures can be used for DME. On the other hand, it is expected that fuel cell is one of the methods to restrain the global green effect. Steam reforming of methane, LPG, gasoline, and methanol is actively researched and developed as hydrogen supply methods for the fuel cells. Methanol steam reforming is easy to perform at around 250-300°C. However, the toxicity of methanol is high, and its infrastructure is not well developed. The infrastructures for natural gas, LPG, and gasoline are well established, but those steam reforming are difficult even at high temperatures around 800°C, and they contain sulphur resulting in catalyst poisoning. DME is expected as excellent hydrogen carrier and hydrogen storage, because DME will be easy to reform into hydrogen if there will be excellent catalysts of DME steam reforming. Therefore, I have been studying on DME steam reforming for hydrogen production, and researching on catalysts for DME steam reforming and DME synthesis.

The results of steam reforming of DME over several catalysts suggested the following facts: H$_2$ production with steam reforming of DME consists of two steps. The first step is hydrolysis of DME into methanol. The second step is steam reforming of methanol that produces H$_2$ and CO$_2$. The rate determining step is hydrolysis of DME into methanol. The copper alumina catalysts prepared by the sol-gel method are excellent for H$_2$ production by steam reforming of DME. The reason is that γ-Al$_2$O$_3$ for the hydrolysis and Cu for methanol-steam reforming are co-existing closely on the catalyst surface. The consecutive reactions smoothly occur. Addition of Zn, Mn, or Fe into Cu(30wt.%)/Al$_2$O$_3$ activates steam reforming of DME. The Cu-Zn(29-1wt.%)/Al$_2$O$_3$ catalyst shows the excellent activity of DME steam reforming; the DME conversion is 95%, H$_2$ yield is 95%, and CO concentration was 0.8 mol.%. I have developed a new catalyst for H$_2$ production from DME, and the catalyst give us a great potential for H$_2$ supply from DME. I have also developed catalysts for direct DME synthesis from syngas (mixture of hydrogen and carbon monoxide). The catalysts are prepared by the sol-gel method, and the surface of the catalysts is optimum for direct DME synthesis. Copper sites for methanol synthesis from syngas, γ-Al$_2$O$_3$ sites for dehydration of methanol into DME, and copper sites for water-gas shift reaction from H$_2$O & CO into H$_2$ & CO$_2$, are co-existing closely on the catalyst surface. The consecutive reactions (methanol synthesis, methanol dehydration, and water-gas shift reaction) smoothly occur, and DME is produced fast. Therefore, these catalysts will be very effective for new energy society of DME and hydrogen.

Brief Biography of the Speaker:
Apr. 2009 - Present: Associate Professor (Lecturer), Faculty of Engineering, Shizuoka University
Oct. 1994 - Mar. 2009: Assistant Professor, Faculty of Engineering, Shizuoka University
Mar. 2005: Doctor of Engineering, Tokyo Institute of Technology
Apr. 1989 - Sep. 1994: Assistant Professor, Junior College of Engineering, Shizuoka University
Apr. 1987 - Mar. 1989: Researcher, Gotemba R&D Laboratory, Dow Chemical Japan
Apr. 1985 - Mar. 1987: Master Course of Electronic Chemistry, Tokyo Institute of Technology (Master of Science)
Apr. 1981 - Mar. 1985: Undergraduate Course of Chemistry, Science University of Tokyo (Bachelor of Science)
My main research field is catalysis chemistry. Now, I have specially been working for catalyst development for new fuels such as dimethyl ether (DME) and hydrogen.
Plenary Lecture 4

Formaldehyde Emission Modeling Depending on Plywood Thickness at Different Testing Temperatures

Professor Loredana Anne-Marie Badescu
Dr. Octavia Zeleniuc
Department of Wood Processing and Design of Wood Products
Faculty of Wood Engineering/Wood Machining
Center of Excellence (CCSPL)
Transilvania University of Brasov
ROMANIA
E-mails: loredana@unitbv.ro, zoctavia@unitbv.ro

Abstract: This paper presents a mathematical model for determining formaldehyde emission at plywood panels with different thickness, when the temperature is variation on the test condition. Modeling was performed based on the experimental results obtained at the determination of formaldehyde emission with the bottle method and results are a set of diagrams which can be appreciated the content and formaldehyde emission of plywood used in furniture construction.

Brief Biography of the Speaker:
Loredana Anne-Marie Badescu
-Professor dr eng at Transilvania University of Brasov, Romania, Wood Engineering Faculty
-33 years teaching experience in the field of Wood processing
-Coordinator of 5 successful national projects and acted as a collaborator in other 40 national and international research projects (LdV, CEEPUS, FP6, FP7)
-Coordinator in National Programme Researches PNII „Modelling to Sustainable Promotion of Wooden Products and Technologies with Impact on the Quality Environment.” The project aims to create and consolidate a package of procedures destined to reduce the entropic pressure over a basic component of the environment in the same time suggesting a model for eco-socio and economical sustainability. At present coordinator of two projects proposed in FP7 and ANR Bilateral programs Fr-Ro “Advancing knowledge on the assessment, verification, testing and modelling of noise, dust and VOC emissions from wood processing to promote a sustainable management of the wood chain”: and „Advanced knowledge, Modelling and Optimization on Structural wood components, of new ECO-products made with Welded WOOD dowels, with direct impact on environment in order to promote sustainable development”
- author of more than 150 papers published at national and international level, unique author for six books. And co-author in other 4 books.

Octavia Zeleniuc
Graduate of Wood Engineering Faculty, “TRANSILVANIA” University of Brasov, ROMANIA.
Senior research scientist grade II at National Institute of Wood Bucharest, between 1986 and 2004. In this institute, as head of laboratory, her work has been focused on wood drying and wood preservation. She received her Ph.D. in industrial engineering, in the field of beech timber drying, in 2000.
Since 2004, she has joined the Faculty of Wood Engineering having the competences in timber technology, wood treatments (drying and preservation) and wood testing: laboratory and field tests for wood durability evaluation, physical, mechanical properties, formaldehyde emissions from wood based products. She was Member in Management Committee COST E22 and COST E37 (2000-2008) and since 2010 she coordinates the activity of VOC & formaldehyde laboratory at RTD Research Institute Brasov.
Author and co-author in over 70 scientific articles published in Journals and in the Proceedings of National and International Conferences: Romania, Canada, Greece, France, Portugal, Slovenia, Slovakia, UK, etc. Papers presented in some WSEAS Conferences in Brasov (2009), Tenerife (2009), Malta (2010) and Angers (2011).
Abstract: Currently over 60% of manufacturing processes of various metal parts are made by cutting using various methods, in the presence of cutting fluids transmitted in the work area from central station. With all the advantages on quality shows they obtained, unless management is done properly, cutting fluids can cause some disadvantages of the process, but also negative effects on environment and health security operator. The paper analyzes positive and negative effects of using cutting fluids on the process, the operator and the environment based on research done by the authors.

Brief Biography of the Speaker: Constantin Buzatu is Professor at the Faculty of Technological Engineering and Manufacturing Technology Department of Transilvania University of Brasov, Romania. He graduated in 1972 and he obtained his Ph.D. in the field of accuracy of machining processes. His research interests are in Manufacturing engineering processes, Automation in industry, Performance measurement and management, Education technology. He is author and co-author of seven books and more than 150 papers in national and international conferences. Also he has been research manager for several research grants from Ministry of Education of Romania, and for contracts with factories in industry to introduce new technologies in producing workpieces and to improve their reliability. He was member of technical program committee of some conferences and chairman of local and international conferences. He has been scientific reviewer for International Conferences and independent evaluator for Grant National Competitions.
Plenary Lecture 6

Significance of Structural Health Monitoring in Cultural Heritage Structures

Associate Professor Ahmet Turer
Structural Mechanics Laboratory
Civil Engineering Department
Middle East Technical University
Turkey
E-mail: aturer@metu.edu.tr

Abstract: Monitoring of modern and special civil engineering structures, extraordinary ones such as long span bridges, high rise buildings, deep tunnels, are under continuous control by measurement devices; which is commonly referred as Structural Health Monitoring (SHM). The main concept behind SHM is to place necessary amount of gages at critical locations in a structure to evaluate its status in time and even generate warning signals in the form of audible alarms or SMS messages if measurements exceed predefined damage limits; which is commonly defined as smart structures. This technology has also been implemented on cultural heritage structures since they are irreplaceably valuable and very important structures. This lecture gives a brief background on SHM and application of monitoring techniques on cultural heritage structures while putting emphasis on commonly used sensors and datalogger types. Interesting monitoring examples will be provided showing detectable structural changes on historic structures that undergo restoration work and could have been otherwise lead to undesirable effects if monitoring was not performed. Other monitoring types of short monitoring for dynamic testing will be discussed and relevance to finite element model calibration will be discussed.

Brief Biography of the Speaker: Dr Ahmet Turer received his B.S. (High Honor, 1993) in Civil Engineering from Middle East Technical University (METU) in Ankara, then M.S. (1997) and PhD (2000) degrees from University of Cincinnati (UC), Ohio-USA. He worked as a structural engineer and project planner between 1993-1995 in Turkey as well as research assistant and part-time structural engineer in USA. Assoc. Prof. Dr. Ahmet Turer has been a full time faculty member at METU Civil engineering department since 2000 and specialized on structural analysis, monitoring, condition evaluation of historic structures and bridges. He is the author of close to 100 conference and international peer reviewed journal papers. He received science award from Istanbul Kultur University in 2007 for his innovative work on developing strengthening techniques using scrap tires for non-engineered masonry rural houses self-constructed by poor occupants. He serves as the head of Special and Tall Structures Research Center at METU.
Plenary Lecture 7

Heavy Metal Contamination of Soils and Remediation Technologies

Associate Professor Dilek Turer
Department of Geological Engineering
Hacettepe University
Turkey
E-mail: dturer@hacettepe.edu.tr

Abstract: Soils can contain heavy metals naturally because of their metal rich source rock but the main reason for the high concentrations observed in soils is the anthropogenic sources. These sources are mine tailing, usage of leaded gasoline and paints, pesticides, fertilizers, and industrial wastes. The most commonly found heavy metals in contaminated sites are lead, zinc, copper, chromium, nickel, and mercury. Contaminated soils can result in some health problems in humans through breathing of contaminated soils as small dust particles in the air when they are disturbed and also through food chain and contaminated groundwater. Besides isolation of the contaminated soils as a method to prevent the mobility of the heavy metals there are many other techniques that are either trying to remove or fix the heavy metals in the soils, described in the literature. In this lecture, basics of these techniques (immobilization by solidification/stabilization, extraction by soil washing and electrokinetic treatment and others) and the results of the laboratory work on solidification and electrokinetic treatment carried by the speaker will be presented.

Brief Biography of the Speaker: Assoc. Prof. Dr. D. Turer holds a bachelor degree in Geological Engineering from Middle East Technical University (TURKEY), MScand PhD in Geology (2000) from the University of Cincinnati (USA). She has been a faculty member of Geological Engineering Department of Hacettepe University (TURKEY) since 2001. Her research interests include heavy metal contamination of soils, stabilization/solidification technologies, and environmental geology. She has 10 publications in highly rated ISI journals and 17 in conference proceedings.
Plenary Lecture 8

On the Link Between Energy Retrofit and Economic Evaluation Priorities

Professor Lamberto Tronchin
DIENCA - CIARM
University of Bologna
Italy
E-mail: Lamberto.tronchin@unibo.it

Abstract: The financial crisis of 2008 (and following) caused mainly the construction and real estate sectors to suffer. Moreover, the buildings are responsible of about 40% of incidence on energy emission. The economic crisis did not allow realizing new buildings, and the existing buildings have too much greenhouse emission, that needs to be reduced. The Energy Retrofit actions could be a way to improve both sectors, because it reduces emission and real estate sector. But Energy Retrofit has some difficulties when it is used to evaluate a better energy, economic and technical solution.

In this paper we present an energy retrofit calculation about an Italian case study: one building typology that is supposed realized in several different periods, with different thermo-physic parameters. For each period it will be applied 4 energy retrofit actions, also will be calculated energy performance of the building, energy cost and economic Simple Pay Back Period (SPB). The aims of paper are to detect whether exists a linear relationship between energy saving increase and SPB decrease for each specific technology, for each different period.

Brief Biography of the Speaker: Dr Lamberto Tronchin is Associate Professor in Environmental Physics from the University of Bologna and is recognised internationally as a leading authority on the subject of sound and acoustics. A pianist himself, with a diploma in piano from the Conservatory of Reggio Emilia, Dr Tronchin's principal area of research has been musical acoustics, room acoustics and signal processing. He is the author of more than 160 papers and was Chair of the Musical Acoustics Group of the Italian Association of Acoustics from 2000 to 2008. Dr Tronchin is a member of the Scientific Committee of the CIARM, the Inter-University Centre of Acoustics and Musical research, has chaired sessions of architectural and musical acoustics during several international symposiums, been a referee for a number of International journals and is Chair of Organising and Scientific Committees of IACMA (International Advanced Course on Musical Acoustics).

He was a visiting researcher at the University of Kobe in Japan, a visiting professor at the University of Graz in Austria and Special honored International Guest at the International Workshop, 'Analysis, Synthesis and Perception of Music Signals', at Jadavpur University of Kolkata, India in 2005. He has chaired the International Advanced Course on Musical Acoustics (IACMA), organised with the European Association of Acoustics, which was held in Bologna, in 2005. In 2008 and 2009 he gave plenary lectures at International Congresses on Acoustics in Vancouver, Prague, Bucharest, Santander, Kos, Malta and Paris. He designed theatres and other buildings, as acoustic consultant, in collaboration with several Architects, among them Richard Meier and Paolo Portoghesi.
Authors Index

Aganovic, D. 106
Ancas, A.-D. 207
Aulov, A. 173
Badescu, A.-M. L. 156
Balacecu, A. 137
Banica, C. K. 29
Bariss, U. 148
Batzias, F. A. 76
Beltrán Prieto, J. C. 129
Blumberga, A. 148
Blumberga, D. 148
Boeriu, L.-M. 207
Böhlke, C. 169
Buluçeа, Ca. A. 43
Buluçeа, Co. A. 43
Buzatu, C. 137
Catalin, S. 25
Cepisca, C. 25, 29
Circu, C. 39
Danciu, A. R. 195
De Oliveira, C. L. F. 185
Doru, A. N. 43
Duttagupta, S. P. 89
Ehrlich, U. 66
Eliasson, J. 169
Fabbri, K. 93
Formigoni, C. E. 51
Georgescu, L. P. 25
Gheamalinga, M. 21
Grigorescu, S. D. 21, 25, 29
Gruber, M. 123
Hofreiter, M. 72
Hollá, K. 56, 61
Hoque, M. S. 201
Knoš, I. 82
Kolomazník, K. 129
Kopsidas, O. N. 76
Kostic, M. M. 99
Kulkarni, S. G. 89
Kuo, K.-L. 118
Laicane, I. 148
Landsberg, M. 82
Lau, H. 169
Lepadatescu, B. 137
Liew, M. S. 173
Lodi, P. C. 185
Mastorakis, N. E. 43
Merzic, A. 106
Mingireanu, F. 25
Mocanu, I. 25
Moga, L. 189
Music, M. 106
Nastac, C. 207
Orzan, A. 137
Palsson, T. 169
Papadopoulou, K. 163
Patil, T. C. 89
Peterková, A. 56, 61
Phatak, G. J. 89
Pohl, T. 169
Popescu, M. 21
Potárniche, I. 21
Povian, C.-M. 179
Puskas, A. 112
Rares, H.-C.-Z. 33, 39, 179
Rigas, F. 163
Roodi, M. 66
Roca, M. 148
Rosen, M. A. 43
Ruck, B. 123
Serban, A. 207
Seritan, G. 29
Simona, U. 156
Slavik, R. 129
Takeishi, K. 134, 142, 145
Tarabus, V. 93
Tilko, M. 56, 61
Trnka, P. 72
Tronchin, L. 93
Ullah, M. A. 201
Valtin, J. 82
Virag, J. 112
Vogel, C. F. A. 169
Wagatsuma, Y. 134
Weber, K. 169
Yu, C.-C. 118
Zambon, C. C. 185
Zeleniuc, O. 156